
Machine Learning with Python

 i

Machine Learning with Python

 ii

About the Tutorial

Machine Learning (ML) is basically that field of computer science with the help of which

computer systems can provide sense to data in much the same way as human beings do.

In simple words, ML is a type of artificial intelligence that extract patterns out of raw data

by using an algorithm or method. The key focus of ML is to allow computer systems to

learn from experience without being explicitly programmed or human intervention.

Audience

This tutorial will be useful for graduates, postgraduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum. The

reader can be a beginner or an advanced learner.

This tutorial has been prepared for the students as well as professionals to ramp up

quickly. This tutorial is a stepping stone to your Machine Learning journey.

Prerequisites

The reader must have basic knowledge of artificial intelligence. He/she should also be

aware of Python, NumPy, Scikit-learn, Scipy, Matplotlib.

If you are new to any of these concepts, we recommend you to take up tutorials concerning

these topics, before you dig further into this tutorial.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Machine Learning with Python

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Machine Learning with Python – Basics .. 1

What is Machine Learning? ... 1

Need for Machine Learning ... 1

Why & When to Make Machines Learn? ... 1

Machine Learning Model ... 2

Challenges in Machines Learning .. 4

Applications of Machines Learning.. 4

2. Machine Learning with Python – Python Ecosystem ... 6

An Introduction to Python ... 6

Strengths and Weaknesses of Python ... 6

Installing Python .. 7

Why Python for Data Science? .. 9

Components of Python ML Ecosystem .. 10

Jupyter Notebook .. 10

Types of Cells in Jupyter Notebook ... 12

3. Python Machine Learning – Methods for Machine Learning ... 17

Different Types of Methods .. 17

Tasks Suited for Machine Learning .. 20

4. Machine Learning with Python – Data Loading for ML Projects .. 22

Consideration While Loading CSV data ... 22

Methods to Load CSV Data File ... 23

Machine Learning with Python

 iv

Load CSV with NumPy ... 24

Load CSV with Pandas ... 25

5. Machine Learning with Python – Understanding Data with Statistics ... 27

Introduction ... 27

Looking at Raw Data .. 27

Checking Dimensions of Data .. 29

Getting Each Attribute’s Data Type ... 29

Statistical Summary of Data .. 30

Reviewing Class Distribution ... 31

Reviewing Correlation between Attributes ... 32

Reviewing Skew of Attribute Distribution ... 33

6. Machine Learning with Python – Understanding Data with Visualization ... 35

Introduction ... 35

Univariate Plots: Understanding Attributes Independently .. 35

Density Plots .. 37

Box and Whisker Plots ... 38

Multivariate Plots: Interaction Among Multiple Variables .. 39

Correlation Matrix Plot .. 39

Scatter Matrix Plot ... 41

7. Machine Learning with Python – Preparing Data .. 43

Introduction ... 43

Why Data Pre-processing? .. 43

Data Pre-processing Techniques ... 43

Normalization .. 44

Types of Normalization .. 45

Binarization .. 46

Standardization ... 48

Data Labeling ... 49

Machine Learning with Python

 v

What is Label Encoding? .. 49

8. Machine Learning with Python – Data Feature Selection .. 51

Importance of Data Feature Selection .. 51

Feature Selection Techniques ... 51

Recursive Feature Elimination ... 53

Principal Component Analysis (PCA) ... 54

Feature Importance ... 55

MACHINE LEARNING ALGORITHMS – CLASSIFICATION ... 56

9. Classification – Introduction ... 57

Introduction to Classification .. 57

Types of Learners in Classification ... 57

Building a Classifier in Python ... 57

Classification Evaluation Metrics ... 61

Confusion Matrix ... 61

Various ML Classification Algorithms .. 63

Applications ... 63

10. Classification Algorithms – Logistic Regression ... 64

Introduction to Logistic Regression ... 64

Types of Logistic Regression .. 64

Logistic Regression Assumptions ... 64

Binary Logistic Regression model .. 65

Implementation in Python ... 66

Multinomial Logistic Regression Model .. 69

Implementation in Python ... 69

11. Classification Algorithms – Support Vector Machine (SVM) .. 71

Introduction to SVM .. 71

Working of SVM ... 71

Machine Learning with Python

 vi

Implementing SVM in Python .. 72

SVM Kernels... 76

Pros and Cons of SVM Classifiers ... 79

12. Classification Algorithms – Decision Tree .. 80

Introduction to Decision Tree .. 80

Implementing Decision Tree Algorithm ... 81

Building a Tree ... 81

Implementation in Python ... 82

13. Classification Algorithms - Naïve Bayes ... 86

Introduction to Naïve Bayes Algorithm ... 86

Building model using Naïve Bayes in Python ... 86

Pros & Cons ... 88

Applications of Naïve Bayes classification ... 89

14. Classification Algorithms – Random Forest ... 90

Introduction ... 90

Working of Random Forest Algorithm... 90

Implementation in Python ... 91

Pros and Cons of Random Forest .. 93

MACHINE LEARNING ALGORITHMS - REGRESSION .. 95

15. Regression Algorithms – Overview.. 96

Introduction to Regression .. 96

Types of Regression Models .. 97

Building a Regressor in Python .. 97

Types of ML Regression Algorithms ... 100

Applications ... 100

16. Regression Algorithms – Linear Regression ... 101

Introduction to Linear Regression ... 101

Machine Learning with Python

 vii

Types of Linear Regression .. 102

Multiple Linear Regression (MLR) ... 106

Python Implementation .. 107

Assumptions .. 108

MACHINE LEARNING ALGORITHMS – CLUSTERING ... 110

17. Clustering Algorithms - Overview.. 111

Introduction to Clustering ... 111

Cluster Formation Methods .. 111

Measuring Clustering Performance ... 112

Silhouette Analysis .. 112

Analysis of Silhouette Score .. 112

Types of ML Clustering Algorithms .. 113

Applications of Clustering .. 114

18. Clustering Algorithms – K-means Algorithm .. 115

Introduction to K-Means Algorithm .. 115

Working of K-Means Algorithm ... 115

Implementation in Python ... 116

Advantages and Disadvantages ... 119

Applications of K-Means Clustering Algorithm .. 120

19. Clustering Algorithms – Mean Shift Algorithm .. 121

Introduction to Mean-Shift Algorithm... 121

Working of Mean-Shift Algorithm ... 121

Implementation in Python ... 121

Advantages and Disadvantages ... 123

20. Clustering Algorithms – Hierarchical Clustering .. 124

Introduction to Hierarchical Clustering ... 124

Steps to Perform Agglomerative Hierarchical Clustering .. 124

Machine Learning with Python

 viii

Role of Dendrograms in Agglomerative Hierarchical Clustering ... 124

MACHINE LEARNING ALGORITHMS - KNN ALGORITHM .. 130

21. KNN Algorithm – Finding Nearest Neighbors .. 131

Introduction ... 131

Working of KNN Algorithm .. 131

Implementation in Python ... 132

KNN as Classifier .. 133

KNN as Regressor .. 135

Pros and Cons of KNN ... 136

Applications of KNN ... 136

22. Machine Learning Algorithms – Performance Metrics ... 137

Performance Metrics for Classification Problems ... 137

Performance Metrics for Regression Problems ... 141

23. Machine Learning with Pipelines – Automatic Workflows .. 143

Introduction ... 143

Challenges Accompanying ML Pipelines .. 144

Modelling ML Pipeline and Data Preparation .. 144

Modelling ML Pipeline and Feature Extraction ... 145

24. Machine Learning – Improving Performance of ML Models .. 148

Performance Improvement with Ensembles ... 148

Ensemble Learning Methods ... 148

Bagging Ensemble Algorithms ... 149

Boosting Ensemble Algorithms .. 152

Voting Ensemble Algorithms ... 154

25. Machine Learning – Improving Performance of ML Model (Contd…) .. 157

Performance Improvement with Algorithm Tuning .. 157

Performance Improvement with Algorithm Tuning .. 157

Machine Learning with Python

 1

We are living in the ‘age of data’ that is enriched with better computational power and

more storage resources,. This data or information is increasing day by day, but the real

challenge is to make sense of all the data. Businesses & organizations are trying to deal

with it by building intelligent systems using the concepts and methodologies from Data

science, Data Mining and Machine learning. Among them, machine learning is the most

exciting field of computer science. It would not be wrong if we call machine learning the

application and science of algorithms that provides sense to the data.

What is Machine Learning?

Machine Learning (ML) is that field of computer science with the help of which computer

systems can provide sense to data in much the same way as human beings do.

In simple words, ML is a type of artificial intelligence that extract patterns out of raw data

by using an algorithm or method. The main focus of ML is to allow computer systems learn

from experience without being explicitly programmed or human intervention.

Need for Machine Learning

Human beings, at this moment, are the most intelligent and advanced species on earth

because they can think, evaluate and solve complex problems. On the other side, AI is still

in its initial stage and haven’t surpassed human intelligence in many aspects. Then the

question is that what is the need to make machine learn? The most suitable reason for

doing this is, “to make decisions, based on data, with efficiency and scale”.

Lately, organizations are investing heavily in newer technologies like Artificial Intelligence,

Machine Learning and Deep Learning to get the key information from data to perform

several real-world tasks and solve problems. We can call it data-driven decisions taken by

machines, particularly to automate the process. These data-driven decisions can be used,

instead of using programing logic, in the problems that cannot be programmed inherently.

The fact is that we can’t do without human intelligence, but other aspect is that we all

need to solve real-world problems with efficiency at a huge scale. That is why the need for

machine learning arises.

Why & When to Make Machines Learn?

We have already discussed the need for machine learning, but another question arises

that in what scenarios we must make the machine learn? There can be several

circumstances where we need machines to take data-driven decisions with efficiency and

at a huge scale. The followings are some of such circumstances where making machines

learn would be more effective:

Lack of human expertise

The very first scenario in which we want a machine to learn and take data-driven decisions,

can be the domain where there is a lack of human expertise. The examples can be

navigations in unknown territories or spatial planets.

1. Machine Learning with Python – Basics

Machine Learning with Python

 2

Dynamic scenarios

There are some scenarios which are dynamic in nature i.e. they keep changing over time.

In case of these scenarios and behaviors, we want a machine to learn and take data-driven

decisions. Some of the examples can be network connectivity and availability of

infrastructure in an organization.

Difficulty in translating expertise into computational tasks

 There can be various domains in which humans have their expertise,; however, they are

unable to translate this expertise into computational tasks. In such circumstances we want

machine learning. The examples can be the domains of speech recognition, cognitive tasks

etc.

Machine Learning Model

Before discussing the machine learning model, we must need to understand the following

formal definition of ML given by professor Mitchell:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.”

The above definition is basically focusing on three parameters, also the main components

of any learning algorithm, namely Task(T), Performance(P) and experience (E). In this

context, we can simplify this definition as:

ML is a field of AI consisting of learning algorithms that:

 Improve their performance (P)

 At executing some task (T)

 Over time with experience (E)

Machine Learning with Python

 3

Based on the above, the following diagram represents a Machine Learning Model:

Let us discuss them more in detail now:

Task(T)

From the perspective of problem, we may define the task T as the real-world problem to

be solved. The problem can be anything like finding best house price in a specific location

or to find best marketing strategy etc. On the other hand, if we talk about machine

learning, the definition of task is different because it is difficult to solve ML based tasks by

conventional programming approach.

A task T is said to be a ML based task when it is based on the process and the system

must follow for operating on data points. The examples of ML based tasks are

Classification, Regression, Structured annotation, Clustering, Transcription etc.

Experience (E)

As name suggests, it is the knowledge gained from data points provided to the algorithm

or model. Once provided with the dataset, the model will run iteratively and will learn

some inherent pattern. The learning thus acquired is called experience(E). Making an

analogy with human learning, we can think of this situation as in which a human being is

learning or gaining some experience from various attributes like situation, relationships

etc. Supervised, unsupervised and reinforcement learning are some ways to learn or gain

experience. The experience gained by out ML model or algorithm will be used to solve the

task T.

Performan

ce (P)

Experienc

e (E)

Task (T)

Machine Learning with Python

 4

Performance (P)

An ML algorithm is supposed to perform task and gain experience with the passage of

time. The measure which tells whether ML algorithm is performing as per expectation or

not is its performance (P). P is basically a quantitative metric that tells how a model is

performing the task, T, using its experience, E. There are many metrics that help to

understand the ML performance, such as accuracy score, F1 score, confusion matrix,

precision, recall, sensitivity etc.

Challenges in Machines Learning

While Machine Learning is rapidly evolving, making significant strides with cybersecurity

and autonomous cars, this segment of AI as whole still has a long way to go. The reason

behind is that ML has not been able to overcome number of challenges. The challenges

that ML is facing currently are:

Quality of data: Having good-quality data for ML algorithms is one of the biggest

challenges. Use of low-quality data leads to the problems related to data preprocessing

and feature extraction.

Time-Consuming task: Another challenge faced by ML models is the consumption of

time especially for data acquisition, feature extraction and retrieval.

Lack of specialist persons: As ML technology is still in its infancy stage, availability of

expert resources is a tough job.

No clear objective for formulating business problems: Having no clear objective and

well-defined goal for business problems is another key challenge for ML because this

technology is not that mature yet.

Issue of overfitting & underfitting: If the model is overfitting or underfitting, it cannot

be represented well for the problem.

Curse of dimensionality: Another challenge ML model faces is too many features of data

points. This can be a real hindrance.

 Difficulty in deployment: Complexity of the ML model makes it quite difficult to be

deployed in real life.

Applications of Machines Learning

Machine Learning is the most rapidly growing technology and according to researchers we

are in the golden year of AI and ML. It is used to solve many real-world complex problems

which cannot be solved with traditional approach. Following are some real-world

applications of ML:

 Emotion analysis

 Sentiment analysis

 Error detection and prevention

 Weather forecasting and prediction

 Stock market analysis and forecasting

 Speech synthesis

 Speech recognition

Machine Learning with Python

 5

 Customer segmentation

 Object recognition

 Fraud detection

 Fraud prevention

 Recommendation of products to customer in online shopping.

Machine Learning with Python

 6

An Introduction to Python

Python is a popular object-oriented programing language having the capabilities of high-

level programming language. Its easy to learn syntax and portability capability makes it

popular these days. The followings facts gives us the introduction to Python:

 Python was developed by Guido van Rossum at Stichting Mathematisch Centrum in

the Netherlands.

 It was written as the successor of programming language named ‘ABC’.

 It’s first version was released in 1991.

 The name Python was picked by Guido van Rossum from a TV show named Monty

Python’s Flying Circus.

 It is an open source programming language which means that we can freely

download it and use it to develop programs. It can be downloaded from

www.python.org.

 Python programming language is having the features of Java and C both. It is

having the elegant ‘C’ code and on the other hand, it is having classes and objects

like Java for object-oriented programming.

 It is an interpreted language, which means the source code of Python program

would be first converted into bytecode and then executed by Python virtual

machine.

Strengths and Weaknesses of Python

Every programming language has some strengths as well as weaknesses, so does Python

too.

Strengths

According to studies and surveys, Python is the fifth most important language as well as

the most popular language for machine learning and data science. It is because of the

following strengths that Python has:

Easy to learn and understand: The syntax of Python is simpler; hence it is relatively

easy, even for beginners also, to learn and understand the language.

Multi-purpose language: Python is a multi-purpose programming language because it

supports structured programming, object-oriented programming as well as functional

programming.

2. Machine Learning with Python – Python Ecosystem

http://www.python.org/

Machine Learning with Python

 7

Huge number of modules: Python has huge number of modules for covering every

aspect of programming. These modules are easily available for use hence making Python

an extensible language.

Support of open source community: As being open source programming language,

Python is supported by a very large developer community. Due to this, the bugs are easily

fixed by the Python community. This characteristic makes Python very robust and

adaptive.

Scalability: Python is a scalable programming language because it provides an improved

structure for supporting large programs than shell-scripts.

Weakness

Although Python is a popular and powerful programming language, it has its own weakness

of slow execution speed.

The execution speed of Python is slow as compared to compiled languages because Python

is an interpreted language. This can be the major area of improvement for Python

community.

Installing Python

For working in Python, we must first have to install it. You can perform the installation of

Python in any of the following two ways:

 Installing Python individually

 Using Pre-packaged Python distribution: Anaconda

Let us discuss these each in detail.

Installing Python Individually

If you want to install Python on your computer, then then you need to download only the

binary code applicable for your platform. Python distribution is available for Windows,

Linux and Mac platforms.

The following is a quick overview of installing Python on the above-mentioned platforms:

On Unix and Linux platform

With the help of following steps, we can install Python on Unix and Linux platform:

 First, go to https://www.python.org/downloads/.

 Next, click on the link to download zipped source code available for Unix/Linux.

 Now, Download and extract files.

 Next, we can edit the Modules/Setup file if we want to customize some options.

1. Next, write the command run ./configure script

2. make

3. make install

https://www.python.org/downloads/

Machine Learning with Python

 8

On Windows platform

With the help of following steps, we can install Python on Windows platform:

 First, go to https://www.python.org/downloads/.

 Next, click on the link for Windows installer python-XYZ.msi file. Here XYZ is the

version we wish to install.

 Now, we must run the file that is downloaded. It will take us to the Python install

wizard, which is easy to use. Now, accept the default settings and wait until the

install is finished.

On Macintosh platform

For Mac OS X, Homebrew, a great and easy to use package installer is recommended to

install Python 3. In case if you don't have Homebrew, you can install it with the help of

following command:

$ ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

It can be updated with the command below:

$ brew update

Now, to install Python3 on your system, we need to run the following command:

$ brew install python3

Using Pre-packaged Python Distribution: Anaconda

Anaconda is a packaged compilation of Python which have all the libraries widely used in

Data science. We can follow the following steps to setup Python environment using

Anaconda:

Step1: First, we need to download the required installation package from Anaconda

distribution. The link for the same is https://www.anaconda.com/distribution/. You can

choose from Windows, Mac and Linux OS as per your requirement.

Step2: Next, select the Python version you want to install on your machine. The latest

Python version is 3.7. There you will get the options for 64-bit and 32-bit Graphical installer

both.

Step3: After selecting the OS and Python version, it will download the Anaconda installer

on your computer. Now, double click the file and the installer will install Anaconda package.

Step4: For checking whether it is installed or not, open a command prompt and type

Python as follows:

https://www.python.org/downloads/
https://www.anaconda.com/distribution/

Machine Learning with Python

 9

You can also check this in detailed video lecture at

https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_

anaconda.asp.

Why Python for Data Science?

Python is the fifth most important language as well as most popular language for Machine

learning and data science. The following are the features of Python that makes it the

preferred choice of language for data science:

Extensive set of packages

Python has an extensive and powerful set of packages which are ready to be used in

various domains. It also has packages like numpy, scipy, pandas, scikit-learn etc.

which are required for machine learning and data science.

Easy prototyping

Another important feature of Python that makes it the choice of language for data science

is the easy and fast prototyping. This feature is useful for developing new algorithm.

Collaboration feature

The field of data science basically needs good collaboration and Python provides many

useful tools that make this extremely.

One language for many domains

A typical data science project includes various domains like data extraction, data

manipulation, data analysis, feature extraction, modelling, evaluation, deployment and

updating the solution. As Python is a multi-purpose language, it allows the data scientist

to address all these domains from a common platform.

https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_anaconda.asp
https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_anaconda.asp

Machine Learning with Python

 10

Components of Python ML Ecosystem

In this section, let us discuss some core Data Science libraries that form the components

of Python Machine learning ecosystem. These useful components make Python an

important language for Data Science. Though there are many such components, let us

discuss some of the importance components of Python ecosystem here:

Jupyter Notebook

Jupyter notebooks basically provides an interactive computational environment for

developing Python based Data Science applications. They are formerly known as ipython

notebooks. The following are some of the features of Jupyter notebooks that makes it one

of the best components of Python ML ecosystem:

 Jupyter notebooks can illustrate the analysis process step by step by arranging the

stuff like code, images, text, output etc. in a step by step manner.

 It helps a data scientist to document the thought process while developing the

analysis process.

 One can also capture the result as the part of the notebook.

 With the help of jupyter notebooks, we can share our work with a peer also.

Installation and Execution

 If you are using Anaconda distribution, then you need not install jupyter notebook

separately as it is already installed with it. You just need to go to Anaconda Prompt and

type the following command:

C:\>jupyter notebook

Machine Learning with Python

 11

After pressing enter, it will start a notebook server at localhost:8888 of your computer. It is

shown in the following screen shot:

Now, after clicking the New tab, you will get a list of options. Select Python 3 and it will

take you to the new notebook for start working in it. You will get a glimpse of it in the

following screenshots:

Machine Learning with Python

 12

On the other hand, if you are using standard Python distribution then jupyter notebook

can be installed using popular python package installer, pip.

pip install jupyter

Types of Cells in Jupyter Notebook

The following are the three types of cells in a jupyter notebook:

Code cells: As the name suggests, we can use these cells to write code. After writing the

code/content, it will send it to the kernel that is associated with the notebook.

Markdown cells: We can use these cells for notating the computation process. They can

contain the stuff like text, images, Latex equations, HTML tags etc.

Raw cells: The text written in them is displayed as it is. These cells are basically used to

add the text that we do not wish to be converted by the automatic conversion mechanism

of jupyter notebook.

For more detailed study of jupyter notebook, you can go to the link

https://www.tutorialspoint.com/jupyter/index.htm.

NumPy

It is another useful component that makes Python as one of the favorite languages for

Data Science. It basically stands for Numerical Python and consists of multidimensional

array objects. By using NumPy, we can perform the following important operations:

 Mathematical and logical operations on arrays.

 Fourier transformation

https://www.tutorialspoint.com/jupyter/index.htm

Machine Learning with Python

 13

 Operations associated with linear algebra.

We can also see NumPy as the replacement of MatLab because NumPy is mostly used along

with Scipy (Scientific Python) and Mat-plotlib (plotting library).

Installation and Execution

If you are using Anaconda distribution, then no need to install NumPy separately as it is

already installed with it. You just need to import the package into your Python script with

the help of following:

import numpy as np

On the other hand, if you are using standard Python distribution then NumPy can be installed

using popular python package installer, pip.

pip install NumPy

After installing NumPy, you can import it into your Python script as you did above.

For more detailed study of NumPy, you can go to the link

https://www.tutorialspoint.com/numpy/index.htm.

Pandas

It is another useful Python library that makes Python one of the favorite languages for

Data Science. Pandas is basically used for data manipulation, wrangling and analysis. It

was developed by Wes McKinney in 2008. With the help of Pandas, in data processing we

can accomplish the following five steps:

 Load

 Prepare

 Manipulate

 Model

 Analyze

Data representation in Pandas

The entire representation of data in Pandas is done with the help of following three data

structures:

Series: It is basically a one-dimensional ndarray with an axis label which means it is like a

simple array with homogeneous data. For example, the following series is a collection of

integers 1,5,10,15,24,25…

1 5 10 15 24 25 28 36 40 89

Data frame: It is the most useful data structure and used for almost all kind of data

representation and manipulation in pandas. It is basically a two-dimensional data structure

which can contain heterogeneous data. Generally, tabular data is represented by using

https://www.tutorialspoint.com/numpy/index.htm

Machine Learning with Python

 14

data frames. For example, the following table shows the data of students having their

names and roll numbers, age and gender:

Name Roll number Age Gender

Aarav 1 15 Male

Harshit 2 14 Male

Kanika 3 16 Female

Mayank 4 15 Male

Panel: It is a 3-dimensional data structure containing heterogeneous data. It is very

difficult to represent the panel in graphical representation, but it can be illustrated as a

container of DataFrame.

The following table gives us the dimension and description about above mentioned data

structures used in Pandas:

Data Structure Dimension Description

Series 1-D Size immutable, 1-D

homogeneous data

DataFrames 2-D Size Mutable,

Heterogeneous data in

tabular form

Panel 3-D Size-mutable array,

container of

DataFrame.

We can understand these data structures as the higher dimensional data structure is the

container of lower dimensional data structure.

Installation and Execution

If you are using Anaconda distribution, then no need to install Pandas separately as it is

already installed with it. You just need to import the package into your Python script with

the help of following:

import pandas as pd

On the other hand, if you are using standard Python distribution then Pandas can be installed

using popular python package installer, pip.

pip install Pandas

After installing Pandas, you can import it into your Python script as did above.

Machine Learning with Python

 15

Example

The following is an example of creating a series from ndarray by using Pandas:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: data = np.array(['g','a','u','r','a','v'])

In [4]: s = pd.Series(data)

In [5]: print (s)

0 g

1 a

2 u

3 r

4 a

5 v

dtype: object

For more detailed study of Pandas you can go to the link

https://www.tutorialspoint.com/python_pandas/index.htm.

Scikit-learn

Another useful and most important python library for Data Science and machine learning

in Python is Scikit-learn. The following are some features of Scikit-learn that makes it so useful:

 It is built on NumPy, SciPy, and Matplotlib.

 It is an open source and can be reused under BSD license.

 It is accessible to everybody and can be reused in various contexts.

 Wide range of machine learning algorithms covering major areas of ML like

classification, clustering, regression, dimensionality reduction, model selection etc.

can be implemented with the help of it.

Installation and Execution

If you are using Anaconda distribution, then no need to install Scikit-learn separately as it is

already installed with it. You just need to use the package into your Python script. For

example, with following line of script we are importing dataset of breast cancer patients

from Scikit-learn:

https://www.tutorialspoint.com/python_pandas/index.htm

Machine Learning with Python

 16

from sklearn.datasets import load_breast_cancer

On the other hand, if you are using standard Python distribution and having NumPy and

SciPy then Scikit-learn can be installed using popular python package installer, pip.

pip install -U scikit-learn

After installing Scikit-learn, you can use it into your Python script as you have done above.

Machine Learning with Python

 17

There are various ML algorithms, techniques and methods that can be used to build models

for solving real-life problems by using data. In this chapter, we are going to discuss such

different kinds of methods.

Different Types of Methods

The following are various ML methods based on some broad categories:

Based on human supervision

In the learning process, some of the methods that are based on human supervision are as

follows:

Supervised Learning

Supervised learning algorithms or methods are the most commonly used ML algorithms.

This method or learning algorithm take the data sample i.e. the training data and its

associated output i.e. labels or responses with each data samples during the training

process.

The main objective of supervised learning algorithms is to learn an association between

input data samples and corresponding outputs after performing multiple training data

instances.

For example, we have

x: Input variables and

Y: Output variable

Now, apply an algorithm to learn the mapping function from the input to output as follows:

Y=f(x)

Now, the main objective would be to approximate the mapping function so well that even

when we have new input data (x), we can easily predict the output variable (Y) for that

new input data.

It is called supervised because the whole process of learning can be thought as it is being

supervised by a teacher or supervisor. Examples of supervised machine learning

algorithms includes Decision tree, Random Forest, KNN, Logistic Regression etc.

Based on the ML tasks, supervised learning algorithms can be divided into following two

broad classes:

 Classification

 Regression

3. Python Machine Learning – Methods for Machine Learning

Machine Learning with Python

 18

Classification

The key objective of classification-based tasks is to predict categorial output labels or

responses for the given input data. The output will be based on what the model has learned

in training phase. As we know that the categorial output responses means unordered and

discrete values, hence each output response will belong to a specific class or category. We

will discuss Classification and associated algorithms in detail in the upcoming chapters

also.

Regression

The key objective of regression-based tasks is to predict output labels or responses which

are continues numeric values, for the given input data. The output will be based on what

the model has learned in its training phase. Basically, regression models use the input

data features (independent variables) and their corresponding continuous numeric output

values (dependent or outcome variables) to learn specific association between inputs and

corresponding outputs. We will discuss regression and associated algorithms in detail in

further chapters also.

Unsupervised Learning

As the name suggests, it is opposite to supervised ML methods or algorithms which means

in unsupervised machine learning algorithms we do not have any supervisor to provide

any sort of guidance. Unsupervised learning algorithms are handy in the scenario in which

we do not have the liberty, like in supervised learning algorithms, of having pre-labeled

training data and we want to extract useful pattern from input data.

For example, it can be understood as follows:

Suppose we have:

x: Input variables, then there would be no corresponding output variable and the

algorithms need to discover the interesting pattern in data for learning.

Examples of unsupervised machine learning algorithms includes K-means clustering, K-

nearest neighbors etc.

Based on the ML tasks, unsupervised learning algorithms can be divided into following

broad classes:

 Clustering

 Association

 Dimensionality Reduction

Clustering

Clustering methods are one of the most useful unsupervised ML methods. These

algorithms used to find similarity as well as relationship patterns among data samples and

then cluster those samples into groups having similarity based on features. The real-world

example of clustering is to group the customers by their purchasing behavior.

Association

Another useful unsupervised ML method is Association which is used to analyze large

dataset to find patterns which further represents the interesting relationships between

various items. It is also termed as Association Rule Mining or Market basket analysis

which is mainly used to analyze customer shopping patterns.

Machine Learning with Python

 19

Dimensionality Reduction

This unsupervised ML method is used to reduce the number of feature variables for each

data sample by selecting set of principal or representative features. A question arises here

is that why we need to reduce the dimensionality? The reason behind is the problem of

feature space complexity which arises when we start analyzing and extracting millions of

features from data samples. This problem generally refers to “curse of dimensionality”.

PCA (Principal Component Analysis), K-nearest neighbors and discriminant analysis are

some of the popular algorithms for this purpose.

Anomaly Detection

This unsupervised ML method is used to find out the occurrences of rare events or

observations that generally do not occur. By using the learned knowledge, anomaly

detection methods would be able to differentiate between anomalous or a normal data

point. Some of the unsupervised algorithms like clustering, KNN can detect anomalies

based on the data and its features.

Semi-supervised Learning

Such kind of algorithms or methods are neither fully supervised nor fully unsupervised.

They basically fall between the two i.e. supervised and unsupervised learning methods.

These kinds of algorithms generally use small supervised learning component i.e. small

amount of pre-labeled annotated data and large unsupervised learning component i.e. lots

of unlabeled data for training. We can follow any of the following approaches for

implementing semi-supervised learning methods:

 The first and simple approach is to build the supervised model based on small

amount of labeled and annotated data and then build the unsupervised model by

applying the same to the large amounts of unlabeled data to get more labeled

samples. Now, train the model on them and repeat the process.

 The second approach needs some extra efforts. In this approach, we can first use

the unsupervised methods to cluster similar data samples, annotate these groups

and then use a combination of this information to train the model.

Reinforcement Learning

These methods are different from previously studied methods and very rarely used also.

In this kind of learning algorithms, there would be an agent that we want to train over a

period of time so that it can interact with a specific environment. The agent will follow a

set of strategies for interacting with the environment and then after observing the

environment it will take actions regards the current state of the environment. The

following are the main steps of reinforcement learning methods:

 Step1: First, we need to prepare an agent with some initial set of strategies.

 Step2: Then observe the environment and its current state.

 Step3: Next, select the optimal policy regards the current state of the environment

and perform important action.

 Step4: Now, the agent can get corresponding reward or penalty as per accordance

with the action taken by it in previous step.

Machine Learning with Python

 20

 Step5: Now, we can update the strategies if it is required so.

 Step6: At last, repeat steps 2-5 until the agent got to learn and adopt the optimal

policies.

Tasks Suited for Machine Learning

The following diagram shows what type of task is appropriate for various ML problems:

Based on learning ability

In the learning process, the following are some methods that are based on learning ability:

Batch Learning

In many cases, we have end-to-end Machine Learning systems in which we need to train

the model in one go by using whole available training data. Such kind of learning method

or algorithm is called Batch or Offline learning. It is called Batch or Offline learning

because it is a one-time procedure and the model will be trained with data in one single

batch. The following are the main steps of Batch learning methods:

 Step1: First, we need to collect all the training data for start training the model.

Is data

producing a

Quantity?

No Yes

Is data

Correlated or

Redundant?

Dimensionality

Reduction

Is data

producing a

category?

Yes

No

Is data

labeled?

Yes No

Classification Clustering

Yes No

Regression Bad Luck

Machine Learning with Python

 21

Step2: Now, start the training of model by providing whole training data in one go.

Step3: Next, stop learning/training process once you got satisfactory

results/performance.

Step4: Finally, deploy this trained model into production. Here, it will predict the output

for new data sample.

Online Learning

It is completely opposite to the batch or offline learning methods. In these learning

methods, the training data is supplied in multiple incremental batches, called mini-

batches, to the algorithm. Followings are the main steps of Online learning methods:

Step1: First, we need to collect all the training data for starting training of the model.

Step2: Now, start the training of model by providing a mini-batch of training data to the

algorithm.

Step3: Next, we need to provide the mini-batches of training data in multiple increments

to the algorithm.

Step4: As it will not stop like batch learning hence after providing whole training data in

mini-batches, provide new data samples also to it.

 Step5: Finally, it will keep learning over a period of time based on the new data samples.

Based on Generalization Approach

In the learning process, followings are some methods that are based on generalization

approaches:

Instance based Learning

Instance based learning method is one of the useful methods that build the ML models by

doing generalization based on the input data. It is opposite to the previously studied

learning methods in the way that this kind of learning involves ML systems as well as

methods that uses the raw data points themselves to draw the outcomes for newer data

samples without building an explicit model on training data.

In simple words, instance-based learning basically starts working by looking at the input

data points and then using a similarity metric, it will generalize and predict the new data

points.

Model based Learning

In Model based learning methods, an iterative process takes place on the ML models that

are built based on various model parameters, called hyperparameters and in which input

data is used to extract the features. In this learning, hyperparameters are optimized based

on various model validation techniques. That is why we can say that Model based learning

methods uses more traditional ML approach towards generalization.

Machine Learning with Python

 22

Suppose if you want to start a ML project then what is the first and most important thing

you would require? It is the data that we need to load for starting any of the ML project.

With respect to data, the most common format of data for ML projects is CSV (comma-

separated values).

Basically, CSV is a simple file format which is used to store tabular data (number and text)

such as a spreadsheet in plain text. In Python, we can load CSV data into with different

ways but before loading CSV data we must have to take care about some considerations.

Consideration While Loading CSV data

CSV data format is the most common format for ML data, but we need to take care about

following major considerations while loading the same into our ML projects:

File Header

In CSV data files, the header contains the information for each field. We must use the

same delimiter for the header file and for data file because it is the header file that specifies

how should data fields be interpreted.

The following are the two cases related to CSV file header which must be considered:

 Case-I: When Data file is having a file header: It will automatically assign the

names to each column of data if data file is having a file header.

 Case-II: When Data file is not having a file header: We need to assign the

names to each column of data manually if data file is not having a file header.

In both the cases, we must need to specify explicitly weather our CSV file contains header

or not.

Comments

Comments in any data file are having their significance. In CSV data file, comments are

indicated by a hash (#) at the start of the line. We need to consider comments while

loading CSV data into ML projects because if we are having comments in the file then we

may need to indicate, depends upon the method we choose for loading, whether to expect

those comments or not.

Delimiter

In CSV data files, comma (,) character is the standard delimiter. The role of delimiter is to

separate the values in the fields. It is important to consider the role of delimiter while

uploading the CSV file into ML projects because we can also use a different delimiter such

as a tab or white space. But in the case of using a different delimiter than standard one,

we must have to specify it explicitly.

4. Machine Learning with Python – Data Loading for ML
Projects

Machine Learning with Python

 23

Quotes

 In CSV data files, double quotation (“ ”) mark is the default quote character. It is

important to consider the role of quotes while uploading the CSV file into ML projects

because we can also use other quote character than double quotation mark. But in case

of using a different quote character than standard one, we must have to specify it

explicitly.

Methods to Load CSV Data File

While working with ML projects, the most crucial task is to load the data properly into it.

The most common data format for ML projects is CSV and it comes in various flavors and

varying difficulties to parse. In this section, we are going to discuss about three common

approaches in Python to load CSV data file:

Load CSV with Python Standard Library

The first and most used approach to load CSV data file is the use of Python standard library

which provides us a variety of built-in modules namely csv module and the

reader()function. The following is an example of loading CSV data file with the help of

it:

Example

In this example, we are using the iris flower data set which can be downloaded into our local

directory. After loading the data file, we can convert it into NumPy array and use it for ML

projects. Following is the Python script for loading CSV data file:

First, we need to import the csv module provided by Python standard library as follows:

import csv

Next, we need to import Numpy module for converting the loaded data into NumPy array.

import numpy as np

Now, provide the full path of the file, stored on our local directory, having the CSV data

file:

path = r"c:\iris.csv"

Next, use the csv.reader()function to read data from CSV file:

with open(path,'r') as f:

 reader = csv.reader(f,delimiter = ',')

 headers = next(reader)

 data = list(reader)

 data = np.array(data).astype(float)

Machine Learning with Python

 24

We can print the names of the headers with the following line of script:

print(headers)

The following line of script will print the shape of the data i.e. number of rows & columns

in the file:

print(data.shape)

Next script line will give the first three line of data file:

print(data[:3])

Output

['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

(150, 4)

[[5.1 3.5 1.4 0.2]

 [4.9 3. 1.4 0.2]

 [4.7 3.2 1.3 0.2]]

Load CSV with NumPy

Another approach to load CSV data file is NumPy and numpy.loadtxt() function. The

following is an example of loading CSV data file with the help of it:

Example

In this example, we are using the Pima Indians Dataset having the data of diabetic

patients. This dataset is a numeric dataset with no header. It can also be downloaded into

our local directory. After loading the data file, we can convert it into NumPy array and use

it for ML projects. The following is the Python script for loading CSV data file:

from numpy import loadtxt

path = r"C:\pima-indians-diabetes.csv"

datapath= open(path, 'r')

data = loadtxt(datapath, delimiter=",")

print(data.shape)

print(data[:3])

Machine Learning with Python

 25

Output

(768, 9)

[[6. 148. 72. 35. 0. 33.6 0.627 50. 1.]

 [1. 85. 66. 29. 0. 26.6 0.351 31. 0.]

 [8. 183. 64. 0. 0. 23.3 0.672 32. 1.]]

 Load CSV with Pandas

Another approach to load CSV data file is by Pandas and pandas.read_csv()function.

This is the very flexible function that returns a pandas.DataFrame which can be used

immediately for plotting. The following is an example of loading CSV data file with the help

of it:

Example

Here, we will be implementing two Python scripts, first is with Iris data set having headers

and another is by using the Pima Indians Dataset which is a numeric dataset with no header.

Both the datasets can be downloaded into local directory.

Script-1

The following is the Python script for loading CSV data file using Pandas on Iris Data set:

from pandas import read_csv

path = r"C:\iris.csv"

data = read_csv(path)

print(data.shape)

print(data[:3])

Output:

(150, 4)

 sepal_length sepal_width petal_length petal_width

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

Machine Learning with Python

 26

Script-2

The following is the Python script for loading CSV data file, along with providing the

headers names too, using Pandas on Pima Indians Diabetes dataset:

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

print(data.shape)

print(data[:3])

Output

(768, 9)

 preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

The difference between above used three approaches for loading CSV data file can easily

be understood with the help of given examples.

Machine Learning with Python

 27

Introduction

While working with machine learning projects, usually we ignore two most important parts

called mathematics and data. It is because, we know that ML is a data driven approach

and our ML model will produce only as good or as bad results as the data we provided to

it.

In the previous chapter, we discussed how we can upload CSV data into our ML project,

but it would be good to understand the data before uploading it. We can understand the

data by two ways, with statistics and with visualization.

In this chapter, with the help of following Python recipes, we are going to understand ML

data with statistics.

Looking at Raw Data

The very first recipe is for looking at your raw data. It is important to look at raw data

because the insight we will get after looking at raw data will boost our chances to better

pre-processing as well as handling of data for ML projects.

Following is a Python script implemented by using head() function of Pandas DataFrame

on Pima Indians diabetes dataset to look at the first 50 rows to get better understanding

of it:

Example

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

print(data.head(50))

Output

preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

5. Machine Learning with Python – Understanding Data with
Statistics

Machine Learning with Python

 28

5 5 116 74 0 0 25.6 0.201 30 0

6 3 78 50 32 88 31.0 0.248 26 1

7 10 115 0 0 0 35.3 0.134 29 0

8 2 197 70 45 543 30.5 0.158 53 1

9 8 125 96 0 0 0.0 0.232 54 1

10 4 110 92 0 0 37.6 0.191 30 0

11 10 168 74 0 0 38.0 0.537 34 1

12 10 139 80 0 0 27.1 1.441 57 0

13 1 189 60 23 846 30.1 0.398 59 1

14 5 166 72 19 175 25.8 0.587 51 1

15 7 100 0 0 0 30.0 0.484 32 1

16 0 118 84 47 230 45.8 0.551 31 1

17 7 107 74 0 0 29.6 0.254 31 1

18 1 103 30 38 83 43.3 0.183 33 0

19 1 115 70 30 96 34.6 0.529 32 1

20 3 126 88 41 235 39.3 0.704 27 0

21 8 99 84 0 0 35.4 0.388 50 0

22 7 196 90 0 0 39.8 0.451 41 1

23 9 119 80 35 0 29.0 0.263 29 1

24 11 143 94 33 146 36.6 0.254 51 1

25 10 125 70 26 115 31.1 0.205 41 1

26 7 147 76 0 0 39.4 0.257 43 1

27 1 97 66 15 140 23.2 0.487 22 0

28 13 145 82 19 110 22.2 0.245 57 0

29 5 117 92 0 0 34.1 0.337 38 0

30 5 109 75 26 0 36.0 0.546 60 0

31 3 158 76 36 245 31.6 0.851 28 1

32 3 88 58 11 54 24.8 0.267 22 0

33 6 92 92 0 0 19.9 0.188 28 0

34 10 122 78 31 0 27.6 0.512 45 0

35 4 103 60 33 192 24.0 0.966 33 0

36 11 138 76 0 0 33.2 0.420 35 0

37 9 102 76 37 0 32.9 0.665 46 1

38 2 90 68 42 0 38.2 0.503 27 1

39 4 111 72 47 207 37.1 1.390 56 1

40 3 180 64 25 70 34.0 0.271 26 0

41 7 133 84 0 0 40.2 0.696 37 0

Machine Learning with Python

 29

42 7 106 92 18 0 22.7 0.235 48 0

43 9 171 110 24 240 45.4 0.721 54 1

44 7 159 64 0 0 27.4 0.294 40 0

45 0 180 66 39 0 42.0 1.893 25 1

46 1 146 56 0 0 29.7 0.564 29 0

47 2 71 70 27 0 28.0 0.586 22 0

48 7 103 66 32 0 39.1 0.344 31 1

49 7 105 0 0 0 0.0 0.305 24 0

We can observe from the above output that first column gives the row number which can

be very useful for referencing a specific observation.

Checking Dimensions of Data

It is always a good practice to know how much data, in terms of rows and columns, we

are having for our ML project. The reasons behind are:

 Suppose if we have too many rows and columns then it would take long time to

run the algorithm and train the model.

 Suppose if we have too less rows and columns then it we would not have enough

data to well train the model.

Following is a Python script implemented by printing the shape property on Pandas Data

Frame. We are going to implement it on iris data set for getting the total number of rows

and columns in it.

Example

from pandas import read_csv

path = r"C:\iris.csv"

data = read_csv(path)

print(data.shape)

Output

(150, 4)

We can easily observe from the output that iris data set, we are going to use, is having

150 rows and 4 columns.

Getting Each Attribute’s Data Type

It is another good practice to know data type of each attribute. The reason behind is that,

as per to the requirement, sometimes we may need to convert one data type to another.

For example, we may need to convert string into floating point or int for representing

categorial or ordinal values. We can have an idea about the attribute’s data type by looking

at the raw data, but another way is to use dtypes property of Pandas DataFrame. With

Machine Learning with Python

 30

the help of dtypes property we can categorize each attributes data type. It can be

understood with the help of following Python script:

Example

from pandas import read_csv

path = r"C:\iris.csv"

data = read_csv(path)

print(data.dtypes)

Output

sepal_length float64

sepal_width float64

petal_length float64

petal_width float64

dtype: object

From the above output, we can easily get the datatypes of each attribute.

Statistical Summary of Data

We have discussed Python recipe to get the shape i.e. number of rows and columns, of

data but many times we need to review the summaries out of that shape of data. It can

be done with the help of describe() function of Pandas DataFrame that further provide

the following 8 statistical properties of each & every data attribute:

 Count

 Mean

 Standard Deviation

 Minimum Value

 Maximum value

 25%

 Median i.e. 50%

 75%

Example

from pandas import read_csv

from pandas import set_option

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

Machine Learning with Python

 31

set_option('display.width', 100)

set_option('precision', 2)

print(data.shape)

print(data.describe())

Output

(768, 9)

 preg plas pres skin test mass pedi age class

count 768.00 768.00 768.00 768.00 768.00 768.00 768.00 768.00 768.00

mean 3.85 120.89 69.11 20.54 79.80 31.99 0.47 33.24 0.35

std 3.37 31.97 19.36 15.95 115.24 7.88 0.33 11.76 0.48

min 0.00 0.00 0.00 0.00 0.00 0.00 0.08 21.00 0.00

25% 1.00 99.00 62.00 0.00 0.00 27.30 0.24 24.00 0.00

50% 3.00 117.00 72.00 23.00 30.50 32.00 0.37 29.00 0.00

75% 6.00 140.25 80.00 32.00 127.25 36.60 0.63 41.00 1.00

max 17.00 199.00 122.00 99.00 846.00 67.10 2.42 81.00 1.00

From the above output, we can observe the statistical summary of the data of Pima Indian

Diabetes dataset along with shape of data.

Reviewing Class Distribution

Class distribution statistics is useful in classification problems where we need to know the

balance of class values. It is important to know class value distribution because if we have

highly imbalanced class distribution i.e. one class is having lots more observations than

other class, then it may need special handling at data preparation stage of our ML project.

We can easily get class distribution in Python with the help of Pandas DataFrame.

Example

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

count_class = data.groupby('class').size()

print(count_class)

Output:

Class

0 500

Machine Learning with Python

 32

1 268

dtype: int64

From the above output, it can be clearly seen that the number of observations with class

0 are almost double than number of observations with class 1.

Reviewing Correlation between Attributes

The relationship between two variables is called correlation. In statistics, the most common

method for calculating correlation is Pearson’s Correlation Coefficient. It can have three

values as follows:

 Coefficient value = 1: It represents full positive correlation between variables.

 Coefficient value = -1: It represents full negative correlation between variables.

 Coefficient value = 0: It represents no correlation at all between variables.

It is always good for us to review the pairwise correlations of the attributes in our dataset

before using it into ML project because some machine learning algorithms such as linear

regression and logistic regression will perform poorly if we have highly correlated

attributes. In Python, we can easily calculate a correlation matrix of dataset attributes with

the help of corr() function on Pandas DataFrame.

Example

from pandas import read_csv

from pandas import set_option

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

set_option('display.width', 100)

set_option('precision', 2)

correlations = data.corr(method='pearson')

print(correlations)

Output

preg plas pres skin test mass pedi age class

preg 1.00 0.13 0.14 -0.08 -0.07 0.02 -0.03 0.54 0.22

plas 0.13 1.00 0.15 0.06 0.33 0.22 0.14 0.26 0.47

pres 0.14 0.15 1.00 0.21 0.09 0.28 0.04 0.24 0.07

skin -0.08 0.06 0.21 1.00 0.44 0.39 0.18 -0.11 0.07

test -0.07 0.33 0.09 0.44 1.00 0.20 0.19 -0.04 0.13

mass 0.02 0.22 0.28 0.39 0.20 1.00 0.14 0.04 0.29

Machine Learning with Python

 33

pedi -0.03 0.14 0.04 0.18 0.19 0.14 1.00 0.03 0.17

age 0.54 0.26 0.24 -0.11 -0.04 0.04 0.03 1.00 0.24

class 0.22 0.47 0.07 0.07 0.13 0.29 0.17 0.24 1.00

The matrix in above output gives the correlation between all the pairs of the attribute in

dataset.

Reviewing Skew of Attribute Distribution

Skewness may be defined as the distribution that is assumed to be Gaussian but appears

distorted or shifted in one direction or another, or either to the left or right. Reviewing the

skewness of attributes is one of the important tasks due to following reasons:

 Presence of skewness in data requires the correction at data preparation stage so

that we can get more accuracy from our model.

 Most of the ML algorithms assumes that data has a Gaussian distribution i.e. either

normal of bell curved data.

In Python, we can easily calculate the skew of each attribute by using skew() function on

Pandas DataFrame.

Example

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

print(data.skew())

Output

preg 0.90

plas 0.17

pres -1.84

skin 0.11

test 2.27

mass -0.43

pedi 1.92

age 1.13

class 0.64

dtype: float64

From the above output, positive or negative skew can be observed. If the value is closer

to zero, then it shows less skew.

Machine Learning with Python

 34

Machine Learning with Python

 35

Introduction

In the previous chapter, we have discussed the importance of data for Machine Learning

algorithms along with some Python recipes to understand the data with statistics. There

is another way called Visualization, to understand the data.

With the help of data visualization, we can see how the data looks like and what kind of

correlation is held by the attributes of data. It is the fastest way to see if the features

correspond to the output. With the help of following Python recipes, we can understand

ML data with statistics.

Univariate Plots: Understanding Attributes Independently

The simplest type of visualization is single-variable or “univariate” visualization. With the

help of univariate visualization, we can understand each attribute of our dataset

independently. The following are some techniques in Python to implement univariate

visualization:

Histograms

Histograms group the data in bins and is the fastest way to get idea about the distribution

of each attribute in dataset. The following are some of the characteristics of histograms:

 It provides us a count of the number of observations in each bin created for

visualization.

6. Machine Learning with Python – Understanding Data with
Visualization

Data Visualization Techniques

Univariate Plots Multivariate Plots

Histogram

s

Density Plots Box Plots
Correlation

Matrix Plots

Correlation

Matrix Plots

Machine Learning with Python

 36

 From the shape of the bin, we can easily observe the distribution i.e. weather it is

Gaussian, skewed or exponential.

 Histograms also help us to see possible outliers.

Example

The code shown below is an example of Python script creating the histogram of the

attributes of Pima Indian Diabetes dataset. Here, we will be using hist() function on

Pandas DataFrame to generate histograms and matplotlib for ploting them.

from matplotlib import pyplot

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

data.hist()

pyplot.show()

Output

Machine Learning with Python

 37

The above output shows that it created the histogram for each attribute in the dataset.

From this, we can observe that perhaps age, pedi and test attribute may have exponential

distribution while mass and plas have Gaussian distribution.

Density Plots

Another quick and easy technique for getting each attributes distribution is Density plots.

It is also like histogram but having a smooth curve drawn through the top of each bin. We

can call them as abstracted histograms.

Example

In the following example, Python script will generate Density Plots for the distribution of

attributes of Pima Indian Diabetes dataset.

from matplotlib import pyplot

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

data.plot(kind='density', subplots=True, layout=(3,3), sharex=False)

pyplot.show()

Output

Machine Learning with Python

 38

From the above output, the difference between Density plots and Histograms can be easily

understood.

Box and Whisker Plots

Box and Whisker plots, also called boxplots in short, is another useful technique to review

the distribution of each attribute’s distribution. The following are the characteristics of this

technique:

 It is univariate in nature and summarizes the distribution of each attribute.

 It draws a line for the middle value i.e. for median.

 It draws a box around the 25% and 75%.

 It also draws whiskers which will give us an idea about the spread of the data.

 The dots outside the whiskers signifies the outlier values. Outlier values would be

1.5 times greater than the size of the spread of the middle data.

Example

In the following example, Python script will generate Density Plots for the distribution of

attributes of Pima Indian Diabetes dataset.

from matplotlib import pyplot

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

data.plot(kind='box', subplots=True, layout=(3,3), sharex=False,sharey=False)

pyplot.show()

Machine Learning with Python

 39

Output

From the above plot of attribute’s distribution, it can be observed that age, test and skin

appear skewed towards smaller values.

Multivariate Plots: Interaction Among Multiple Variables

Another type of visualization is multi-variable or “multivariate” visualization. With the help

of multivariate visualization, we can understand interaction between multiple attributes of

our dataset. The following are some techniques in Python to implement multivariate

visualization:

Correlation Matrix Plot

Correlation is an indication about the changes between two variables. In our previous

chapters, we have discussed Pearson’s Correlation coefficients and the importance of

Correlation too. We can plot correlation matrix to show which variable is having a high or

low correlation in respect to another variable.

Example

In the following example, Python script will generate and plot correlation matrix for the

Pima Indian Diabetes dataset. It can be generated with the help of corr() function on Pandas

DataFrame and plotted with the help of pyplot.

Machine Learning with Python

 40

from matplotlib import pyplot

from pandas import read_csv

import numpy

Path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(Path, names=names)

correlations = data.corr()

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)

fig.colorbar(cax)

ticks = numpy.arange(0,9,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(names)

ax.set_yticklabels(names)

pyplot.show()

Output

Machine Learning with Python

 41

From the above output of correlation matrix, we can see that it is symmetrical i.e. the

bottom left is same as the top right. It is also observed that each variable is positively

correlated with each other.

Scatter Matrix Plot

Scatter plots shows how much one variable is affected by another or the relationship

between them with the help of dots in two dimensions. Scatter plots are very much like

line graphs in the concept that they use horizontal and vertical axes to plot data points.

Example

In the following example, Python script will generate and plot Scatter matrix for the Pima

Indian Diabetes dataset. It can be generated with the help of scatter_matrix() function on

Pandas DataFrame and plotted with the help of pyplot.

from matplotlib import pyplot

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

path = r"C:\pima-indians-diabetes.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=names)

scatter_matrix(data)

pyplot.show()

Machine Learning with Python

 42

Output

Machine Learning with Python

 43

Introduction

Machine Learning algorithms are completely dependent on data because it is the most

crucial aspect that makes model training possible. On the other hand, if we won’t be able

to make sense out of that data, before feeding it to ML algorithms, a machine will be

useless. In simple words, we always need to feed right data i.e. the data in correct scale,

format and containing meaningful features, for the problem we want machine to solve.

This makes data preparation the most important step in ML process. Data preparation may

be defined as the procedure that makes our dataset more appropriate for ML process.

Why Data Pre-processing?

After selecting the raw data for ML training, the most important task is data pre-

processing. In broad sense, data preprocessing will convert the selected data into a form

we can work with or can feed to ML algorithms. We always need to preprocess our data

so that it can be as per the expectation of machine learning algorithm.

Data Pre-processing Techniques

We have the following data preprocessing techniques that can be applied on data set to

produce data for ML algorithms:

Scaling:

Most probably our dataset comprises of the attributes with varying scale, but we cannot

provide such data to ML algorithm hence it requires rescaling. Data rescaling makes sure

that attributes are at same scale. Generally, attributes are rescaled into the range of 0

and 1. ML algorithms like gradient descent and k-Nearest Neighbors requires scaled data.

We can rescale the data with the help of MinMaxScaler class of scikit-learn Python

library.

Example

In this example we will rescale the data of Pima Indians Diabetes dataset which we used

earlier. First, the CSV data will be loaded (as done in the previous chapters) and then with

the help of MinMaxScaler class, it will be rescaled in the range of 0 and 1.

The first few lines of the following script are same as we have written in previous chapters

while loading CSV data.

from pandas import read_csv

from numpy import set_printoptions

from sklearn import preprocessing

path = r'C:\pima-indians-diabetes.csv'

7. Machine Learning with Python – Preparing Data

Machine Learning with Python

 44

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Now, we can use MinMaxScaler class to rescale the data in the range of 0 and 1.

data_scaler = preprocessing.MinMaxScaler(feature_range=(0,1))

data_rescaled = data_scaler.fit_transform(array)

We can also summarize the data for output as per our choice. Here, we are setting the

precision to 1 and showing the first 10 rows in the output.

set_printoptions(precision=1)

print ("\nScaled data:\n", data_rescaled[0:10])

Output

Scaled data:

 [[0.4 0.7 0.6 0.4 0. 0.5 0.2 0.5 1.]

 [0.1 0.4 0.5 0.3 0. 0.4 0.1 0.2 0.]

 [0.5 0.9 0.5 0. 0. 0.3 0.3 0.2 1.]

 [0.1 0.4 0.5 0.2 0.1 0.4 0. 0. 0.]

 [0. 0.7 0.3 0.4 0.2 0.6 0.9 0.2 1.]

 [0.3 0.6 0.6 0. 0. 0.4 0.1 0.2 0.]

 [0.2 0.4 0.4 0.3 0.1 0.5 0.1 0.1 1.]

 [0.6 0.6 0. 0. 0. 0.5 0. 0.1 0.]

 [0.1 1. 0.6 0.5 0.6 0.5 0. 0.5 1.]

 [0.5 0.6 0.8 0. 0. 0. 0.1 0.6 1.]]

From the above output, all the data got rescaled into the range of 0 and 1.

Normalization

Another useful data preprocessing technique is Normalization. This is used to rescale each

row of data to have a length of 1. It is mainly useful in Sparse dataset where we have lots

of zeros. We can rescale the data with the help of Normalizer class of scikit-learn

Python library.

Machine Learning with Python

 45

Types of Normalization

In machine learning, there are two types of normalization preprocessing techniques as

follows:

L1 Normalization

It may be defined as the normalization technique that modifies the dataset values in a

way that in each row the sum of the absolute values will always be up to 1. It is also called

Least Absolute Deviations.

Example

In this example, we use L1 Normalize technique to normalize the data of Pima Indians

Diabetes dataset which we used earlier. First, the CSV data will be loaded and then with

the help of Normalizer class it will be normalized.

The first few lines of following script are same as we have written in previous chapters

while loading CSV data.

from pandas import read_csv

from numpy import set_printoptions

from sklearn.preprocessing import Normalizer

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv (path, names=names)

array = dataframe.values

Now, we can use Normalizer class with L1 to normalize the data.

Data_normalizer = Normalizer(norm='l1').fit(array)

Data_normalized = Data_normalizer.transform(array)

We can also summarize the data for output as per our choice. Here, we are setting the

precision to 2 and showing the first 3 rows in the output.

set_printoptions(precision=2)

print ("\nNormalized data:\n", Data_normalized [0:3])

Output

Normalized data:

 [[0.02 0.43 0.21 0.1 0. 0.1 0. 0.14 0.]

 [0. 0.36 0.28 0.12 0. 0.11 0. 0.13 0.]

 [0.03 0.59 0.21 0. 0. 0.07 0. 0.1 0.]]

Machine Learning with Python

 46

L2 Normalization

It may be defined as the normalization technique that modifies the dataset values in a

way that in each row the sum of the squares will always be up to 1. It is also called least

squares.

Example

In this example, we use L2 Normalization technique to normalize the data of Pima Indians

Diabetes dataset which we used earlier. First, the CSV data will be loaded (as done in

previous chapters) and then with the help of Normalizer class it will be normalized.

The first few lines of following script are same as we have written in previous chapters

while loading CSV data.

from pandas import read_csv

from numpy import set_printoptions

from sklearn.preprocessing import Normalizer

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv (path, names=names)

array = dataframe.values

Now, we can use Normalizer class with L1 to normalize the data.

Data_normalizer = Normalizer(norm='l2').fit(array)

Data_normalized = Data_normalizer.transform(array)

We can also summarize the data for output as per our choice. Here, we are setting the

precision to 2 and showing the first 3 rows in the output.

set_printoptions(precision=2)

print ("\nNormalized data:\n", Data_normalized [0:3])

Output

Normalized data:

 [[0.03 0.83 0.4 0.2 0. 0.19 0. 0.28 0.01]

 [0.01 0.72 0.56 0.24 0. 0.22 0. 0.26 0.]

 [0.04 0.92 0.32 0. 0. 0.12 0. 0.16 0.01]]

Binarization

As the name suggests, this is the technique with the help of which we can make our data

binary. We can use a binary threshold for making our data binary. The values above that

threshold value will be converted to 1 and below that threshold will be converted to 0.

Machine Learning with Python

 47

For example, if we choose threshold value = 0.5, then the dataset value above it will

become 1 and below this will become 0. That is why we can call it binarizing the data or

thresholding the data. This technique is useful when we have probabilities in our dataset

and want to convert them into crisp values.

We can binarize the data with the help of Binarizer class of scikit-learn Python library.

Example

In this example, we will rescale the data of Pima Indians Diabetes dataset which we used

earlier. First, the CSV data will be loaded and then with the help of Binarizer class it will

be converted into binary values i.e. 0 and 1 depending upon the threshold value. We are

taking 0.5 as threshold value.

The first few lines of following script are same as we have written in previous chapters

while loading CSV data.

from pandas import read_csv

from sklearn.preprocessing import Binarizer

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Now, we can use Binarize class to convert the data into binary values.

binarizer = Binarizer(threshold=0.5).fit(array)

Data_binarized = binarizer.transform(array)

Here, we are showing the first 5 rows in the output.

print ("\nBinary data:\n", Data_binarized [0:5])

Output

Binary data:

 [[1. 1. 1. 1. 0. 1. 1. 1. 1.]

 [1. 1. 1. 1. 0. 1. 0. 1. 0.]

 [1. 1. 1. 0. 0. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 0. 1. 0.]

 [0. 1. 1. 1. 1. 1. 1. 1. 1.]]

Machine Learning with Python

 48

Standardization

Another useful data preprocessing technique which is basically used to transform the data

attributes with a Gaussian distribution. It differs the mean and SD (Standard Deviation)

to a standard Gaussian distribution with a mean of 0 and a SD of 1. This technique is

useful in ML algorithms like linear regression, logistic regression that assumes a Gaussian

distribution in input dataset and produce better results with rescaled data. We can

standardize the data (mean = 0 and SD =1) with the help of StandardScaler class of

scikit-learn Python library.

Example

In this example, we will rescale the data of Pima Indians Diabetes dataset which we used

earlier. First, the CSV data will be loaded and then with the help of StandardScaler class

it will be converted into Gaussian Distribution with mean = 0 and SD = 1.

The first few lines of following script are same as we have written in previous chapters

while loading CSV data.

from sklearn.preprocessing import StandardScaler

from pandas import read_csv

from numpy import set_printoptions

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Now, we can use StandardScaler class to rescale the data.

data_scaler = StandardScaler().fit(array)

data_rescaled = data_scaler.transform(array)

We can also summarize the data for output as per our choice. Here, we are setting the

precision to 2 and showing the first 5 rows in the output.

set_printoptions(precision=2)

print ("\nRescaled data:\n", data_rescaled [0:5])

Output

Rescaled data:

 [[0.64 0.85 0.15 0.91 -0.69 0.2 0.47 1.43 1.37]

 [-0.84 -1.12 -0.16 0.53 -0.69 -0.68 -0.37 -0.19 -0.73]

 [1.23 1.94 -0.26 -1.29 -0.69 -1.1 0.6 -0.11 1.37]

 [-0.84 -1. -0.16 0.15 0.12 -0.49 -0.92 -1.04 -0.73]

Machine Learning with Python

 49

 [-1.14 0.5 -1.5 0.91 0.77 1.41 5.48 -0.02 1.37]]

Data Labeling

We discussed the importance of good fata for ML algorithms as well as some techniques

to pre-process the data before sending it to ML algorithms. One more aspect in this regard

is data labeling. It is also very important to send the data to ML algorithms having proper

labeling. For example, in case of classification problems, lot of labels in the form of words,

numbers etc. are there on the data.

What is Label Encoding?

Most of the sklearn functions expect that the data with number labels rather than word

labels. Hence, we need to convert such labels into number labels. This process is called

label encoding. We can perform label encoding of data with the help of LabelEncoder()

function of scikit-learn Python library.

Example

In the following example, Python script will perform the label encoding.

First, import the required Python libraries as follows:

import numpy as np

from sklearn import preprocessing

Now, we need to provide the input labels as follows:

input_labels = ['red','black','red','green','black','yellow','white']

The next line of code will create the label encoder and train it.

encoder = preprocessing.LabelEncoder()

encoder.fit(input_labels)

The next lines of script will check the performance by encoding the random ordered list:

test_labels = ['green','red','black']

encoded_values = encoder.transform(test_labels)

print("\nLabels =", test_labels)

print("Encoded values =", list(encoded_values))

encoded_values = [3,0,4,1]

decoded_list = encoder.inverse_transform(encoded_values)

We can get the list of encoded values with the help of following python script:

Machine Learning with Python

 50

print("\nEncoded values =", encoded_values)

print("\nDecoded labels =", list(decoded_list))

Output

Labels = ['green', 'red', 'black']

Encoded values = [1, 2, 0]

Encoded values = [3, 0, 4, 1]

Decoded labels = ['white', 'black', 'yellow', 'green']

Machine Learning with Python

 51

In the previous chapter, we have seen in detail how to preprocess and prepare data for

machine learning. In this chapter, let us understand in detail data feature selection and

various aspects involved in it.

Importance of Data Feature Selection

The performance of machine learning model is directly proportional to the data features

used to train it. The performance of ML model will be affected negatively if the data

features provided to it are irrelevant. On the other hand, use of relevant data features can

increase the accuracy of your ML model especially linear and logistic regression.

Now the question arise that what is automatic feature selection? It may be defined as the

process with the help of which we select those features in our data that are most relevant

to the output or prediction variable in which we are interested. It is also called attribute

selection.

The following are some of the benefits of automatic feature selection before modeling the

data:

 Performing feature selection before data modeling will reduce the overfitting.

 Performing feature selection before data modeling will increases the accuracy of ML

model.

 Performing feature selection before data modeling will reduce the training time

Feature Selection Techniques

The followings are automatic feature selection techniques that we can use to model ML

data in Python:

Univariate Selection

This feature selection technique is very useful in selecting those features, with the help of

statistical testing, having strongest relationship with the prediction variables. We can

implement univariate feature selection technique with the help of SelectKBest0class of

scikit-learn Python library.

Example:

In this example, we will use Pima Indians Diabetes dataset to select 4 of the attributes

having best features with the help of chi-square statistical test.

from pandas import read_csv

from numpy import set_printoptions

from sklearn.feature_selection import SelectKBest

8. Machine Learning with Python – Data Feature Selection

Machine Learning with Python

 52

from sklearn.feature_selection import chi2

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Next, we will separate array into input and output components:

X = array[:,0:8]

Y = array[:,8]

The following lines of code will select the best features from dataset:

test = SelectKBest(score_func=chi2, k=4)

fit = test.fit(X,Y)

We can also summarize the data for output as per our choice. Here, we are setting the

precision to 2 and showing the 4 data attributes with best features along with best score

of each attribute:

set_printoptions(precision=2)

print(fit.scores_)

featured_data = fit.transform(X)

print ("\nFeatured data:\n", featured_data[0:4])

Output

[111.52 1411.89 17.61 53.11 2175.57 127.67 5.39 181.3]

Featured data:

 [[148. 0. 33.6 50.]

 [85. 0. 26.6 31.]

 [183. 0. 23.3 32.]

 [89. 94. 28.1 21.]]

Machine Learning with Python

 53

Recursive Feature Elimination

As the name suggests, RFE (Recursive feature elimination) feature selection technique

removes the attributes recursively and builds the model with remaining attributes. We can

implement RFE feature selection technique with the help of RFE class of scikit-learn

Python library.

Example

In this example, we will use RFE with logistic regression algorithm to select the best 3

attributes having the best features from Pima Indians Diabetes dataset to.

from pandas import read_csv

from sklearn.feature_selection import RFE

from sklearn.linear_model import LogisticRegression

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Next, we will separate the array into its input and output components:

X = array[:,0:8]

Y = array[:,8]

The following lines of code will select the best features from a dataset:

model = LogisticRegression()

rfe = RFE(model, 3)

fit = rfe.fit(X, Y)

print("Number of Features: %d")

print("Selected Features: %s")

print("Feature Ranking: %s")

Output

Number of Features: 3

Selected Features: [True False False False False True True False]

Feature Ranking: [1 2 3 5 6 1 1 4]

We can see in above output, RFE choose preg, mass and pedi as the first 3 best features.

They are marked as 1 in the output.

Machine Learning with Python

 54

Principal Component Analysis (PCA)

PCA, generally called data reduction technique, is very useful feature selection technique

as it uses linear algebra to transform the dataset into a compressed form. We can

implement PCA feature selection technique with the help of PCA class of scikit-learn

Python library. We can select number of principal components in the output.

Example:

In this example, we will use PCA to select best 3 Principal components from Pima Indians

Diabetes dataset.

from pandas import read_csv

from sklearn.decomposition import PCA

path = r'C:\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(path, names=names)

array = dataframe.values

Next, we will separate array into input and output components:

X = array[:,0:8]

Y = array[:,8]

The following lines of code will extract features from dataset:

pca = PCA(n_components=3)

fit = pca.fit(X)

print("Explained Variance: %s") % fit.explained_variance_ratio_

print(fit.components_)

Output

Explained Variance: [0.88854663 0.06159078 0.02579012]

[[-2.02176587e-03 9.78115765e-02 1.60930503e-02 6.07566861e-02

9.93110844e-01 1.40108085e-02 5.37167919e-04 -3.56474430e-03]

[2.26488861e-02 9.72210040e-01 1.41909330e-01 -5.78614699e-02

-9.46266913e-02 4.69729766e-02 8.16804621e-04 1.40168181e-01]

[-2.24649003e-02 1.43428710e-01 -9.22467192e-01 -3.07013055e-01

2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01]]

Machine Learning with Python

 55

We can observe from the above output that 3 Principal Components bear little resemblance

to the source data.

Feature Importance

As the name suggests, feature importance technique is used to choose the importance

features. It basically uses a trained supervised classifier to select features. We can

implement this feature selection technique with the help of ExtraTreeClassifier class of

scikit-learn Python library.

Example

In this example, we will use ExtraTreeClassifier to select features from Pima Indians

Diabetes dataset.

from pandas import read_csv

from sklearn.ensemble import ExtraTreesClassifier

path = r'C:\Desktop\pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

dataframe = read_csv(data, names=names)

array = dataframe.values

Next, we will separate array into input and output components:

X = array[:,0:8]

Y = array[:,8]

The following lines of code will extract features from dataset:

model = ExtraTreesClassifier()

model.fit(X, Y)

print(model.feature_importances_)

Output

[0.11070069 0.2213717 0.08824115 0.08068703 0.07281761 0.14548537 0.12654214

0.15415431]

From the output, we can observe that there are scores for each attribute. The higher the

score, higher is the importance of that attribute.

Machine Learning with Python

 56

Machine Learning Algorithms – Classification

Machine Learning with Python

 57

Introduction to Classification

Classification may be defined as the process of predicting class or category from observed

values or given data points. The categorized output can have the form such as “Black” or

“White” or “spam” or “no spam”.

Mathematically, classification is the task of approximating a mapping function (f) from

input variables (X) to output variables (Y). It is basically belongs to the supervised machine

learning in which targets are also provided along with the input data set.

An example of classification problem can be the spam detection in emails. There can be

only two categories of output, “spam” and “no spam”; hence this is a binary type

classification.

To implement this classification, we first need to train the classifier. For this example,

“spam” and “no spam” emails would be used as the training data. After successfully train

the classifier, it can be used to detect an unknown email.

Types of Learners in Classification

We have two types of learners in respective to classification problems:

Lazy Learners

As the name suggests, such kind of learners waits for the testing data to be appeared after

storing the training data. Classification is done only after getting the testing data. They

spend less time on training but more time on predicting. Examples of lazy learners are K-

nearest neighbor and case-based reasoning.

Eager Learners

As opposite to lazy learners, eager learners construct classification model without waiting

for the testing data to be appeared after storing the training data. They spend more time

on training but less time on predicting. Examples of eager learners are Decision Trees,

Naïve Bayes and Artificial Neural Networks (ANN).

Building a Classifier in Python

Scikit-learn, a Python library for machine learning can be used to build a classifier in

Python. The steps for building a classifier in Python are as follows:

Step1: Importing necessary python package

For building a classifier using scikit-learn, we need to import it. We can import it by using

following script:

9. Classification – Introduction

Machine Learning with Python

 58

import sklearn

Step2: Importing dataset

After importing necessary package, we need a dataset to build classification prediction

model. We can import it from sklearn dataset or can use other one as per our requirement.

We are going to use sklearn’s Breast Cancer Wisconsin Diagnostic Database. We can

import it with the help of following script:

from sklearn.datasets import load_breast_cancer

The following script will load the dataset;

data = load_breast_cancer()

We also need to organize the data and it can be done with the help of following scripts:

label_names = data['target_names']

 labels = data['target']

 feature_names = data['feature_names']

 features = data['data']

The following command will print the name of the labels, ‘malignant’ and ‘benign’ in

case of our database.

print(label_names)

The output of the above command is the names of the labels:

['malignant' 'benign']

These labels are mapped to binary values 0 and 1. Malignant cancer is represented by 0

and Benign cancer is represented by 1.

The feature names and feature values of these labels can be seen with the help of following

commands:

print(feature_names[0])

The output of the above command is the names of the features for label 0 i.e. Malignant

cancer:

mean radius

Similarly, names of the features for label can be produced as follows:

print(feature_names[1])

Machine Learning with Python

 59

The output of the above command is the names of the features for label 1 i.e. Benign

cancer:

mean texture

We can print the features for these labels with the help of following command:

print(features[0])

This will give the following output:

[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01

 1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02

 6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01

 1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01

 4.601e-01 1.189e-01]

We can print the features for these labels with the help of following command:

print(features[1])

This will give the following output:

[2.057e+01 1.777e+01 1.329e+02 1.326e+03 8.474e-02 7.864e-02 8.690e-02

 7.017e-02 1.812e-01 5.667e-02 5.435e-01 7.339e-01 3.398e+00 7.408e+01

 5.225e-03 1.308e-02 1.860e-02 1.340e-02 1.389e-02 3.532e-03 2.499e+01

 2.341e+01 1.588e+02 1.956e+03 1.238e-01 1.866e-01 2.416e-01 1.860e-01

 2.750e-01 8.902e-02]

Step3: Organizing data into training & testing sets

As we need to test our model on unseen data, we will divide our dataset into two parts: a

training set and a test set. We can use train_test_split() function of sklearn python

package to split the data into sets. The following command will import the function:

from sklearn.model_selection import train_test_split

Now, next command will split the data into training & testing data. In this example, we

are using taking 40 percent of the data for testing purpose and 60 percent of the data for

training purpose:

train, test, train_labels, test_labels =

train_test_split(features,labels,test_size = 0.40, random_state = 42)

Machine Learning with Python

 60

Step4- Model evaluation

After dividing the data into training and testing we need to build the model. We will be

using Naïve Bayes algorithm for this purpose. The following commands will import the

GaussianNB module:

from sklearn.naive_bayes import GaussianNB

Now, initialize the model as follows:

gnb = GaussianNB()

Next, with the help of following command we can train the model:

model = gnb.fit(train, train_labels)

Now, for evaluation purpose we need to make predictions. It can be done by using

predict() function as follows:

preds = gnb.predict(test)

 print(preds)

This will give the following output:

[1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0

 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0

 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0

 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0

 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0

 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

 0 0 1 1 0 1]

The above series of 0s and 1s in output are the predicted values for the Malignant and

Benign tumor classes.

Step5- Finding accuracy

We can find the accuracy of the model build in previous step by comparing the two arrays

namely test_labels and preds. We will be using the accuracy_score() function to

determine the accuracy.

from sklearn.metrics import accuracy_score

 print(accuracy_score(test_labels,preds))

 0.951754385965

The above output shows that NaïveBayes classifier is 95.17% accurate.

Machine Learning with Python

 61

Classification Evaluation Metrics

The job is not done even if you have finished implementation of your Machine Learning

application or model. We must have to find out how effective our model is? There can be

different evaluation metrics, but we must choose it carefully because the choice of metrics

influences how the performance of a machine learning algorithm is measured and

compared.

The following are some of the important classification evaluation metrics among which you

can choose based upon your dataset and kind of problem:

Confusion Matrix

It is the easiest way to measure the performance of a classification problem where the

output can be of two or more type of classes. A confusion matrix is nothing but a table

with two dimensions viz. “Actual” and “Predicted” and furthermore, both the dimensions

have “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)”, “False Negatives

(FN)” as shown below:

The explanation of the terms associated with confusion matrix are as follows:

 True Positives (TP): It is the case when both actual class & predicted class of

data point is 1.

 True Negatives (TN): It is the case when both actual class & predicted class of

data point is 0.

 False Positives (FP): It is the case when actual class of data point is 0 & predicted

class of data point is 1.

 False Negatives (FN): It is the case when actual class of data point is 1 &

predicted class of data point is 0.

We can find the confusion matrix with the help of confusion_matrix() function of

sklearn. With the help of the following script, we can find the confusion matrix of above

built binary classifier:

False Negatives (FN)

True Positives (TP) False Positives (FP)

True Negatives (TN)

Actual

Predicted

1 0

1

0

Machine Learning with Python

 62

from sklearn.metrics import confusion_matrix

Output

[[73 7]

 [4 144]]

Accuracy

It may be defined as the number of correct predictions made by our ML model. We can

easily calculate it by confusion matrix with the help of following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

For above built binary classifier, TP + TN = 73+144 = 217 and TP+FP+FN+TN =

73+7+4+144=228.

Hence, Accuracy = 217/228 = 0.951754385965 which is same as we have calculated after

creating our binary classifier.

Precision

Precision, used in document retrievals, may be defined as the number of correct

documents returned by our ML model. We can easily calculate it by confusion matrix with

the help of following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

For the above built binary classifier, TP = 73 and TP+FP = 73+7 = 80.

Hence, Precision = 73/80 = 0.915

Recall or Sensitivity

Recall may be defined as the number of positives returned by our ML model. We can easily

calculate it by confusion matrix with the help of following formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Machine Learning with Python

 63

For above built binary classifier, TP = 73 and TP+FN = 73+4 = 77.

Hence, Precision = 73/77 = 0.94805

Specificity

Specificity, in contrast to recall, may be defined as the number of negatives returned by

our ML model. We can easily calculate it by confusion matrix with the help of following

formula:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

For the above built binary classifier, TN = 144 and TN+FP = 144+7 = 151.

Hence, Precision = 144/151 = 0.95364

Various ML Classification Algorithms

The followings are some important ML classification algorithms:

 Logistic Regression

 Support Vector Machine (SVM)

 Decision Tree

 Naïve Bayes

 Random Forest

We will be discussing all these classification algorithms in detail in further chapters.

Applications

Some of the most important applications of classification algorithms are as follows:

 Speech Recognition

 Handwriting Recognition

 Biometric Identification

 Document Classification

Machine Learning with Python

 64

Introduction to Logistic Regression

Logistic regression is a supervised learning classification algorithm used to predict the

probability of a target variable. The nature of target or dependent variable is dichotomous,

which means there would be only two possible classes.

In simple words, the dependent variable is binary in nature having data coded as either 1

(stands for success/yes) or 0 (stands for failure/no).

Mathematically, a logistic regression model predicts P(Y=1) as a function of X. It is one of

the simplest ML algorithms that can be used for various classification problems such as

spam detection, Diabetes prediction, cancer detection etc.

Types of Logistic Regression

Generally, logistic regression means binary logistic regression having binary target

variables, but there can be two more categories of target variables that can be predicted

by it. Based on those number of categories, Logistic regression can be divided into

following types:

Binary or Binomial

In such a kind of classification, a dependent variable will have only two possible types

either 1 and 0. For example, these variables may represent success or failure, yes or no,

win or loss etc.

Multinomial

In such a kind of classification, dependent variable can have 3 or more possible unordered

types or the types having no quantitative significance. For example, these variables may

represent “Type A” or “Type B” or “Type C”.

Ordinal

In such a kind of classification, dependent variable can have 3 or more possible ordered

types or the types having a quantitative significance. For example, these variables may

represent “poor” or “good”, “very good”, “Excellent” and each category can have the scores

like 0,1,2,3.

Logistic Regression Assumptions

Before diving into the implementation of logistic regression, we must be aware of the

following assumptions about the same:

10. Classification Algorithms – Logistic Regression

Machine Learning with Python

 65

 In case of binary logistic regression, the target variables must be binary always

and the desired outcome is represented by the factor level 1.

 There should not be any multi-collinearity in the model, which means the

independent variables must be independent of each other.

 We must include meaningful variables in our model.

 We should choose a large sample size for logistic regression.

Binary Logistic Regression model

The simplest form of logistic regression is binary or binomial logistic regression in which

the target or dependent variable can have only 2 possible types either 1 or 0. It allows us

to model a relationship between multiple predictor variables and a binary/binomial target

variable. In case of logistic regression, the linear function is basically used as an input to

another function such as 𝑔 in the following relation:

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥)𝑤ℎ𝑒𝑟𝑒 0 ≤ ℎ𝜃 ≤ 1

Here, 𝑔 is the logistic or sigmoid function which can be given as follows:

𝑔(𝑧) =
1

1 + 𝑒−𝑍
 𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝜃𝑇𝑥

To sigmoid curve can be represented with the help of following graph. We can see the

values of y-axis lie between 0 and 1 and crosses the axis at 0.5.

The classes can be divided into positive or negative. The output comes under the

probability of positive class if it lies between 0 and 1. For our implementation, we are

interpreting the output of hypothesis function as positive if it is ≥ 0.5, otherwise negative.

We also need to define a loss function to measure how well the algorithm performs using

the weights on functions, represented by theta as follows:

ℎ = 𝑔(𝑋𝜃)

𝐽(𝜃) =
1

𝑚
 . (−𝑦𝑇 log(ℎ) − (1 − 𝑦)𝑇 log(1 − ℎ))

Machine Learning with Python

 66

Now, after defining the loss function our prime goal is to minimize the loss function. It can

be done with the help of fitting the weights which means by increasing or decreasing the

weights. With the help of derivatives of the loss function w.r.t each weight, we would be

able to know what parameters should have high weight and what should have smaller

weight.

The following gradient descent equation tells us how loss would change if we modified the

parameters:

𝛿𝐽(𝜃)

𝛿𝜃𝑗
=

1

𝑚
𝑋𝑇(𝑔(𝑋𝜃) − 𝑦)

Implementation in Python

Now we will implement the above concept of binomial logistic regression in Python. For

this purpose, we are using a multivariate flower dataset named ‘iris’ which have 3 classes

of 50 instances each, but we will be using the first two feature columns. Every class

represents a type of iris flower.

First, we need to import the necessary libraries as follows:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import datasets

Next, load the iris dataset as follows:

iris = datasets.load_iris()

X = iris.data[:, :2]

y = (iris.target != 0) * 1

We can plot our training data s follows:

plt.figure(figsize=(6, 6))

plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='g', label='0')

plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='y', label='1')

plt.legend();

Machine Learning with Python

 67

Next, we will define sigmoid function, loss function and gradient descend as follows:

class LogisticRegression:

 def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True,

verbose=False):

 self.lr = lr

 self.num_iter = num_iter

 self.fit_intercept = fit_intercept

 self.verbose = verbose

 def __add_intercept(self, X):

 intercept = np.ones((X.shape[0], 1))

 return np.concatenate((intercept, X), axis=1)

 def __sigmoid(self, z):

 return 1 / (1 + np.exp(-z))

 def __loss(self, h, y):

 return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()

 def fit(self, X, y):

 if self.fit_intercept:

 X = self.__add_intercept(X)

Machine Learning with Python

 68

 Now, initialize the weights as follows:

 self.theta = np.zeros(X.shape[1])

 for i in range(self.num_iter):

 z = np.dot(X, self.theta)

 h = self.__sigmoid(z)

 gradient = np.dot(X.T, (h - y)) / y.size

 self.theta -= self.lr * gradient

 z = np.dot(X, self.theta)

 h = self.__sigmoid(z)

 loss = self.__loss(h, y)

 if(self.verbose ==True and i % 10000 == 0):

 print(f'loss: {loss} \t')

 With the help of the following script, we can predict the output probabilities:

 def predict_prob(self, X):

 if self.fit_intercept:

 X = self.__add_intercept(X)

 return self.__sigmoid(np.dot(X, self.theta))

 def predict(self, X):

 return self.predict_prob(X).round()

Next, we can evaluate the model and plot it as follows:

model = LogisticRegression(lr=0.1, num_iter=300000)

preds = model.predict(X)

(preds == y).mean()

plt.figure(figsize=(10, 6))

plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='g', label='0')

plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='y', label='1')

plt.legend()

x1_min, x1_max = X[:,0].min(), X[:,0].max(),

x2_min, x2_max = X[:,1].min(), X[:,1].max(),

Machine Learning with Python

 69

xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min,

x2_max))

grid = np.c_[xx1.ravel(), xx2.ravel()]

probs = model.predict_prob(grid).reshape(xx1.shape)

plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='red');

Multinomial Logistic Regression Model

Another useful form of logistic regression is multinomial logistic regression in which the

target or dependent variable can have 3 or more possible unordered types i.e. the types

having no quantitative significance.

Implementation in Python

 Now we will implement the above concept of multinomial logistic regression in Python.

For this purpose, we are using a dataset from sklearn named digit.

First, we need to import the necessary libraries as follows:

Import sklearn

from sklearn import datasets

from sklearn import linear_model

from sklearn import metrics

Machine Learning with Python

 70

from sklearn.model_selection import train_test_split

Next, we need to load digit dataset:

digits = datasets.load_digits()

Now, define the feature matrix(X) and response vector(y)as follows:

X = digits.data

y = digits.target

With the help of next line of code, we can split X and y into training and testing sets:

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.4, random_state=

1)

Now create an object of logistic regression as follows:

digreg = linear_model.LogisticRegression()

Now, we need to train the model by using the training sets as follows:

digreg.fit(X_train, y_train)

Next, make the predictions on testing set as follows:

y_pred = digreg.predict(X_test)

Next print the accuracy of the model as follows:

print("Accuracy of Logistic Regression model is:",

metrics.accuracy_score(y_test, y_pred)*100)

Output

Accuracy of Logistic Regression model is: 95.6884561891516

From the above output we can see the accuracy of our model is around 96 percent.

Machine Learning with Python

 71

Introduction to SVM

Support vector machines (SVMs) are powerful yet flexible supervised machine learning

algorithms which are used both for classification and regression. But generally, they are

used in classification problems. In 1960s, SVMs were first introduced but later they got

refined in 1990. SVMs have their unique way of implementation as compared to other

machine learning algorithms. Lately, they are extremely popular because of their ability

to handle multiple continuous and categorical variables.

Working of SVM

An SVM model is basically a representation of different classes in a hyperplane in

multidimensional space. The hyperplane will be generated in an iterative manner by SVM

so that the error can be minimized. The goal of SVM is to divide the datasets into classes

to find a maximum marginal hyperplane (MMH).

The followings are important concepts in SVM:

 Support Vectors: Datapoints that are closest to the hyperplane is called support

vectors. Separating line will be defined with the help of these data points.

 Hyperplane: As we can see in the above diagram, it is a decision plane or space

which is divided between a set of objects having different classes.

 Margin: It may be defined as the gap between two lines on the closet data points

of different classes. It can be calculated as the perpendicular distance from the line

to the support vectors. Large margin is considered as a good margin and small

margin is considered as a bad margin.

11. Classification Algorithms – Support Vector Machine (SVM)

Y-Axis

Support

Vectors

Margin

Class A

Class B

X-Axis

Machine Learning with Python

 72

The main goal of SVM is to divide the datasets into classes to find a maximum marginal

hyperplane (MMH) and it can be done in the following two steps:

 First, SVM will generate hyperplanes iteratively that segregates the classes in best

way.

 Then, it will choose the hyperplane that separates the classes correctly.

Implementing SVM in Python

For implementing SVM in Python we will start with the standard libraries import as follows:

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

import seaborn as sns; sns.set()

Next, we are creating a sample dataset, having linearly separable data, from

sklearn.dataset.sample_generator for classification using SVM:

from sklearn.datasets.samples_generator import make_blobs

X, y = make_blobs(n_samples=100, centers=2,

 random_state=0, cluster_std=0.50)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer');

The following would be the output after generating sample dataset having 100 samples

and 2 clusters:

We know that SVM supports discriminative classification. it divides the classes from each

other by simply finding a line in case of two dimensions or manifold in case of multiple

dimensions. It is implemented on the above dataset as follows:

xfit = np.linspace(-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')

Machine Learning with Python

 73

plt.plot([0.6], [2.1], 'x', color='black', markeredgewidth=4, markersize=12)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:

 plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

The output is as follows:

We can see from the above output that there are three different separators that perfectly

discriminate the above samples.

As discussed, the main goal of SVM is to divide the datasets into classes to find a maximum

marginal hyperplane (MMH) hence rather than drawing a zero line between classes we can

draw around each line a margin of some width up to the nearest point. It can be done as

follows:

xfit = np.linspace(-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

 yfit = m * xfit + b

 plt.plot(xfit, yfit, '-k')

 plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',

 color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);

Machine Learning with Python

 74

From the above image in output, we can easily observe the “margins” within the

discriminative classifiers. SVM will choose the line that maximizes the margin.

Next, we will use Scikit-Learn’s support vector classifier to train an SVM model on this

data. Here, we are using linear kernel to fit SVM as follows:

from sklearn.svm import SVC # "Support vector classifier"

model = SVC(kernel='linear', C=1E10)

model.fit(X, y)

The output is as follows:

SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma='auto_deprecated',

 kernel='linear', max_iter=-1, probability=False, random_state=None,

 shrinking=True, tol=0.001, verbose=False)

Now, for a better understanding, the following will plot the decision functions for 2D SVC:

def decision_function(model, ax=None, plot_support=True):

 if ax is None:

 ax = plt.gca()

 xlim = ax.get_xlim()

 ylim = ax.get_ylim()

For evaluating model, we need to create grid as follows:

 x = np.linspace(xlim[0], xlim[1], 30)

 y = np.linspace(ylim[0], ylim[1], 30)

Machine Learning with Python

 75

 Y, X = np.meshgrid(y, x)

 xy = np.vstack([X.ravel(), Y.ravel()]).T

 P = model.decision_function(xy).reshape(X.shape)

 Next, we need to plot decision boundaries and margins as follows:

 ax.contour(X, Y, P, colors='k',

 levels=[-1, 0, 1], alpha=0.5,

 linestyles=['--', '-', '--'])

 Now, similarly plot the support vectors as follows:

 if plot_support:

 ax.scatter(model.support_vectors_[:, 0],

 model.support_vectors_[:, 1],

 s=300, linewidth=1, facecolors='none');

 ax.set_xlim(xlim)

 ax.set_ylim(ylim)

Now, use this function to fit our models as follows:

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')

decision_function(model);

Machine Learning with Python

 76

We can observe from the above output that an SVM classifier fit to the data with margins

i.e. dashed lines and support vectors, the pivotal elements of this fit, touching the dashed

line. These support vector points are stored in the support_vectors_ attribute of the

classifier as follows:

model.support_vectors_

The output is as follows:

array([[0.5323772 , 3.31338909],

 [2.11114739, 3.57660449],

 [1.46870582, 1.86947425]])

SVM Kernels

In practice, SVM algorithm is implemented with kernel that transforms an input data space

into the required form. SVM uses a technique called the kernel trick in which kernel takes

a low dimensional input space and transforms it into a higher dimensional space. In simple

words, kernel converts non-separable problems into separable problems by adding more

dimensions to it. It makes SVM more powerful, flexible and accurate. The following are

some of the types of kernels used by SVM:

Linear Kernel

It can be used as a dot product between any two observations. The formula of linear kernel

is as below:

𝐾(𝑥, 𝑥𝑖) = 𝑠𝑢𝑚(𝑥 ∗ 𝑥𝑖)

From the above formula, we can see that the product between two vectors say 𝑥 & 𝑥𝑖 is the

sum of the multiplication of each pair of input values.

Polynomial Kernel

It is more generalized form of linear kernel and distinguish curved or nonlinear input space.

Following is the formula for polynomial kernel:

 K(x, xi) = 1 + sum(x * xi)^d

Here d is the degree of polynomial, which we need to specify manually in the learning

algorithm.

Radial Basis Function (RBF) Kernel

RBF kernel, mostly used in SVM classification, maps input space in indefinite dimensional

space. Following formula explains it mathematically:

 K(x,xi) = exp(-gamma * sum((x – xi^2))

Machine Learning with Python

 77

Here, gamma ranges from 0 to 1. We need to manually specify it in the learning algorithm.

A good default value of gamma is 0.1.

As we implemented SVM for linearly separable data, we can implement it in Python for the

data that is not linearly separable. It can be done by using kernels.

Example

The following is an example for creating an SVM classifier by using kernels. We will be

using iris dataset from scikit-learn:

We will start by importing following packages:

import pandas as pd

import numpy as np

from sklearn import svm, datasets

import matplotlib.pyplot as plt

Now, we need to load the input data:

iris = datasets.load_iris()

From this dataset, we are taking first two features as follows:

X = iris.data[:, :2]

y = iris.target

Next, we will plot the SVM boundaries with original data as follows:

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

h = (x_max / x_min)/100

xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

 np.arange(y_min, y_max, h))

X_plot = np.c_[xx.ravel(), yy.ravel()]

Now, we need to provide the value of regularization parameter as follows:

C = 1.0

Next, SVM classifier object can be created as follows:

 Svc_classifier = svm.SVC(kernel='linear', C=C).fit(X, y)

Z = svc_classifier.predict(X_plot)

Z = Z.reshape(xx.shape)

plt.figure(figsize=(15, 5))

plt.subplot(121)

Machine Learning with Python

 78

plt.contourf(xx, yy, Z, cmap=plt.cm.tab10, alpha=0.3)

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1)

plt.xlabel('Sepal length')

plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())

plt.title('Support Vector Classifier with linear kernel')

Output

Text(0.5, 1.0, 'Support Vector Classifier with linear kernel')

For creating SVM classifier with rbf kernel, we can change the kernel to rbf as follows:

Svc_classifier = svm.SVC(kernel='rbf', gamma =‘auto’,C=C).fit(X, y)

Z = svc_classifier.predict(X_plot)

Z = Z.reshape(xx.shape)

plt.figure(figsize=(15, 5))

plt.subplot(121)

plt.contourf(xx, yy, Z, cmap=plt.cm.tab10, alpha=0.3)

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1)

plt.xlabel('Sepal length')

plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())

plt.title('Support Vector Classifier with rbf kernel')

Machine Learning with Python

 79

Output

Text(0.5, 1.0, 'Support Vector Classifier with rbf kernel')

We put the value of gamma to ‘auto’ but you can provide its value between 0 to 1 also.

Pros and Cons of SVM Classifiers

Pros of SVM classifiers

SVM classifiers offers great accuracy and work well with high dimensional space. SVM

classifiers basically use a subset of training points hence in result uses very less memory.

Cons of SVM classifiers

They have high training time hence in practice not suitable for large datasets. Another

disadvantage is that SVM classifiers do not work well with overlapping classes.

Machine Learning with Python

 80

Introduction to Decision Tree

In general, Decision tree analysis is a predictive modelling tool that can be applied across

many areas. Decision trees can be constructed by an algorithmic approach that can split

the dataset in different ways based on different conditions. Decisions tress are the most

powerful algorithms that falls under the category of supervised algorithms.

They can be used for both classification and regression tasks. The two main entities of a

tree are decision nodes, where the data is split and leaves, where we got outcome. The

example of a binary tree for predicting whether a person is fit or unfit providing various

information like age, eating habits and exercise habits, is given below:

In the above decision tree, the question are decision nodes and final outcomes are leaves.

We have the following two types of decision trees:

 Classification decision trees: In this kind of decision trees, the decision variable

is categorical. The above decision tree is an example of classification decision tree.

 Regression decision trees: In this kind of decision trees, the decision variable is

continuous.

12. Classification Algorithms – Decision Tree

No? No?

No?

Yes?
Yes?

Yes?

Unfit Fit Fit Unfit

Person

age>30?

Eats lots

of fast

food?

Exercise

regularly?

Machine Learning with Python

 81

Implementing Decision Tree Algorithm

Gini Index

It is the name of the cost function that is used to evaluate the binary splits in the dataset

and works with the categorial target variable “Success” or “Failure”.

Higher the value of Gini index, higher the homogeneity. A perfect Gini index value is 0 and

worst is 0.5 (for 2 class problem). Gini index for a split can be calculated with the help of

following steps:

 First, calculate Gini index for sub-nodes by using the formula p^2+q^2 , which is

the sum of the square of probability for success and failure.

 Next, calculate Gini index for split using weighted Gini score of each node of that

split.

Classification and Regression Tree (CART) algorithm uses Gini method to generate binary

splits.

Split Creation

A split is basically including an attribute in the dataset and a value. We can create a split

in dataset with the help of following three parts:

 Part1: Calculating Gini Score: We have just discussed this part in the previous

section.

 Part2: Splitting a dataset: It may be defined as separating a dataset into two

lists of rows having index of an attribute and a split value of that attribute. After

getting the two groups - right and left, from the dataset, we can calculate the value

of split by using Gini score calculated in first part. Split value will decide in which

group the attribute will reside.

 Part3: Evaluating all splits: Next part after finding Gini score and splitting

dataset is the evaluation of all splits. For this purpose, first, we must check every

value associated with each attribute as a candidate split. Then we need to find the

best possible split by evaluating the cost of the split. The best split will be used as

a node in the decision tree.

Building a Tree

As we know that a tree has root node and terminal nodes. After creating the root node,

we can build the tree by following two parts:

Part1: Terminal node creation

While creating terminal nodes of decision tree, one important point is to decide when to

stop growing tree or creating further terminal nodes. It can be done by using two criteria

namely maximum tree depth and minimum node records as follows:

 Maximum Tree Depth: As name suggests, this is the maximum number of the

nodes in a tree after root node. We must stop adding terminal nodes once a tree

Machine Learning with Python

 82

reached at maximum depth i.e. once a tree got maximum number of terminal

nodes.

 Minimum Node Records: It may be defined as the minimum number of training

patterns that a given node is responsible for. We must stop adding terminal nodes

once tree reached at these minimum node records or below this minimum.

Terminal node is used to make a final prediction.

Part2: Recursive Splitting

As we understood about when to create terminal nodes, now we can start building our

tree. Recursive splitting is a method to build the tree. In this method, once a node is

created, we can create the child nodes (nodes added to an existing node) recursively on

each group of data, generated by splitting the dataset, by calling the same function again

and again.

Prediction

 After building a decision tree, we need to make a prediction about it. Basically, prediction

involves navigating the decision tree with the specifically provided row of data.

We can make a prediction with the help of recursive function, as did above. The same

prediction routine is called again with the left or the child right nodes.

Assumptions

The following are some of the assumptions we make while creating decision tree:

 While preparing decision trees, the training set is as root node.

 Decision tree classifier prefers the features values to be categorical. In case if you

want to use continuous values then they must be done discretized prior to model

building.

 Based on the attribute’s values, the records are recursively distributed.

 Statistical approach will be used to place attributes at any node position i.e.as root

node or internal node.

Implementation in Python

Example

In the following example, we are going to implement Decision Tree classifier on Pima

Indian Diabetes:

First, start with importing necessary python packages:

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

Machine Learning with Python

 83

Next, download the iris dataset from its weblink as follows:

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 'bmi', 'pedigree',

'age', 'label']

pima = pd.read_csv(r"C:\pima-indians-diabetes.csv", header=None,

names=col_names)

pima.head()

 pregnant glucose bp skin insulin bmi pedigree age label
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

Now, split the dataset into features and target variable as follows:

feature_cols = ['pregnant', 'insulin', 'bmi', 'age','glucose','bp','pedigree']

X = pima[feature_cols] # Features

y = pima.label # Target variable

Next, we will divide the data into train and test split. The following code will split the

dataset into 70% training data and 30% of testing data:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1)

Next, train the model with the help of DecisionTreeClassifier class of sklearn as

follows:

clf = DecisionTreeClassifier()

clf = clf.fit(X_train,y_train)

At last we need to make prediction. It can be done with the help of following script:

y_pred = clf.predict(X_test)

Next, we can get the accuracy score, confusion matrix and classification report as follows:

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

result = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

result1 = classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

Machine Learning with Python

 84

result2 = accuracy_score(y_test,y_pred)

print("Accuracy:",result2)

Output

Confusion Matrix:

[[116 30]

 [46 39]]

Classification Report:

 precision recall f1-score support

 0 0.72 0.79 0.75 146

 1 0.57 0.46 0.51 85

 micro avg 0.67 0.67 0.67 231

 macro avg 0.64 0.63 0.63 231

weighted avg 0.66 0.67 0.66 231

Accuracy: 0.670995670995671

Visualizing Decision Tree

The above decision tree can be visualized with the help of following code:

from sklearn.tree import export_graphviz

from sklearn.externals.six import StringIO

from IPython.display import Image

import pydotplus

dot_data = StringIO()

export_graphviz(clf, out_file=dot_data,

 filled=True, rounded=True,

 special_characters=True,feature_names =

feature_cols,class_names=['0','1'])

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

graph.write_png('Pima_diabetes_Tree.png')

Image(graph.create_png())

Machine Learning with Python

 85

Machine Learning with Python

 86

Introduction to Naïve Bayes Algorithm

Naïve Bayes algorithms is a classification technique based on applying Bayes’ theorem

with a strong assumption that all the predictors are independent to each other. In simple

words, the assumption is that the presence of a feature in a class is independent to the

presence of any other feature in the same class. For example, a phone may be considered

as smart if it is having touch screen, internet facility, good camera etc. Though all these

features are dependent on each other, they contribute independently to the probability of

that the phone is a smart phone.

In Bayesian classification, the main interest is to find the posterior probabilities i.e. the

probability of a label given some observed features, 𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). With the help of Bayes

theorem, we can express this in quantitative form as follows:

𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =
𝑃(𝐿)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝐿)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Here, 𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is the posterior probability of class.

𝑃(𝐿) is the prior probability of class.

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝐿) is the likelihood which is the probability of predictor given class.

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is the prior probability of predictor.

Building model using Naïve Bayes in Python

Python library, Scikit learn is the most useful library that helps us to build a Naïve Bayes

model in Python. We have the following three types of Naïve Bayes model under Scikit

learn Python library:

Gaussian Naïve Bayes

It is the simplest Naïve Bayes classifier having the assumption that the data from each

label is drawn from a simple Gaussian distribution.

Multinomial Naïve Bayes

Another useful Naïve Bayes classifier is Multinomial Naïve Bayes in which the features are

assumed to be drawn from a simple Multinomial distribution. Such kind of Naïve Bayes are

most appropriate for the features that represents discrete counts.

Bernoulli Naïve Bayes

Another important model is Bernoulli Naïve Bayes in which features are assumed to be

binary (0s and 1s). Text classification with ‘bag of words’ model can be an application of

Bernoulli Naïve Bayes.

13. Classification Algorithms - Naïve Bayes

Machine Learning with Python

 87

Example

Depending on our data set, we can choose any of the Naïve Bayes model explained above.

Here, we are implementing Gaussian Naïve Bayes model in Python:

We will start with required imports as follows:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

Now, by using make_blobs() function of Scikit learn, we can generate blobs of points

with Gaussian distribution as follows:

from sklearn.datasets import make_blobs

X, y = make_blobs(300, 2, centers=2, random_state=2, cluster_std=1.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer');

Next, for using GaussianNB model, we need to import and make its object as follows:

from sklearn.naive_bayes import GaussianNB

model_GBN = GaussianNB()

model_GNB.fit(X, y);

Now, we have to do prediction. It can be done after generating some new data as follows:

rng = np.random.RandomState(0)

Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2)

ynew = model_GNB.predict(Xnew)

Next, we are plotting new data to find its boundaries:

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')

lim = plt.axis()

plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='summer', alpha=0.1)

plt.axis(lim);

Now, with the help of following line of codes, we can find the posterior probabilities of first

and second label:

yprob = model_GNB.predict_proba(Xnew)

yprob[-10:].round(3)

Machine Learning with Python

 88

Output

array([[0.998, 0.002],

 [1. , 0.],

 [0.987, 0.013],

 [1. , 0.],

 [1. , 0.],

 [1. , 0.],

 [1. , 0.],

 [1. , 0.],

 [0. , 1.],

 [0.986, 0.014]])

Pros & Cons

Pros

The followings are some pros of using Naïve Bayes classifiers:

 Naïve Bayes classification is easy to implement and fast.

 It will converge faster than discriminative models like logistic regression.

 It requires less training data.

 It is highly scalable in nature, or they scale linearly with the number of predictors

and data points.

 It can make probabilistic predictions and can handle continuous as well as discrete

data.

 Naïve Bayes classification algorithm can be used for binary as well as multi-class

classification problems both.

Cons

The followings are some cons of using Naïve Bayes classifiers:

 One of the most important cons of Naïve Bayes classification is its strong feature

independence because in real life it is almost impossible to have a set of features

which are completely independent of each other.

 Another issue with Naïve Bayes classification is its ‘zero frequency’ which means

that if a categorial variable has a category but not being observed in training data

set, then Naïve Bayes model will assign a zero probability to it and it will be unable

to make a prediction.

Machine Learning with Python

 89

Applications of Naïve Bayes classification

The following are some common applications of Naïve Bayes classification:

Real-time prediction: Due to its ease of implementation and fast computation, it can be

used to do prediction in real-time.

Multi-class prediction: Naïve Bayes classification algorithm can be used to predict

posterior probability of multiple classes of target variable.

Text classification: Due to the feature of multi-class prediction, Naïve Bayes

classification algorithms are well suited for text classification. That is why it is also used

to solve problems like spam-filtering and sentiment analysis.

Recommendation system: Along with the algorithms like collaborative filtering, Naïve

Bayes makes a Recommendation system which can be used to filter unseen information

and to predict weather a user would like the given resource or not.

Machine Learning with Python

 90

Introduction

Random forest is a supervised learning algorithm which is used for both classification as

well as regression. But however, it is mainly used for classification problems. As we know

that a forest is made up of trees and more trees means more robust forest. Similarly,

random forest algorithm creates decision trees on data samples and then gets the

prediction from each of them and finally selects the best solution by means of voting. It is

an ensemble method which is better than a single decision tree because it reduces the

over-fitting by averaging the result.

Working of Random Forest Algorithm

We can understand the working of Random Forest algorithm with the help of following

steps:

Step1: First, start with the selection of random samples from a given dataset.

Step2: Next, this algorithm will construct a decision tree for every sample. Then it will get

the prediction result from every decision tree.

Step3: In this step, voting will be performed for every predicted result.

Step4: At last, select the most voted prediction result as the final prediction result.

14. Classification Algorithms – Random Forest

Machine Learning with Python

 91

The following diagram will illustrate its working:

Implementation in Python

First, start with importing necessary Python packages:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Next, download the iris dataset from its weblink as follows:

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

Next, we need to assign column names to the dataset as follows:

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width',

'Class']

Now, we need to read dataset to pandas dataframe as follows:

dataset = pd.read_csv(path, names=headernames)

dataset.head()

Training Set

Test Set

Training

Sample 1

Training

Sample 2

Training

Sample n

Training

Sample 1

Training

Sample 1

Training

Sample 1

Voting

Prediction

Machine Learning with Python

 92

sepal-
length

sepal-
width

petal-
length

petal-width Class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

Data Preprocessing will be done with the help of following script lines:

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, 4].values

Next, we will divide the data into train and test split. The following code will split the

dataset into 70% training data and 30% of testing data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

Next, train the model with the help of RandomForestClassifier class of sklearn as

follows:

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators=50)

classifier.fit(X_train, y_train)

At last, we need to make prediction. It can be done with the help of following script:

y_pred = classifier.predict(X_test)

Next, print the results as follows:

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

result = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

result1 = classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

result2 = accuracy_score(y_test,y_pred)

print("Accuracy:",result2)

Machine Learning with Python

 93

Output

Confusion Matrix:

[[14 0 0]

 [0 18 1]

 [0 0 12]]

Classification Report:

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 14

Iris-versicolor 1.00 0.95 0.97 19

 Iris-virginica 0.92 1.00 0.96 12

 micro avg 0.98 0.98 0.98 45

 macro avg 0.97 0.98 0.98 45

 weighted avg 0.98 0.98 0.98 45

Accuracy: 0.9777777777777777

Pros and Cons of Random Forest

Pros

The following are the advantages of Random Forest algorithm:

 It overcomes the problem of overfitting by averaging or combining the results of

different decision trees.

 Random forests work well for a large range of data items than a single decision

tree does.

 Random forest has less variance then single decision tree.

 Random forests are very flexible and possess very high accuracy.

 Scaling of data does not require in random forest algorithm. It maintains good

accuracy even after providing data without scaling.

 Random Forest algorithms maintains good accuracy even a large proportion of the

data is missing.

Cons

The following are the disadvantages of Random Forest algorithm:

Machine Learning with Python

 94

 Complexity is the main disadvantage of Random forest algorithms.

 Construction of Random forests are much harder and time-consuming than decision

trees.

 More computational resources are required to implement Random Forest algorithm.

 It is less intuitive in case when we have a large collection of decision trees.

 The prediction process using random forests is very time-consuming in comparison

with other algorithms.

Machine Learning with Python

 95

Machine Learning Algorithms - Regression

Machine Learning with Python

 96

Introduction to Regression

Regression is another important and broadly used statistical and machine learning tool.

The key objective of regression-based tasks is to predict output labels or responses which

are continues numeric values, for the given input data. The output will be based on what

the model has learned in training phase. Basically, regression models use the input data

features (independent variables) and their corresponding continuous numeric output

values (dependent or outcome variables) to learn specific association between inputs and

corresponding outputs.

15. Regression Algorithms – Overview

Y-Output

variables,

dependent on

Input

X-Input variables,

independent in nature

Machine Learning with Python

 97

Types of Regression Models

Regression models are of following two types:

Simple regression model: This is the most basic regression model in which predictions

are formed from a single, univariate feature of the data.

Multiple regression model: As name implies, in this regression model the predictions

are formed from multiple features of the data.

Building a Regressor in Python

Regressor model in Python can be constructed just like we constructed the classifier.

Scikit-learn, a Python library for machine learning can also be used to build a regressor in

Python.

In the following example, we will be building basic regression model that will fit a line to

the data i.e. linear regressor. The necessary steps for building a regressor in Python are

as follows:

Step1: Importing necessary python package

For building a regressor using scikit-learn, we need to import it along with other necessary

packages. We can import the by using following script:

import numpy as np

from sklearn import linear_model

import sklearn.metrics as sm

import matplotlib.pyplot as plt

Step2: Importing dataset

After importing necessary package, we need a dataset to build regression prediction

model. We can import it from sklearn dataset or can use other one as per our requirement.

We are going to use our saved input data. We can import it with the help of following

script:

input = r'C:\linear.txt'

Next, we need to load this data. We are using np.loadtxt function to load it.

Regression Models

Simple

(Univariate Features)

Multiple

(Multiple Features)

Machine Learning with Python

 98

 input_data = np.loadtxt(input, delimiter=',')

 X, y = input_data[:, :-1], input_data[:, -1]

Step3: Organizing data into training & testing sets

As we need to test our model on unseen data hence, we will divide our dataset into two

parts: a training set and a test set. The following command will perform it:

training_samples = int(0.6 * len(X))

testing_samples = len(X) - num_training

X_train, y_train = X[:training_samples], y[:training_samples]

X_test, y_test = X[training_samples:], y[training_samples:]

Step4- Model evaluation & prediction

After dividing the data into training and testing we need to build the model. We will be

using LineaRegression() function of Scikit-learn for this purpose. Following command

will create a linear regressor object.

 reg_linear= linear_model.LinearRegression()

Next, train this model with the training samples as follows:

 reg_linear.fit(X_train, y_train)

Now, at last we need to do the prediction with the testing data.

 y_test_pred = reg_linear.predict(X_test)

Step5- Plot & visualization

After prediction, we can plot and visualize it with the help of following script:

plt.scatter(X_test, y_test, color='red')

plt.plot(X_test, y_test_pred, color='black', linewidth=2)

plt.xticks(())

plt.yticks(())

plt.show()

Machine Learning with Python

 99

Output

In the above output, we can see the regression line between the data points.

Step6- Performance computation: We can also compute the performance of our

regression model with the help of various performance metrics as follows:

print("Regressor model performance:")

print("Mean absolute error(MAE) =", round(sm.mean_absolute_error(y_test,

y_test_pred), 2))

print("Mean squared error(MSE) =", round(sm.mean_squared_error(y_test,

y_test_pred), 2))

print("Median absolute error =", round(sm.median_absolute_error(y_test,

y_test_pred), 2))

print("Explain variance score =", round(sm.explained_variance_score(y_test,

y_test_pred), 2))

print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

Output

Regressor model performance:

Mean absolute error(MAE) = 1.78

Mean squared error(MSE) = 3.89

Median absolute error = 2.01

Explain variance score = -0.09

R2 score = -0.09

Machine Learning with Python

 100

Types of ML Regression Algorithms

The most useful and popular ML regression algorithm is Linear regression algorithm which

further divided into two types namely:

 Simple Linear Regression algorithm

 Multiple Linear Regression algorithm.

We will discuss about it and implement it in Python in the next chapter.

Applications

The applications of ML regression algorithms are as follows:

Forecasting or Predictive analysis: One of the important uses of regression is

forecasting or predictive analysis. For example, we can forecast GDP, oil prices or in simple

words the quantitative data that changes with the passage of time.

Optimization: We can optimize business processes with the help of regression. For

example, a store manager can create a statistical model to understand the peek time of

coming of customers.

Error correction: In business, taking correct decision is equally important as optimizing

the business process. Regression can help us to take correct decision as well in correcting

the already implemented decision.

Economics: It is the most used tool in economics. We can use regression to predict

supply, demand, consumption, inventory investment etc.

Finance: A financial company is always interested in minimizing the risk portfolio and

want to know the factors that affects the customers. All these can be predicted with the

help of regression model.

Machine Learning with Python

 101

Introduction to Linear Regression

Linear regression may be defined as the statistical model that analyzes the linear

relationship between a dependent variable with given set of independent variables. Linear

relationship between variables means that when the value of one or more independent

variables will change (increase or decrease), the value of dependent variable will also

change accordingly (increase or decrease).

Mathematically the relationship can be represented with the help of following equation:

𝑌 = 𝑚𝑋 + 𝑏

Here, 𝑌 is the dependent variable we are trying to predict

𝑋 is the dependent variable we are using to make predictions.

𝑚 is the slop of the regression line which represents the effect 𝑋 has on 𝑌

𝑏 is a constant, known as the 𝑌-intercept. If 𝑋 = 0, 𝑌 would be equal to 𝑏.

Furthermore, the linear relationship can be positive or negative in nature as explained

below:

Positive Linear Relationship

A linear relationship will be called positive if both independent and dependent variable

increases. It can be understood with the help of following graph:

16. Regression Algorithms – Linear Regression

Positive Linear Relationship

Machine Learning with Python

 102

Negative Linear relationship

A linear relationship will be called positive if independent increases and dependent variable

decreases. It can be understood with the help of following graph:

Types of Linear Regression

Linear regression is of the following two types:

 Simple Linear Regression

 Multiple Linear Regression

Simple Linear Regression (SLR)

It is the most basic version of linear regression which predicts a response using a single

feature. The assumption in SLR is that the two variables are linearly related.

Python implementation

We can implement SLR in Python in two ways, one is to provide your own dataset and

other is to use dataset from scikit-learn python library.

Example1: In the following Python implementation example, we are using our own

dataset.

First, we will start with importing necessary packages as follows:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

Negative Linear Relationship

Machine Learning with Python

 103

Next, define a function which will calculate the important values for SLR:

def coef_estimation(x, y):

The following script line will give number of observations n:

 n = np.size(x)

The mean of x and y vector can be calculated as follows:

 m_x, m_y = np.mean(x), np.mean(y)

 We can find cross-deviation and deviation about x as follows:

 SS_xy = np.sum(y*x) - n*m_y*m_x

 SS_xx = np.sum(x*x) - n*m_x*m_x

Next, regression coefficients i.e. b can be calculated as follows:

 b_1 = SS_xy / SS_xx

 b_0 = m_y - b_1*m_x

 return(b_0, b_1)

Next, we need to define a function which will plot the regression line as well as will predict

the response vector:

def plot_regression_line(x, y, b):

The following script line will plot the actual points as scatter plot:

 plt.scatter(x, y, color = "m", marker = "o", s = 30)

The following script line will predict response vector:

 y_pred = b[0] + b[1]*x

The following script lines will plot the regression line and will put the labels on them:

 plt.plot(x, y_pred, color = "g")

 plt.xlabel('x')

 plt.ylabel('y')

 plt.show()

At last, we need to define main() function for providing dataset and calling the function

we defined above:

Machine Learning with Python

 104

def main():

 x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

 y = np.array([100, 300, 350, 500, 750, 800, 850, 900, 1050, 1250])

 b = coef_estimation(x, y)

 print("Estimated coefficients:\nb_0 = {} \nb_1 = {}".format(b[0], b[1]))

 plot_regression_line(x, y, b)

if __name__ == "__main__":

 main()

Output

Estimated coefficients:

b_0 = 154.5454545454545

b_1 = 117.87878787878788

Example2: In the following Python implementation example, we are using diabetes

dataset from scikit-learn.

First, we will start with importing necessary packages as follows:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets, linear_model

from sklearn.metrics import mean_squared_error, r2_score

Machine Learning with Python

 105

Next, we will load the diabetes dataset and create its object:

diabetes = datasets.load_diabetes()

As we are implementing SLR, we will be using only one feature as follows:

X = diabetes.data[:, np.newaxis, 2]

Next, we need to split the data into training and testing sets as follows:

X_train = X[:-30]

X_test = X[-30:]

Next, we need to split the target into training and testing sets as follows:

y_train = diabetes.target[:-30]

y_test = diabetes.target[-30:]

Now, to train the model we need to create linear regression object as follows:

regr = linear_model.LinearRegression()

Next, train the model using the training sets as follows:

regr.fit(X_train, y_train)

Next, make predictions using the testing set as follows:

y_pred = regr.predict(X_test)

Next, we will be printing some coefficient like MSE, Variance score etc. as follows:

print('Coefficients: \n', regr.coef_)

print("Mean squared error: %.2f"

 % mean_squared_error(y_test, y_pred))

print('Variance score: %.2f' % r2_score(y_test, y_pred))

Now, plot the outputs as follows:

plt.scatter(X_test, y_test, color='blue')

plt.plot(X_test, y_pred, color='red', linewidth=3)

plt.xticks(())

plt.yticks(())

plt.show()

Machine Learning with Python

 106

Output

Coefficients:

 [941.43097333]

Mean squared error: 3035.06

Variance score: 0.41

Multiple Linear Regression (MLR)

It is the extension of simple linear regression that predicts a response using two or more

features. Mathematically we can explain it as follows:

Consider a dataset having n observations, p features i.e. independent variables and y as

one response i.e. dependent variable the regression line for p features can be calculated

as follows:

𝒉(𝒙𝒊) = 𝒃𝟎 + 𝒃𝟏𝒙𝒊𝟏 + 𝒃𝟐𝒙𝒊𝟐 + ⋯ + 𝒃𝒑𝒙𝒊𝒑

Here, 𝒉(𝒙𝒊) is the predicted response value and 𝒃𝟎, 𝒃𝟏, 𝒃𝟐 … , 𝒃𝒑 are the regression

coefficients.

Multiple Linear Regression models always includes the errors in the data known as residual

error which changes the calculation as follows:

𝒉(𝒙𝒊) = 𝒃𝟎 + 𝒃𝟏𝒙𝒊𝟏 + 𝒃𝟐𝒙𝒊𝟐 + ⋯ + 𝒃𝒑𝒙𝒊𝒑 + 𝒆𝒊

We can also write the above equation as follows:

𝒚𝒊 = 𝒉(𝒙𝒊) + 𝒆𝒊 or 𝒆𝒊 = 𝒚𝒊 − 𝒉(𝒙𝒊)

Machine Learning with Python

 107

Python Implementation

in this example, we will be using Boston housing dataset from scikit learn:

First, we will start with importing necessary packages as follows:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets, linear_model, metrics

Next, load the dataset as follows:

boston = datasets.load_boston(return_X_y=False)

The following script lines will define feature matrix, X and response vector, Y:

X = boston.data

y = boston.target

Next, split the dataset into training and testing sets as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7,

random_state=1)

Now, create linear regression object and train the model as follows:

reg = linear_model.LinearRegression()

reg.fit(X_train, y_train)

print('Coefficients: \n', reg.coef_)

print('Variance score: {}'.format(reg.score(X_test, y_test)))

plt.style.use('fivethirtyeight')

plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,

 color = "green", s = 10, label = 'Train data')

plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,

Machine Learning with Python

 108

 color = "blue", s = 10, label = 'Test data')

plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)

plt.legend(loc = 'upper right')

plt.title("Residual errors")

plt.show()

Output

Coefficients:

 [-1.16358797e-01 6.44549228e-02 1.65416147e-01 1.45101654e+00

 -1.77862563e+01 2.80392779e+00 4.61905315e-02 -1.13518865e+00

 3.31725870e-01 -1.01196059e-02 -9.94812678e-01 9.18522056e-03

 -7.92395217e-01]

Variance score: 0.709454060230326

Assumptions

The following are some assumptions about dataset that is made by Linear Regression

model:

Multi-collinearity: Linear regression model assumes that there is very little or no multi-

collinearity in the data. Basically, multi-collinearity occurs when the independent variables

or features have dependency in them.

Machine Learning with Python

 109

Auto-correlation: Another assumption Linear regression model assumes is that there is

very little or no auto-correlation in the data. Basically, auto-correlation occurs when there

is dependency between residual errors.

Relationship between variables: Linear regression model assumes that the relationship

between response and feature variables must be linear.

Machine Learning with Python

 110

Machine Learning Algorithms – Clustering

Machine Learning with Python

 111

Introduction to Clustering

Clustering methods are one of the most useful unsupervised ML methods. These methods

are used to find similarity as well as the relationship patterns among data samples and

then cluster those samples into groups having similarity based on features.

Clustering is important because it determines the intrinsic grouping among the present

unlabeled data. They basically make some assumptions about data points to constitute

their similarity. Each assumption will construct different but equally valid clusters.

For example, below is the diagram which shows clustering system grouped together the

similar kind of data in different clusters:

Cluster Formation Methods

It is not necessary that clusters will be formed in spherical form. Followings are some other

cluster formation methods:

Density-based

In these methods, the clusters are formed as the dense region. The advantage of these

methods is that they have good accuracy as well as good ability to merge two clusters.

Ex. Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points

to identify Clustering structure (OPTICS) etc.

Hierarchical-based

In these methods, the clusters are formed as a tree type structure based on the hierarchy.

They have two categories namely, Agglomerative (Bottom up approach) and Divisive (Top

down approach). Ex. Clustering using Representatives (CURE), Balanced iterative

Reducing Clustering using Hierarchies (BIRCH) etc.

Partitioning

17. Clustering Algorithms - Overview

Clustering

System

Machine Learning with Python

 112

In these methods, the clusters are formed by portioning the objects into k clusters.

Number of clusters will be equal to the number of partitions. Ex. K-means, Clustering Large

Applications based upon randomized Search (CLARANS).

Grid

In these methods, the clusters are formed as a grid like structure. The advantage of these

methods is that all the clustering operation done on these grids are fast and independent

of the number of data objects. Ex. Statistical Information Grid (STING), Clustering in Quest

(CLIQUE).

Measuring Clustering Performance

One of the most important consideration regarding ML model is assessing its performance

or you can say model’s quality. In case of supervised learning algorithms, assessing the

quality of our model is easy because we already have labels for every example.

On the other hand, in case of unsupervised learning algorithms we are not that much

blessed because we deal with unlabeled data. But still we have some metrics that give the

practitioner an insight about the happening of change in clusters depending on algorithm.

Before we deep dive into such metrics, we must understand that these metrics only

evaluates the comparative performance of models against each other rather than

measuring the validity of the model’s prediction. Followings are some of the metrics that

we can deploy on clustering algorithms to measure the quality of model:

Silhouette Analysis

Silhouette analysis used to check the quality of clustering model by measuring the distance

between the clusters. It basically provides us a way to assess the parameters like number

of clusters with the help of Silhouette score. This score measures how close each point

in one cluster is to points in the neighboring clusters.

Analysis of Silhouette Score

The range of Silhouette score is [-1, 1]. Its analysis is as follows:

 +1 Score:- Near +1 Silhouette score indicates that the sample is far away from

its neighboring cluster.

 0 Score:- 0 Silhouette score indicates that the sample is on or very close to the

decision boundary separating two neighboring clusters.

 -1 Score: -1 Silhouette score indicates that the samples have been assigned to

the wrong clusters.

The calculation of Silhouette score can be done by using the following formula:

𝒔𝒊𝒍𝒉𝒐𝒖𝒆𝒕𝒕𝒆 𝒔𝒄𝒐𝒓𝒆 = (𝒑 − 𝒒)/𝐦𝐚𝐱 (𝒑, 𝒒)

Here, 𝑝 = mean distance to the points in the nearest cluster

And, 𝑞 = mean intra-cluster distance to all the points.

Machine Learning with Python

 113

Davis-Bouldin Index

DB index is another good metric to perform the analysis of clustering algorithms. With the

help of DB index, we can understand the following points about clustering model:

 Weather the clusters are well-spaced from each other or not?

 How much dense the clusters are?

We can calculate DB index with the help of following formula:

𝐷𝐵 =
1

𝑛
∑ 𝑚𝑎𝑥𝑗≠𝑖(

𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖, 𝑐𝑗)
)

𝑛

𝑖=1

Here, 𝑛 = number of clusters

𝜎𝑖 = average distance of all points in cluster 𝑖 from the cluster centroid 𝑐𝑖.

Less the DB index, better the clustering model is.

Dunn Index

It works same as DB index but there are following points in which both differs:

 The Dunn index considers only the worst case i.e. the clusters that are close

together while DB index considers dispersion and separation of all the clusters in

clustering model.

 Dunn index increases as the performance increases while DB index gets better

when clusters are well-spaced and dense.

We can calculate Dunn index with the help of following formula:

𝐷 =
𝑚𝑖𝑛1≤𝑖<𝑗≤𝑛𝑝(𝑖, 𝑗)

𝑚𝑎𝑥1≤𝑖<𝑘≤𝑛𝑞(𝑘)

Here, 𝑖, 𝑗, 𝑘 = each indices for clusters

𝑝 = inter-cluster distance

q = intra-cluster distance

Types of ML Clustering Algorithms

The following are the most important and useful ML clustering algorithms:

K-means Clustering

This clustering algorithm computes the centroids and iterates until we it finds optimal

centroid. It assumes that the number of clusters are already known. It is also called flat

clustering algorithm. The number of clusters identified from data by algorithm is

represented by ‘K’ in K-means.

Mean-Shift Algorithm

It is another powerful clustering algorithm used in unsupervised learning. Unlike K-means

clustering, it does not make any assumptions hence it is a non-parametric algorithm.

Machine Learning with Python

 114

Hierarchical Clustering

It is another unsupervised learning algorithm that is used to group together the unlabeled

data points having similar characteristics.

We will be discussing all these algorithms in detail in the upcoming chapters.

Applications of Clustering

We can find clustering useful in the following areas:

Data summarization and compression: Clustering is widely used in the areas where

we require data summarization, compression and reduction as well. The examples are

image processing and vector quantization.

Collaborative systems and customer segmentation: Since clustering can be used to

find similar products or same kind of users, it can be used in the area of collaborative

systems and customer segmentation.

Serve as a key intermediate step for other data mining tasks: Cluster analysis can

generate a compact summary of data for classification, testing, hypothesis generation;

hence, it serves as a key intermediate step for other data mining tasks also.

Trend detection in dynamic data: Clustering can also be used for trend detection in

dynamic data by making various clusters of similar trends.

Social network analysis: Clustering can be used in social network analysis. The

examples are generating sequences in images, videos or audios.

Biological data analysis: Clustering can also be used to make clusters of images, videos

hence it can successfully be used in biological data analysis.

Machine Learning with Python

 115

Introduction to K-Means Algorithm

K-means clustering algorithm computes the centroids and iterates until we it finds optimal

centroid. It assumes that the number of clusters are already known. It is also called flat

clustering algorithm. The number of clusters identified from data by algorithm is

represented by ‘K’ in K-means.

In this algorithm, the data points are assigned to a cluster in such a manner that the sum

of the squared distance between the data points and centroid would be minimum. It is to

be understood that less variation within the clusters will lead to more similar data points

within same cluster.

Working of K-Means Algorithm

We can understand the working of K-Means clustering algorithm with the help of following

steps:

Step1: First, we need to specify the number of clusters, K, need to be generated by this

algorithm.

Step2: Next, randomly select K data points and assign each data point to a cluster. In

simple words, classify the data based on the number of data points.

Step3: Now it will compute the cluster centroids.

Step4: Next, keep iterating the following until we find optimal centroid which is the

assignment of data points to the clusters that are not changing any more:

4.1: First, the sum of squared distance between data points and centroids would

be computed.

4.2: Now, we have to assign each data point to the cluster that is closer than other

cluster (centroid).

4.3: At last compute the centroids for the clusters by taking the average of all

data points of that cluster.

K-means follows Expectation-Maximization approach to solve the problem. The

Expectation-step is used for assigning the data points to the closest cluster and the

Maximization-step is used for computing the centroid of each cluster.

While working with K-means algorithm we need to take care of the following things:

 While working with clustering algorithms including K-Means, it is recommended to

standardize the data because such algorithms use distance-based measurement to

determine the similarity between data points.

18. Clustering Algorithms – K-means Algorithm

Machine Learning with Python

 116

 Due to the iterative nature of K-Means and random initialization of centroids, K-

Means may stick in a local optimum and may not converge to global optimum. That

is why it is recommended to use different initializations of centroids.

Implementation in Python

The following two examples of implementing K-Means clustering algorithm will help us in

its better understanding:

Example1

It is a simple example to understand how k-means works. In this example, we are going

to first generate 2D dataset containing 4 different blobs and after that will apply k-means

algorithm to see the result.

First, we will start by importing the necessary packages:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

The following code will generate the 2D, containing four blobs:

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=400, centers=4, cluster_std=0.60,

random_state=0)

Next, the following code will help us to visualize the dataset:

plt.scatter(X[:, 0], X[:, 1], s=20);

plt.show()

Machine Learning with Python

 117

Next, make an object of KMeans along with providing number of clusters, train the model

and do the prediction as follows:

kmeans = KMeans(n_clusters=4)

kmeans.fit(X)

y_kmeans = kmeans.predict(X)

Now, with the help of following code we can plot and visualize the cluster’s centers picked

by k-means Python estimator:

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=20, cmap='summer')

centers = kmeans.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='blue', s=100, alpha=0.9);

plt.show()

Machine Learning with Python

 118

Example 2

Let us move to another example in which we are going to apply K-means clustering on

simple digits dataset. K-means will try to identify similar digits without using the original

label information.

First, we will start by importing the necessary packages:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

Next, load the digit dataset from sklearn and make an object of it. We can also find number

of rows and columns in this dataset as follows:

from sklearn.datasets import load_digits

digits = load_digits()

digits.data.shape

Output

(1797, 64)

The above output shows that this dataset is having 1797 samples with 64 features.

We can perform the clustering as we did in Example 1 above:

kmeans = KMeans(n_clusters=10, random_state=0)

clusters = kmeans.fit_predict(digits.data)

kmeans.cluster_centers_.shape

Output

(10, 64)

The above output shows that K-means created 10 clusters with 64 features.

fig, ax = plt.subplots(2, 5, figsize=(8, 3))

centers = kmeans.cluster_centers_.reshape(10, 8, 8)

for axi, center in zip(ax.flat, centers):

 axi.set(xticks=[], yticks=[])

 axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)

Machine Learning with Python

 119

Output

As output, we will get following image showing clusters centers learned by k-means.

The following lines of code will match the learned cluster labels with the true labels found

in them:

from scipy.stats import mode

labels = np.zeros_like(clusters)

for i in range(10):

 mask = (clusters == i)

 labels[mask] = mode(digits.target[mask])[0]

Next, we can check the accuracy as follows:

from sklearn.metrics import accuracy_score

accuracy_score(digits.target, labels)

Output

0.7935447968836951

The above output shows that the accuracy is around 80%.

Advantages and Disadvantages

Advantages
The following are some advantages of K-Means clustering algorithms:

 It is very easy to understand and implement.

 If we have large number of variables then, K-means would be faster than

Hierarchical clustering.

 On re-computation of centroids, an instance can change the cluster.

 Tighter clusters are formed with K-means as compared to Hierarchical clustering.

Disadvantages:

Machine Learning with Python

 120

The following are some disadvantages of K-Means clustering algorithms:

 It is a bit difficult to predict the number of clusters i.e. the value of k.

 Output is strongly impacted by initial inputs like number of clusters (value of k)

 Order of data will have strong impact on the final output.

 It is very sensitive to rescaling. If we will rescale our data by means of

normalization or standardization, then the output will completely change.

 It is not good in doing clustering job if the clusters have a complicated geometric

shape.

Applications of K-Means Clustering Algorithm

The main goals of cluster analysis are:

 To get a meaningful intuition from the data we are working with.

 Cluster-then-predict where different models will be built for different subgroups.

To fulfill the above-mentioned goals, K-means clustering is performing well enough. It can

be used in following applications:

 Market segmentation

 Document Clustering

 Image segmentation

 Image compression

 Customer segmentation

 Analyzing the trend on dynamic data

Machine Learning with Python

 121

Introduction to Mean-Shift Algorithm

As discussed earlier, it is another powerful clustering algorithm used in unsupervised

learning. Unlike K-means clustering, it does not make any assumptions; hence it is a non-

parametric algorithm.

Mean-shift algorithm basically assigns the datapoints to the clusters iteratively by shifting

points towards the highest density of datapoints i.e. cluster centroid.

The difference between K-Means algorithm and Mean-Shift is that later one does not need

to specify the number of clusters in advance because the number of clusters will be

determined by the algorithm w.r.t data.

Working of Mean-Shift Algorithm

We can understand the working of Mean-Shift clustering algorithm with the help of

following steps:

Step1: First, start with the data points assigned to a cluster of their own.

Step2: Next, this algorithm will compute the centroids.

Step3: In this step, location of new centroids will be updated.

Step4: Now, the process will be iterated and moved to the higher density region.

Step5: At last, it will be stopped once the centroids reach at position from where it cannot

move further.

Implementation in Python

It is a simple example to understand how Mean-Shift algorithm works. In this example,

we are going to first generate 2D dataset containing 4 different blobs and after that will

apply Mean-Shift algorithm to see the result.

%matplotlib inline

import numpy as np

from sklearn.cluster import MeanShift

import matplotlib.pyplot as plt

from matplotlib import style

style.use("ggplot")

from sklearn.datasets.samples_generator import make_blobs

centers = [[3,3,3],[4,5,5],[3,10,10]]

X, _ = make_blobs(n_samples = 700, centers = centers, cluster_std = 0.5)

19. Clustering Algorithms – Mean Shift Algorithm

Machine Learning with Python

 122

plt.scatter(X[:,0],X[:,1])

plt.show()

ms = MeanShift()

ms.fit(X)

labels = ms.labels_

cluster_centers = ms.cluster_centers_

print(cluster_centers)

n_clusters_ = len(np.unique(labels))

print("Estimated clusters:", n_clusters_)

colors = 10*['r.','g.','b.','c.','k.','y.','m.']

for i in range(len(X)):

 plt.plot(X[i][0], X[i][1], colors[labels[i]], markersize = 3)

plt.scatter(cluster_centers[:,0],cluster_centers[:,1],

 marker=".",color='k', s=20, linewidths = 5, zorder=10)

plt.show()

Output

[[2.98462798 9.9733794 10.02629344]

 [3.94758484 4.99122771 4.99349433]

 [3.00788996 3.03851268 2.99183033]]

Estimated clusters: 3

Machine Learning with Python

 123

Advantages and Disadvantages

Advantages

The following are some advantages of Mean-Shift clustering algorithm:

 It does not need to make any model assumption as like in K-means or Gaussian

mixture.

 It can also model the complex clusters which have nonconvex shape.

 It only needs one parameter named bandwidth which automatically determines the

number of clusters.

 There is no issue of local minima as like in K-means.

 No problem generated from outliers.

Disadvantages

The following are some disadvantages of Mean-Shift clustering algorithm:

Mean-shift algorithm does not work well in case of high dimension, where number

of clusters changes abruptly.

 We do not have any direct control on the number of clusters but in some

applications, we need a specific number of clusters.

 It cannot differentiate between meaningful and meaningless modes.

Machine Learning with Python

 124

Introduction to Hierarchical Clustering

Hierarchical clustering is another unsupervised learning algorithm that is used to group

together the unlabeled data points having similar characteristics. Hierarchical clustering

algorithms falls into following two categories:

Agglomerative hierarchical algorithms: In agglomerative hierarchical algorithms,

each data point is treated as a single cluster and then successively merge or agglomerate

(bottom-up approach) the pairs of clusters. The hierarchy of the clusters is represented

as a dendrogram or tree structure.

Divisive hierarchical algorithms: On the other hand, in divisive hierarchical algorithms,

all the data points are treated as one big cluster and the process of clustering involves

dividing (Top-down approach) the one big cluster into various small clusters.

Steps to Perform Agglomerative Hierarchical Clustering

We are going to explain the most used and important Hierarchical clustering i.e.

agglomerative. The steps to perform the same is as follows:

Step1: Treat each data point as single cluster. Hence, we will be having, say K clusters at

start. The number of data points will also be K at start.

Step2: Now, in this step we need to form a big cluster by joining two closet datapoints.

This will result in total of K-1 clusters.

Step3: Now, to form more clusters we need to join two closet clusters. This will result in

total of K-2 clusters.

Step4: Now, to form one big cluster repeat the above three steps until K would become 0

i.e. no more data points left to join.

Step5: At last, after making one single big cluster, dendrograms will be used to divide

into multiple clusters depending upon the problem.

Role of Dendrograms in Agglomerative Hierarchical Clustering

As we discussed in the last step, the role of dendrogram starts once the big cluster is

formed. Dendrogram will be used to split the clusters into multiple cluster of related data

points depending upon our problem. It can be understood with the help of following

example:

Example1

To understand, let us start with importing the required libraries as follows:

%matplotlib inline

20. Clustering Algorithms – Hierarchical Clustering

Machine Learning with Python

 125

import matplotlib.pyplot as plt

import numpy as np

Next, we will be plotting the datapoints we have taken for this example:

X = np.array([[7,8],[12,20],[17,19],[26,15],[32,37],[87,75],[73,85],

[62,80],[73,60],[87,96],])

labels = range(1, 11)

plt.figure(figsize=(10, 7))

plt.subplots_adjust(bottom=0.1)

plt.scatter(X[:,0],X[:,1], label='True Position')

for label, x, y in zip(labels, X[:, 0], X[:, 1]):

 plt.annotate(label,xy=(x, y), xytext=(-3, 3),textcoords='offset points',

ha='right', va='bottom')

plt.show()

From the above diagram, it is very easy to see that we have two clusters in out datapoints

but in the real world data, there can be thousands of clusters. Next, we will be plotting the

dendrograms of our datapoints by using Scipy library:

from scipy.cluster.hierarchy import dendrogram, linkage

from matplotlib import pyplot as plt

linked = linkage(X, 'single')

labelList = range(1, 11)

plt.figure(figsize=(10, 7))

Machine Learning with Python

 126

dendrogram(linked, orientation='top',labels=labelList,

distance_sort='descending',show_leaf_counts=True)

plt.show()

Now, once the big cluster is formed, the longest vertical distance is selected. A vertical

line is then drawn through it as shown in the following diagram. As the horizontal line

crosses the blue line at two points, the number of clusters would be two.

Next, we need to import the class for clustering and call its fit_predict method to predict

the cluster. We are importing AgglomerativeClustering class of sklearn.cluster

library:

Machine Learning with Python

 127

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean',

linkage='ward')

cluster.fit_predict(X)

Next, plot the cluster with the help of following code:

plt.scatter(X[:,0],X[:,1], c=cluster.labels_, cmap='rainbow')

The above diagram shows the two clusters from our datapoints.

Example2

As we understood the concept of dendrograms from the simple example discussed above,

let us move to another example in which we are creating clusters of the data point in Pima

Indian Diabetes Dataset by using hierarchical clustering:

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

import numpy as np

from pandas import read_csv

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Machine Learning with Python

 128

Y = array[:,8]

data.shape

(768, 9)

data.head()

preg Plas Pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

patient_data = data.iloc[:, 3:5].values

import scipy.cluster.hierarchy as shc

plt.figure(figsize=(10, 7))

plt.title("Patient Dendograms")

dend = shc.dendrogram(shc.linkage(data, method='ward'))

Machine Learning with Python

 129

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=4, affinity='euclidean',

linkage='ward')

cluster.fit_predict(patient_data)

plt.figure(figsize=(10, 7))

plt.scatter(patient_data[:,0], patient_data[:,1], c=cluster.labels_,

cmap='rainbow')

Machine Learning with Python

 130

Machine Learning Algorithms - KNN Algorithm

Machine Learning with Python

 131

Introduction

K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which can be

used for both classification as well as regression predictive problems. However, it is mainly

used for classification predictive problems in industry. The following two properties would

define KNN well:

 Lazy learning algorithm: KNN is a lazy learning algorithm because it does not

have a specialized training phase and uses all the data for training while

classification.

 Non-parametric learning algorithm: KNN is also a non-parametric learning

algorithm because it doesn’t assume anything about the underlying data.

Working of KNN Algorithm

K-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new

datapoints which further means that the new data point will be assigned a value based on

how closely it matches the points in the training set. We can understand its working with

the help of following steps:

Step1: For implementing any algorithm, we need dataset. So during the first step of KNN,

we must load the training as well as test data.

Step2: Next, we need to choose the value of K i.e. the nearest data points. K can be any

integer.

Step3: For each point in the test data do the following:

3.1: Calculate the distance between test data and each row of training data with the help

of any of the method namely: Euclidean, Manhattan or Hamming distance. The most

commonly used method to calculate distance is Euclidean.

3.2: Now, based on the distance value, sort them in ascending order.

3.3: Next, it will choose the top K rows from the sorted array.

3.4: Now, it will assign a class to the test point based on most frequent class of these

rows.

Step4: End

Example

The following is an example to understand the concept of K and working of KNN algorithm:

Suppose we have a dataset which can be plotted as follows:

21. KNN Algorithm – Finding Nearest Neighbors

Machine Learning with Python

 132

Now, we need to classify new data point with black dot (at point 60,60) into blue or red

class. We are assuming K = 3 i.e. it would find three nearest data points. It is shown in

the next diagram:

We can see in the above diagram the three nearest neighbors of the data point with black

dot. Among those three, two of them lies in Red class hence the black dot will also be

assigned in red class.

Implementation in Python

As we know K-nearest neighbors (KNN) algorithm can be used for both classification as

well as regression. The following are the recipes in Python to use KNN as classifier as well

as regressor:

Machine Learning with Python

 133

KNN as Classifier

First, start with importing necessary python packages:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Next, download the iris dataset from its weblink as follows:

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

Next, we need to assign column names to the dataset as follows:

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width',

'Class']

Now, we need to read dataset to pandas dataframe as follows:

dataset = pd.read_csv(path, names=headernames)

dataset.head()

sepal-length sepal-width petal-length petal-width Class

0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

Data Preprocessing will be done with the help of following script lines:

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, 4].values

Next, we will divide the data into train and test split. Following code will split the dataset

into 60% training data and 40% of testing data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)

Next, data scaling will be done as follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

Machine Learning with Python

 134

X_test = scaler.transform(X_test)

Next, train the model with the help of KNeighborsClassifier class of sklearn as follows:

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(n_neighbors=8)

classifier.fit(X_train, y_train)

At last we need to make prediction. It can be done with the help of following script:

y_pred = classifier.predict(X_test)

Next, print the results as follows:

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

result = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")

print(result)

result1 = classification_report(y_test, y_pred)

print("Classification Report:",)

print (result1)

result2 = accuracy_score(y_test,y_pred)

print("Accuracy:",result2)

Output

Confusion Matrix:

[[21 0 0]

 [0 16 0]

 [0 7 16]]

Classification Report:

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 21

Iris-versicolor 0.70 1.00 0.82 16

 Iris-virginica 1.00 0.70 0.82 23

 micro avg 0.88 0.88 0.88 60

 macro avg 0.90 0.90 0.88 60

 weighted avg 0.92 0.88 0.88 60

Machine Learning with Python

 135

Accuracy: 0.8833333333333333

KNN as Regressor

First, start with importing necessary Python packages:

import numpy as np

import pandas as pd

Next, download the iris dataset from its weblink as follows:

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"

Next, we need to assign column names to the dataset as follows:

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width',

'Class']

Now, we need to read dataset to pandas dataframe as follows:

data = pd.read_csv(url, names=headernames)

array = data.values

X = array[:,:2]

Y = array[:,2]

data.shape

output:(150, 5)

Next, import KNeighborsRegressor from sklearn to fit the model:

from sklearn.neighbors import KNeighborsRegressor

knnr = KNeighborsRegressor(n_neighbors=10)

knnr.fit(X, y)

At last, we can find the MSE as follows:

print ("The MSE is:",format(np.power(y-knnr.predict(X),2).mean()))

Output

The MSE is: 0.12226666666666669

Machine Learning with Python

 136

Pros and Cons of KNN

Pros

 It is very simple algorithm to understand and interpret.

 It is very useful for nonlinear data because there is no assumption about data in

this algorithm.

 It is a versatile algorithm as we can use it for classification as well as regression.

 It has relatively high accuracy but there are much better supervised learning

models than KNN.

Cons

 It is computationally a bit expensive algorithm because it stores all the training

data.

 High memory storage required as compared to other supervised learning

algorithms.

 Prediction is slow in case of big N.

 It is very sensitive to the scale of data as well as irrelevant features.

Applications of KNN

The following are some of the areas in which KNN can be applied successfully:

Banking System

KNN can be used in banking system to predict weather an individual is fit for loan approval?

Does that individual have the characteristics similar to the defaulters one?

Calculating Credit Ratings

KNN algorithms can be used to find an individual’s credit rating by comparing with the

persons having similar traits.

Politics

With the help of KNN algorithms, we can classify a potential voter into various classes like

“Will Vote”, “Will not Vote”, “Will Vote to Party ‘Congress’, “Will Vote to Party ‘BJP’.

Other areas in which KNN algorithm can be used are Speech Recognition, Handwriting

Detection, Image Recognition and Video Recognition.

Machine Learning with Python

 137

There are various metrics which we can use to evaluate the performance of ML algorithms,

classification as well as regression algorithms. We must carefully choose the metrics for

evaluating ML performance because:

 How the performance of ML algorithms is measured and compared will be

dependent entirely on the metric you choose.

 How you weight the importance of various characteristics in the result will be

influenced completely by the metric you choose.

Performance Metrics for Classification Problems

We have discussed classification and its algorithms in the previous chapters. Here, we are

going to discuss various performance metrics that can be used to evaluate predictions for

classification problems.

Confusion Matrix

It is the easiest way to measure the performance of a classification problem where the

output can be of two or more type of classes. A confusion matrix is nothing but a table

with two dimensions viz. “Actual” and “Predicted” and furthermore, both the dimensions

have “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)”, “False Negatives

(FN)” as shown below:

Explanation of the terms associated with confusion matrix are as follows:

 True Positives (TP): It is the case when both actual class & predicted class of

data point is 1.

 True Negatives (TN): It is the case when both actual class & predicted class of

data point is 0.

 False Positives (FP): It is the case when actual class of data point is 0 & predicted

class of data point is 1.

22. Machine Learning Algorithms – Performance Metrics

False Negatives (FN)

True Positives (TP) False Positives (FP)

True Negatives (TN)

Actual

Predicted

1 0

1

0

Machine Learning with Python

 138

 False Negatives (FN): It is the case when actual class of data point is 1 &

predicted class of data point is 0.

We can use confusion_matrix function of sklearn.metrics to compute Confusion Matrix

of our classification model.

Classification Accuracy

It is most common performance metric for classification algorithms. It may be defined as

the number of correct predictions made as a ratio of all predictions made. We can easily

calculate it by confusion matrix with the help of following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

We can use accuracy_score function of sklearn.metrics to compute accuracy of our

classification model.

Classification Report

This report consists of the scores of Precisions, Recall, F1 and Support. They are explained

as follows:

Precision

Precision, used in document retrievals, may be defined as the number of correct

documents returned by our ML model. We can easily calculate it by confusion matrix with

the help of following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall or Sensitivity

Recall may be defined as the number of positives returned by our ML model. We can easily

calculate it by confusion matrix with the help of following formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity

Specificity, in contrast to recall, may be defined as the number of negatives returned by

our ML model. We can easily calculate it by confusion matrix with the help of following

formula:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Machine Learning with Python

 139

Support

Support may be defined as the number of samples of the true response that lies in each

class of target values.

F1 Score

This score will give us the harmonic mean of precision and recall. Mathematically, F1 score

is the weighted average of the precision and recall. The best value of F1 would be 1 and

worst would be 0. We can calculate F1 score with the help of following formula:

𝑭𝟏 = 𝟐 ∗ (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒓𝒆𝒄𝒂𝒍𝒍) / (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍)

 F1 score is having equal relative contribution of precision and recall.

We can use classification_report function of sklearn.metrics to get the classification

report of our classification model.

AUC (Area Under ROC curve)

AUC (Area Under Curve)-ROC (Receiver Operating Characteristic) is a performance metric,

based on varying threshold values, for classification problems. As name suggests, ROC is

a probability curve and AUC measure the separability. In simple words, AUC-ROC metric

will tell us about the capability of model in distinguishing the classes. Higher the AUC,

better the model.

Mathematically, it can be created by plotting TPR (True Positive Rate) i.e. Sensitivity or

recall vs FPR (False Positive Rate) i.e. 1-Specificity, at various threshold values. Following

is the graph showing ROC, AUC having TPR at y-axis and FPR at x-axis:

We can use roc_auc_score function of sklearn.metrics to compute AUC-ROC.

LOGLOSS (Logarithmic Loss)

It is also called Logistic regression loss or cross-entropy loss. It basically defined on

probability estimates and measures the performance of a classification model where the

input is a probability value between 0 and 1. It can be understood more clearly by

differentiating it with accuracy. As we know that accuracy is the count of predictions

(predicted value = actual value) in our model whereas Log Loss is the amount of

uncertainty of our prediction based on how much it varies from the actual label. With the

ROC TPR

FPR

AOC

Machine Learning with Python

 140

help of Log Loss value, we can have more accurate view of the performance of our model.

We can use log_loss function of sklearn.metrics to compute Log Loss.

Example

The following is a simple recipe in Python which will give us an insight about how we can

use the above explained performance metrics on binary classification model:

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

from sklearn.metrics import roc_auc_score

from sklearn.metrics import log_loss

X_actual = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]

Y_predic = [1, 0, 1, 1, 1, 0, 1, 1, 0, 0]

results = confusion_matrix(X_actual, Y_predic)

print ('Confusion Matrix :')

print(results)

print ('Accuracy Score is',accuracy_score(X_actual, Y_predic))

print ('Classification Report : ')

print (classification_report(X_actual, Y_predic))

print('AUC-ROC:',roc_auc_score(X_actual, Y_predic))

print('LOGLOSS Value is',log_loss(X_actual, Y_predic))

Output

Confusion Matrix :

[[3 3]

 [1 3]]

Accuracy Score is 0.6

Classification Report :

 precision recall f1-score support

 0 0.75 0.50 0.60 6

 1 0.50 0.75 0.60 4

 micro avg 0.60 0.60 0.60 10

 macro avg 0.62 0.62 0.60 10

weighted avg 0.65 0.60 0.60 10

AUC-ROC: 0.625

LOGLOSS Value is 13.815750437193334

Machine Learning with Python

 141

Performance Metrics for Regression Problems

We have discussed regression and its algorithms in previous chapters. Here, we are going

to discuss various performance metrics that can be used to evaluate predictions for

regression problems.

Mean Absolute Error (MAE)

It is the simplest error metric used in regression problems. It is basically the sum of

average of the absolute difference between the predicted and actual values. In simple

words, with MAE, we can get an idea of how wrong the predictions were. MAE does not

indicate the direction of the model i.e. no indication about underperformance or

overperformance of the model. The following is the formula to calculate MAE:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌 − �̂�|

Here, 𝑌=Actual Output Values

And �̂� = Predicted Output Values.

We can use mean_absolute_error function of sklearn.metrics to compute MAE.

Mean Square Error (MSE)

MSE is like the MAE, but the only difference is that the it squares the difference of actual

and predicted output values before summing them all instead of using the absolute value.

The difference can be noticed in the following equation:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌 − �̂�)

Here, 𝑌=Actual Output Values

And �̂� = Predicted Output Values.

We can use mean_squared_error function of sklearn.metrics to compute MSE.

R Squared (R2)

R Squared metric is generally used for explanatory purpose and provides an indication of

the goodness or fit of a set of predicted output values to the actual output values. The

following formula will help us understanding it:

𝑅2 = 1 −
1

𝑛
∑ (𝑌𝑖−𝑌�̂�)2𝑛

𝑖=1

1

𝑛
∑ (𝑌𝑖−𝑌�̅�)2𝑛

𝑖=1

In the above equation, numerator is MSE and the denominator is the variance in 𝑌 values.

We can use r2_score function of sklearn.metrics to compute R squared value.

Machine Learning with Python

 142

Example

The following is a simple recipe in Python which will give us an insight about how we can

use the above explained performance metrics on regression model:

from sklearn.metrics import r2_score

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

X_actual = [5, -1, 2, 10]

Y_predic = [3.5, -0.9, 2, 9.9]

print ('R Squared =',r2_score(X_actual, Y_predic))

print ('MAE =',mean_absolute_error(X_actual, Y_predic))

print ('MSE =',mean_squared_error(X_actual, Y_predic))

Output

R Squared = 0.9656060606060606

MAE = 0.42499999999999993

MSE = 0.5674999999999999

Machine Learning with Python

 143

Introduction

In order to execute and produce results successfully, a machine learning model must

automate some standard workflows. The process of automate these standard workflows

can be done with the help of Scikit-learn Pipelines. From a data scientist’s perspective,

pipeline is a generalized, but very important concept. It basically allows data flow from its

raw format to some useful information. The working of pipelines can be understood with

the help of following diagram:

The blocks of ML pipelines are as follows:

Data ingestion: As the name suggests, it is the process of importing the data for use in

ML project. The data can be extracted in real time or batches from single or multiple

systems. It is one of the most challenging steps because the quality of data can affect the

whole ML model.

Data Preparation: After importing the data, we need to prepare data to be used for our

ML model. Data preprocessing is one of the most important technique of data preparation.

ML Model Training: Next step is to train our ML model. We have various ML algorithms

like supervised, unsupervised, reinforcement to extract the features from data, and make

predictions.

Model Evaluation: Next, we need to evaluate the ML model. In case of AutoML pipeline,

ML model can be evaluated with the help of various statistical methods and business rules.

ML Model retraining: In case of AutoML pipeline, it is not necessary that the first model

is best one. The first model is considered as a baseline model and we can train it repeatably

to increase model’s accuracy.

23. Machine Learning with Pipelines – Automatic Workflows

Data

Ingestion

Data

Preparation

ML Model

Training

Model

Evaluation

Deployment

ML Model

Re-training

Machine Learning with Python

 144

Deployment: At last, we need to deploy the model. This step involves applying and

migrating the model to business operations for their use.

Challenges Accompanying ML Pipelines

In order to create ML pipelines, data scientists face many challenges. These challenges fall

into the following three categories:

Quality of Data

The success of any ML model depends heavily on the quality of data. If the data we are

providing to ML model is not accurate, reliable and robust, then we are going to end with

wrong or misleading output.

Data Reliability

Another challenge associated with ML pipelines is the reliability of data we are providing

to the ML model. As we know, there can be various sources from which data scientist can

acquire data but to get the best results, it must be assured that the data sources are

reliable and trusted.

Data Accessibility

To get the best results out of ML pipelines, the data itself must be accessible which requires

consolidation, cleansing and curation of data. As a result of data accessibility property,

metadata will be updated with new tags.

Modelling ML Pipeline and Data Preparation

Data leakage, happening from training dataset to testing dataset, is an important issue

for data scientist to deal with while preparing data for ML model. Generally, at the time of

data preparation, data scientist uses techniques like standardization or normalization on

entire dataset before learning. But these techniques cannot help us from the leakage of

data because the training dataset would have been influenced by the scale of the data in

the testing dataset.

By using ML pipelines, we can prevent this data leakage because pipelines ensure that

data preparation like standardization is constrained to each fold of our cross-validation

procedure.

Example

The following is an example in Python that demonstrate data preparation and model

evaluation workflow. For this purpose, we are using Pima Indian Diabetes dataset from

Sklearn. First, we will be creating pipeline that standardized the data. Then a Linear

Discriminative analysis model will be created and at last the pipeline will be evaluated

using 10-fold cross validation.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

Machine Learning with Python

 145

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

Next, we will create a pipeline with the help of the following code:

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('lda', LinearDiscriminantAnalysis()))

model = Pipeline(estimators)

At last, we are going to evaluate this pipeline and output its accuracy as follows:

kfold = KFold(n_splits=20, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output

0.7790148448043184

The above output is the summary of accuracy of the setup on the dataset.

Modelling ML Pipeline and Feature Extraction

Data leakage can also happen at feature extraction step of ML model. That is why feature

extraction procedures should also be restricted to stop data leakage in our training dataset.

As in the case of data preparation, by using ML pipelines, we can prevent this data leakage

also. FeatureUnion, a tool provided by ML pipelines can be used for this purpose.

Example

The following is an example in Python that demonstrates feature extraction and model

evaluation workflow. For this purpose, we are using Pima Indian Diabetes dataset from

Sklearn.

First, 3 features will be extracted with PCA (Principal Component Analysis). Then, 6

features will be extracted with Statistical Analysis. After feature extraction, result of

multiple feature selection and extraction procedures will be combined by using

Machine Learning with Python

 146

FeatureUnion tool. At last, a Logistic Regression model will be created, and the pipeline

will be evaluated using 10-fold cross validation.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.pipeline import Pipeline

from sklearn.pipeline import FeatureUnion

from sklearn.linear_model import LogisticRegression

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

Next, feature union will be created as follows:

features = []

features.append(('pca', PCA(n_components=3)))

features.append(('select_best', SelectKBest(k=6)))

feature_union = FeatureUnion(features)

Next, pipeline will be creating with the help of following script lines:

estimators = []

estimators.append(('feature_union', feature_union))

estimators.append(('logistic', LogisticRegression()))

model = Pipeline(estimators)

At last, we are going to evaluate this pipeline and output its accuracy as follows:

kfold = KFold(n_splits=20, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Machine Learning with Python

 147

Output

0.7789811066126855

The above output is the summary of accuracy of the setup on the dataset.

Machine Learning with Python

 148

Performance Improvement with Ensembles

Ensembles can give us boost in the machine learning result by combining several models.

Basically, ensemble models consist of several individually trained supervised learning

models and their results are merged in various ways to achieve better predictive

performance compared to a single model. Ensemble methods can be divided into following

two groups:

Sequential ensemble methods

As the name implies, in these kind of ensemble methods, the base learners are generated

sequentially. The motivation of such methods is to exploit the dependency among base

learners.

Parallel ensemble methods

As the name implies, in these kind of ensemble methods, the base learners are generated

in parallel. The motivation of such methods is to exploit the independence among base

learners.

Ensemble Learning Methods

The following are the most popular ensemble learning methods i.e. the methods for

combining the predictions from different models:

Bagging

The term bagging is also known as bootstrap aggregation. In bagging methods, ensemble

model tries to improve prediction accuracy and decrease model variance by combining

predictions of individual models trained over randomly generated training samples. The

final prediction of ensemble model will be given by calculating the average of all predictions

from the individual estimators. One of the best examples of bagging methods are random

forests.

Boosting

In boosting method, the main principle of building ensemble model is to build it

incrementally by training each base model estimator sequentially. As the name suggests,

it basically combine several week base learners, trained sequentially over multiple

iterations of training data, to build powerful ensemble. During the training of week base

learners, higher weights are assigned to those learners which were misclassified earlier.

The example of boosting method is AdaBoost.

24. Machine Learning – Improving Performance of ML Models

Machine Learning with Python

 149

Voting

In this ensemble learning model, multiple models of different types are built and some

simple statistics, like calculating mean or median etc., are used to combine the predictions.

This prediction will serve as the additional input for training to make the final prediction.

Bagging Ensemble Algorithms

The following are three bagging ensemble algorithms:

Bagged Decision Tree:

As we know that bagging ensemble methods work well with the algorithms that have high

variance and, in this concern, the best one is decision tree algorithm. In the following

Python recipe, we are going to build bagged decision tree ensemble model by using

BaggingClassifier function of sklearn with DecisionTreeClasifier (a classification &

regression trees algorithm) on Pima Indians diabetes dataset.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

Now, we need to load the Pima diabetes dataset as we did in the previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

seed = 7

kfold = KFold(n_splits=10, random_state=seed)

cart = DecisionTreeClassifier()

We need to provide the number of trees we are going to build. Here we are building 150

trees:

num_trees = 150

Machine Learning with Python

 150

Next, build the model with the help of following script:

model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees,

random_state=seed)

Calculate and print the result as follows:

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output:

0.7733766233766234

The output above shows that we got around 77% accuracy of our bagged decision tree

classifier model.

Random Forest

It is an extension of bagged decision trees. For individual classifiers, the samples of

training dataset are taken with replacement, but the trees are constructed in such a way

that reduces the correlation between them. Also, a random subset of features is considered

to choose each split point rather than greedily choosing the best split point in construction

of each tree.

In the following Python recipe, we are going to build bagged random forest ensemble

model by using RandomForestClassifier class of sklearn on Pima Indians diabetes

dataset.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import RandomForestClassifier

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

seed = 7

Machine Learning with Python

 151

kfold = KFold(n_splits=10, random_state=seed)

We need to provide the number of trees we are going to build. Here we are building 150

trees with split points chosen from 5 features:

num_trees = 150

max_features = 5

Next, build the model with the help of following script:

model = RandomForestClassifier(n_estimators=num_trees,

max_features=max_features)

Calculate and print the result as follows:

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output

 0.7629357484620642

The output above shows that we got around 76% accuracy of our bagged random forest

classifier model.

Extra Trees

It is another extension of bagged decision tree ensemble method. In this method, the

random trees are constructed from the samples of the training dataset.

In the following Python recipe, we are going to build extra tree ensemble model by using

ExtraTreesClassifier class of sklearn on Pima Indians diabetes dataset.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import ExtraTreesClassifier

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Machine Learning with Python

 152

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

seed = 7

kfold = KFold(n_splits=10, random_state=seed)

We need to provide the number of trees we are going to build. Here we are building 150

trees with split points chosen from 5 features:

num_trees = 150

max_features = 5

Next, build the model with the help of following script:

model = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features)

Calculate and print the result as follows:

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output

 0.7551435406698566

The output above shows that we got around 75.5% accuracy of our bagged extra trees

classifier model.

Boosting Ensemble Algorithms

The followings are the two most common boosting ensemble algorithms:

AdaBoost

It is one the most successful boosting ensemble algorithm. The main key of this algorithm

is in the way they give weights to the instances in dataset. Due to this the algorithm needs

to pay less attention to the instances while constructing subsequent models.

In the following Python recipe, we are going to build Ada Boost ensemble model for

classification by using AdaBoostClassifier class of sklearn on Pima Indians diabetes

dataset.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import AdaBoostClassifier

Machine Learning with Python

 153

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

seed = 5

kfold = KFold(n_splits=10, random_state=seed)

We need to provide the number of trees we are going to build. Here we are building 150

trees with split points chosen from 5 features:

num_trees = 50

Next, build the model with the help of following script:

model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)

Calculate and print the result as follows:

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output

 0.7539473684210527

The output above shows that we got around 75% accuracy of our AdaBoost classifier

ensemble model.

Stochastic Gradient Boosting

It is also called Gradient Boosting Machines. In the following Python recipe, we are going

to build Stochastic Gradient Boostingensemble model for classification by using

GradientBoostingClassifier class of sklearn on Pima Indians diabetes dataset.

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

Machine Learning with Python

 154

from sklearn.ensemble import GradientBoostingClassifier

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

seed = 5

kfold = KFold(n_splits=10, random_state=seed)

We need to provide the number of trees we are going to build. Here we are building 150

trees with split points chosen from 5 features:

num_trees = 50

Next, build the model with the help of following script:

model = GradientBoostingClassifier(n_estimators=num_trees, random_state=seed)

Calculate and print the result as follows:

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Output

 0.7746582365003418

The output above shows that we got around 77.5% accuracy of our Gradient Boosting

classifier ensemble model.

Voting Ensemble Algorithms

As discussed, voting first creates two or more standalone models from training dataset

and then a voting classifier will wrap the model along with taking the average of the

predictions of sub-model whenever needed new data.

In the following Python recipe, we are going to build Voting ensemble model for

classification by using VotingClassifier class of sklearn on Pima Indians diabetes

dataset. We are combining the predictions of logistic regression, Decision Tree classifier

and SVM together for a classification problem as follows:

Machine Learning with Python

 155

First, import the required packages as follows:

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import VotingClassifier

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, give the input for 10-fold cross validation as follows:

kfold = KFold(n_splits=10, random_state=7)

Next, we need to create sub-models as follows:

estimators = []

model1 = LogisticRegression()

estimators.append(('logistic', model1))

model2 = DecisionTreeClassifier()

estimators.append(('cart', model2))

model3 = SVC()

estimators.append(('svm', model3))

Now, create the voting ensemble model by combining the predictions of above created sub

models.

ensemble = VotingClassifier(estimators)

results = cross_val_score(ensemble, X, Y, cv=kfold)

print(results.mean())

Machine Learning with Python

 156

Output

0.7382262474367738

The output above shows that we got around 74% accuracy of our voting classifier

ensemble model.

Machine Learning with Python

 157

Performance Improvement with Algorithm Tuning

As we know that ML models are parameterized in such a way that their behavior can be

adjusted for a specific problem. Algorithm tuning means finding the best combination of

these parameters so that the performance of ML model can be improved. This process

sometimes called hyperparameter optimization and the parameters of algorithm itself are

called hyperparameters and coefficients found by ML algorithm are called parameters.

Performance Improvement with Algorithm Tuning

Here, we are going to discuss about some methods for algorithm parameter tuning

provided by Python Scikit-learn.

Grid Search Parameter Tuning

It is a parameter tuning approach. The key point of working of this method is that it builds

and evaluate the model methodically for every possible combination of algorithm

parameter specified in a grid. Hence, we can say that this algorithm is having search

nature.

Example

In the following Python recipe, we are going to perform grid search by using GridSearchCV

class of sklearn for evaluating various alpha values for the Ridge Regression algorithm

on Pima Indians diabetes dataset.

First, import the required packages as follows:

import numpy

from pandas import read_csv

from sklearn.linear_model import Ridge

from sklearn.model_selection import GridSearchCV

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

25. Machine Learning – Improving Performance of ML Model
(Contd…)

Machine Learning with Python

 158

Next, evaluate the various alpha values as follows;

alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0])

param_grid = dict(alpha=alphas)

Now, we need to apply grid search on our model:

model = Ridge()

grid = GridSearchCV(estimator=model, param_grid=param_grid)

grid.fit(X, Y)

Print the result with following script line:

print(grid.best_score_)

print(grid.best_estimator_.alpha)

Output:

0.2796175593129722

1.0

The above output gives us the optimal score and the set of parameters in the grid that

achieved that score. The alpha value in this case is 1.0.

Random Search Parameter Tuning

It is a parameter tuning approach. The key point of working of this method is that it

samples the algorithm parameters from a random distribution for a fixed number of

iterations.

Example

In the following Python recipe, we are going to perform random search by using

RandomizedSearchCV class of sklearn for evaluating different alpha values between 0

and 1 for the Ridge Regression algorithm on Pima Indians diabetes dataset.

First, import the required packages as follows:

import numpy

from pandas import read_csv

from scipy.stats import uniform

from sklearn.linear_model import Ridge

from sklearn.model_selection import RandomizedSearchCV

Now, we need to load the Pima diabetes dataset as did in previous examples:

path = r"C:\pima-indians-diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',

'class']

Machine Learning with Python

 159

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

Next, evaluate the various alpha values on Ridge regression algorithm as follows;

param_grid = {'alpha': uniform()}

model = Ridge()

random_search = RandomizedSearchCV(estimator=model,

param_distributions=param_grid, n_iter=50,

random_state=7)

random_search.fit(X, Y)

Print the result with following script line:

print(random_search.best_score_)

print(random_search.best_estimator_.alpha)

Output

0.27961712703051084

0.9779895119966027

The above output gives us the optimal score just similar to the grid search.

