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About the Tutorial 

Machine Learning (ML) is basically that field of computer science with the help of which 

computer systems can provide sense to data in much the same way as human beings do. 

In simple words, ML is a type of artificial intelligence that extract patterns out of raw data 

by using an algorithm or method. The key focus of ML is to allow computer systems to 

learn from experience without being explicitly programmed or human intervention.  

Audience 

This tutorial will be useful for graduates, postgraduates, and research students who either 

have an interest in this subject or have this subject as a part of their curriculum. The 

reader can be a beginner or an advanced learner. 

This tutorial has been prepared for the students as well as professionals to ramp up 

quickly. This tutorial is a stepping stone to your Machine Learning journey. 

Prerequisites 

The reader must have basic knowledge of artificial intelligence. He/she should also be 

aware of Python, NumPy, Scikit-learn, Scipy, Matplotlib.  

If you are new to any of these concepts, we recommend you to take up tutorials concerning 

these topics, before you dig further into this tutorial. 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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We are living in the ‘age of data’ that is enriched with better computational power and 

more storage resources,. This data or information is increasing day by day, but the real 

challenge is to make sense of all the data. Businesses & organizations are trying to deal 

with it by building intelligent systems using the concepts and methodologies from Data 

science, Data Mining and Machine learning. Among them, machine learning is the most 

exciting field of computer science. It would not be wrong if we call machine learning the 

application and science of algorithms that provides sense to the data.  

What is Machine Learning? 

Machine Learning (ML) is that field of computer science with the help of which computer 

systems can provide sense to data in much the same way as human beings do. 

In simple words, ML is a type of artificial intelligence that extract patterns out of raw data 

by using an algorithm or method. The main focus of ML is to allow computer systems learn 

from experience without being explicitly programmed or human intervention.  

Need for Machine Learning 

Human beings, at this moment, are the most intelligent and advanced species on earth 

because they can think, evaluate and solve complex problems. On the other side, AI is still 

in its initial stage and haven’t surpassed human intelligence in many aspects. Then the 

question is that what is the need to make machine learn? The most suitable reason for 

doing this is, “to make decisions, based on data, with efficiency and scale”.  

Lately, organizations are investing heavily in newer technologies like Artificial Intelligence, 

Machine Learning and Deep Learning to get the key information from data to perform 

several real-world tasks and solve problems. We can call it data-driven decisions taken by 

machines, particularly to automate the process. These data-driven decisions can be used, 

instead of using programing logic, in the problems that cannot be programmed inherently. 

The fact is that we can’t do without human intelligence, but other aspect is that we all 

need to solve real-world problems with efficiency at a huge scale. That is why the need for 

machine learning arises. 

Why & When to Make Machines Learn? 

We have already discussed the need for machine learning, but another question arises 

that in what scenarios we must make the machine learn? There can be several 

circumstances where we need machines to take data-driven decisions with efficiency and 

at a huge scale. The followings are some of such circumstances where making machines 

learn would be more effective: 

Lack of human expertise 

The very first scenario in which we want a machine to learn and take data-driven decisions, 

can be the domain where there is a lack of human expertise. The examples can be 

navigations in unknown territories or spatial planets. 

1. Machine Learning with Python – Basics 
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Dynamic scenarios 

There are some scenarios which are dynamic in nature i.e. they keep changing over time. 

In case of these scenarios and behaviors, we want a machine to learn and take data-driven 

decisions. Some of the examples can be network connectivity and availability of 

infrastructure in an organization. 

Difficulty in translating expertise into computational tasks 

 There can be various domains in which humans have their expertise,; however, they are 

unable to translate this expertise into computational tasks. In such circumstances we want 

machine learning. The examples can be the domains of speech recognition, cognitive tasks 

etc. 

Machine Learning Model 

Before discussing the machine learning model, we must need to understand the following 

formal definition of ML given by professor Mitchell: 

“A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E.” 

The above definition is basically focusing on three parameters, also the main components 

of any learning algorithm, namely Task(T), Performance(P) and experience (E). In this 

context, we can simplify this definition as: 

ML is a field of AI consisting of learning algorithms that: 

 Improve their performance (P) 

 At executing some task (T) 

 Over time with experience (E) 
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Based on the above, the following diagram represents a Machine Learning Model: 

 

 

 

 

 

 

 

 

 

 

 

 

Let us discuss them more in detail now: 

Task(T) 

From the perspective of problem, we may define the task T as the real-world problem to 

be solved. The problem can be anything like finding best house price in a specific location 

or to find best marketing strategy etc. On the other hand, if we talk about machine 

learning, the definition of task is different because it is difficult to solve ML based tasks by 

conventional programming approach. 

A task T is said to be a ML based task when it is based on the process and the system 

must follow for operating on data points. The examples of ML based tasks are 

Classification, Regression, Structured annotation, Clustering, Transcription etc. 

Experience (E) 

As name suggests, it is the knowledge gained from data points provided to the algorithm 

or model. Once provided with the dataset, the model will run iteratively and will learn 

some inherent pattern. The learning thus acquired is called experience(E). Making an 

analogy with human learning, we can think of this situation as in which a human being is 

learning or gaining some experience from various attributes like situation, relationships 

etc. Supervised, unsupervised and reinforcement learning are some ways to learn or gain 

experience. The experience gained by out ML model or algorithm will be used to solve the 

task T. 
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Performance (P) 

An ML algorithm is supposed to perform task and gain experience with the passage of 

time. The measure which tells whether ML algorithm is performing as per expectation or 

not is its performance (P). P is basically a quantitative metric that tells how a model is 

performing the task, T, using its experience, E. There are many metrics that help to 

understand the ML performance, such as accuracy score, F1 score, confusion matrix, 

precision, recall, sensitivity etc.  

Challenges in Machines Learning 

While Machine Learning is rapidly evolving, making significant strides with cybersecurity 

and autonomous cars, this segment of AI as whole still has a long way to go.  The reason 

behind is that ML has not been able to overcome number of challenges. The challenges 

that ML is facing currently are: 

Quality of data: Having good-quality data for ML algorithms is one of the biggest 

challenges. Use of low-quality data leads to the problems related to data preprocessing 

and feature extraction. 

Time-Consuming task: Another challenge faced by ML models is the consumption of 

time especially for data acquisition, feature extraction and retrieval. 

Lack of specialist persons: As ML technology is still in its infancy stage, availability of 

expert resources is a tough job. 

No clear objective for formulating business problems: Having no clear objective and 

well-defined goal for business problems is another key challenge for ML because this 

technology is not that mature yet. 

Issue of overfitting & underfitting: If the model is overfitting or underfitting, it cannot 

be represented well for the problem. 

Curse of dimensionality: Another challenge ML model faces is too many features of data 

points. This can be a real hindrance. 

 Difficulty in deployment: Complexity of the ML model makes it quite difficult to be 

deployed in real life. 

Applications of Machines Learning 

Machine Learning is the most rapidly growing technology and according to researchers we 

are in the golden year of AI and ML. It is used to solve many real-world complex problems 

which cannot be solved with traditional approach. Following are some real-world 

applications of ML: 

 Emotion analysis 

 Sentiment analysis 

 Error detection and prevention 

 Weather forecasting and prediction 

 Stock market analysis and forecasting 

 Speech synthesis 

 Speech recognition 



Machine Learning with Python 

        

   5 

 

 Customer segmentation 

 Object recognition 

 Fraud detection  

 Fraud prevention 

 Recommendation of products to customer in online shopping. 
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An Introduction to Python 

Python is a popular object-oriented programing language having the capabilities of high-

level programming language. Its easy to learn syntax and portability capability makes it 

popular these days. The followings facts gives us the introduction to Python: 

 Python was developed by Guido van Rossum at Stichting Mathematisch Centrum in 

the Netherlands. 

 

 It was written as the successor of programming language named ‘ABC’. 

 

 It’s first version was released in 1991. 

 

 The name Python was picked by Guido van Rossum from a TV show named Monty 

Python’s Flying Circus. 

 

 It is an open source programming language which means that we can freely 

download it and use it to develop programs. It can be downloaded from 

www.python.org. 

 

 Python programming language is having the features of Java and C both. It is 

having the elegant ‘C’ code and on the other hand, it is having classes and objects 

like Java for object-oriented programming. 

 

 It is an interpreted language, which means the source code of Python program 

would be first converted into bytecode and then executed by Python virtual 

machine.   

Strengths and Weaknesses of Python 

Every programming language has some strengths as well as weaknesses, so does Python 

too.  

Strengths 

According to studies and surveys, Python is the fifth most important language as well as 

the most popular language for machine learning and data science. It is because of the 

following strengths that Python has: 

Easy to learn and understand: The syntax of Python is simpler; hence it is relatively 

easy, even for beginners also, to learn and understand the language.  

Multi-purpose language: Python is a multi-purpose programming language because it 

supports structured programming, object-oriented programming as well as functional 

programming. 

2. Machine Learning with Python – Python Ecosystem 

http://www.python.org/
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Huge number of modules: Python has huge number of modules for covering every 

aspect of programming. These modules are easily available for use hence making Python 

an extensible language. 

Support of open source community: As being open source programming language, 

Python is supported by a very large developer community. Due to this, the bugs are easily 

fixed by the Python community. This characteristic makes Python very robust and 

adaptive.  

Scalability: Python is a scalable programming language because it provides an improved 

structure for supporting large programs than shell-scripts. 

Weakness 

Although Python is a popular and powerful programming language, it has its own weakness 

of slow execution speed. 

The execution speed of Python is slow as compared to compiled languages because Python 

is an interpreted language. This can be the major area of improvement for Python 

community. 

Installing Python  

For working in Python, we must first have to install it. You can perform the installation of 

Python in any of the following two ways: 

 Installing Python individually 

 Using Pre-packaged Python distribution: Anaconda 

Let us discuss these each in detail. 

Installing Python Individually 

If you want to install Python on your computer, then then you need to download only the 

binary code applicable for your platform. Python distribution is available for Windows, 

Linux and Mac platforms. 

The following is a quick overview of installing Python on the above-mentioned platforms: 

On Unix and Linux platform 

With the help of following steps, we can install Python on Unix and Linux platform: 

 First, go to https://www.python.org/downloads/. 

 Next, click on the link to download zipped source code available for Unix/Linux. 

 Now, Download and extract files. 

 Next, we can edit the Modules/Setup file if we want to customize some options. 

1. Next, write the command run ./configure script  

2. make 

3. make install 

 

https://www.python.org/downloads/
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On Windows platform 

With the help of following steps, we can install Python on Windows platform: 

 First, go to https://www.python.org/downloads/. 

 Next, click on the link for Windows installer python-XYZ.msi file. Here XYZ is the 

version we wish to install. 

 Now, we must run the file that is downloaded. It will take us to the Python install 

wizard, which is easy to use. Now, accept the default settings and wait until the 

install is finished. 

On Macintosh platform 

For Mac OS X, Homebrew, a great and easy to use package installer is recommended to 

install Python 3. In case if you don't have Homebrew, you can install it with the help of 

following command: 

$ ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" 

It can be updated with the command below: 

$ brew update 

Now, to install Python3 on your system, we need to run the following command: 

$ brew install python3 

 

Using Pre-packaged Python Distribution: Anaconda 

Anaconda is a packaged compilation of Python which have all the libraries widely used in 

Data science. We can follow the following steps to setup Python environment using 

Anaconda: 

Step1: First, we need to download the required installation package from Anaconda 

distribution. The link for the same is https://www.anaconda.com/distribution/. You can 

choose from Windows, Mac and Linux OS as per your requirement. 

Step2: Next, select the Python version you want to install on your machine. The latest 

Python version is 3.7. There you will get the options for 64-bit and 32-bit Graphical installer 

both. 

Step3:  After selecting the OS and Python version, it will download the Anaconda installer 

on your computer. Now, double click the file and the installer will install Anaconda package. 

Step4: For checking whether it is installed or not, open a command prompt and type 

Python as follows: 

  

 

 

https://www.python.org/downloads/
https://www.anaconda.com/distribution/
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You can also check this in detailed video lecture at 

https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_

anaconda.asp.    

Why Python for Data Science?  

Python is the fifth most important language as well as most popular language for Machine 

learning and data science. The following are the features of Python that makes it the 

preferred choice of language for data science: 

Extensive set of packages  

Python has an extensive and powerful set of packages which are ready to be used in 

various domains. It also has packages like numpy, scipy, pandas, scikit-learn etc. 

which are required for machine learning and data science. 

Easy prototyping  

Another important feature of Python that makes it the choice of language for data science 

is the easy and fast prototyping. This feature is useful for developing new algorithm.  

Collaboration feature  

The field of data science basically needs good collaboration and Python provides many 

useful tools that make this extremely.  

One language for many domains  

A typical data science project includes various domains like data extraction, data 

manipulation, data analysis, feature extraction, modelling, evaluation, deployment and 

updating the solution. As Python is a multi-purpose language, it allows the data scientist 

to address all these domains from a common platform. 

https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_anaconda.asp
https://www.tutorialspoint.com/python_essentials_online_training/getting_started_with_anaconda.asp
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Components of Python ML Ecosystem   

In this section, let us discuss some core Data Science libraries that form the components 

of Python Machine learning ecosystem. These useful components make Python an 

important language for Data Science. Though there are many such components, let us 

discuss some of the importance components of Python ecosystem here: 

Jupyter Notebook 

Jupyter notebooks basically provides an interactive computational environment for 

developing Python based Data Science applications. They are formerly known as ipython 

notebooks. The following are some of the features of Jupyter notebooks that makes it one 

of the best components of Python ML ecosystem: 

 Jupyter notebooks can illustrate the analysis process step by step by arranging the 

stuff like code, images, text, output etc. in a step by step manner. 

 

 It helps a data scientist to document the thought process while developing the 

analysis process. 

 

 One can also capture the result as the part of the notebook. 

 

 With the help of jupyter notebooks, we can share our work with a peer also.   

Installation and Execution 

 If you are using Anaconda distribution, then you need not  install jupyter notebook 

separately as it is already installed with it. You just need to go to Anaconda Prompt and 

type the following command: 

C:\>jupyter notebook 



Machine Learning with Python 

        

   11 

 

After pressing enter, it will start a notebook server at localhost:8888 of your computer. It is 

shown in the following screen shot: 

 

Now, after clicking the New tab, you will get a list of options. Select Python 3 and it will 

take you to the new notebook for start working in it. You will get a glimpse of it in the 

following screenshots: 
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On the other hand, if you are using standard Python distribution then jupyter notebook 

can be installed using popular python package installer, pip. 

pip install jupyter 

Types of Cells in Jupyter Notebook 

The following are the three types of cells in a jupyter notebook: 

Code cells: As the name suggests, we can use these cells to write code. After writing the 

code/content, it will send it to the kernel that is associated with the notebook.  

Markdown cells: We can use these cells for notating the computation process. They can 

contain the stuff like text, images, Latex equations, HTML tags etc. 

Raw cells: The text written in them is displayed as it is. These cells are basically used to 

add the text that we do not wish to be converted by the automatic conversion mechanism 

of jupyter notebook.    

For more detailed study of jupyter notebook, you can go to the link 

https://www.tutorialspoint.com/jupyter/index.htm.   

NumPy 

It is another useful component that makes Python as one of the favorite languages for 

Data Science. It basically stands for Numerical Python and consists of multidimensional 

array objects. By using NumPy, we can perform the following important operations: 

 Mathematical and logical operations on arrays. 

 Fourier transformation 

https://www.tutorialspoint.com/jupyter/index.htm
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 Operations associated with linear algebra.    

We can also see NumPy as the replacement of MatLab because NumPy is mostly used along 

with Scipy (Scientific Python) and Mat-plotlib (plotting library).   

Installation and Execution 

If you are using Anaconda distribution, then no need to install NumPy separately as it is 

already installed with it. You just need to import the package into your Python script with 

the help of following: 

import numpy as np 

On the other hand, if you are using standard Python distribution then NumPy can be installed 

using popular python package installer, pip. 

pip install NumPy 

After installing NumPy, you can import it into your Python script as you did above. 

For more detailed study of NumPy, you can go to the link 

https://www.tutorialspoint.com/numpy/index.htm.  

Pandas 

It is another useful Python library that makes Python one of the favorite languages for 

Data Science. Pandas is basically used for data manipulation, wrangling and analysis. It 

was developed by Wes McKinney in 2008. With the help of Pandas, in data processing we 

can accomplish the following five steps: 

 Load 

 Prepare 

 Manipulate 

 Model 

 Analyze 

Data representation in Pandas 

The entire representation of data in Pandas is done with the help of following three data 

structures: 

Series: It is basically a one-dimensional ndarray with an axis label which means it is like a 

simple array with homogeneous data. For example, the following series is a collection of 

integers 1,5,10,15,24,25… 

1 5 10 15 24 25 28 36 40 89 

 

Data frame: It is the most useful data structure and used for almost all kind of data 

representation and manipulation in pandas. It is basically a two-dimensional data structure 

which can contain heterogeneous data. Generally, tabular data is represented by using 

https://www.tutorialspoint.com/numpy/index.htm
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data frames. For example, the following table shows the data of students having their 

names and roll numbers, age and gender: 

Name Roll number Age Gender 

Aarav 1 15 Male 

Harshit 2 14 Male 

Kanika 3 16 Female 

Mayank 4 15 Male 

Panel: It is a 3-dimensional data structure containing heterogeneous data. It is very 

difficult to represent the panel in graphical representation, but it can be illustrated as a 

container of DataFrame. 

The following table gives us the dimension and description about above mentioned data 

structures used in Pandas: 

Data Structure Dimension Description 

Series 1-D Size immutable, 1-D 

homogeneous data 

DataFrames 2-D Size Mutable, 

Heterogeneous data in 

tabular form 

Panel 3-D Size-mutable array, 

container of 

DataFrame. 

We can understand these data structures as the higher dimensional data structure is the 

container of lower dimensional data structure. 

Installation and Execution 

If you are using Anaconda distribution, then no need to install Pandas separately as it is 

already installed with it. You just need to import the package into your Python script with 

the help of following: 

import pandas as pd 

On the other hand, if you are using standard Python distribution then Pandas can be installed 

using popular python package installer, pip. 

pip install Pandas 

After installing Pandas, you can import it into your Python script as did above. 
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Example 

The following is an example of creating a series from ndarray by using Pandas: 

In [1]: import pandas as pd 

 

In [2]: import numpy as np 

 

In [3]: data = np.array(['g','a','u','r','a','v']) 

 

In [4]: s = pd.Series(data) 

 

In [5]: print (s) 

0    g 

1    a 

2    u 

3    r 

4    a 

5    v 

dtype: object 

 

For more detailed study of Pandas you can go to the link 

https://www.tutorialspoint.com/python_pandas/index.htm.  

Scikit-learn 

Another useful and most important python library for Data Science and machine learning 

in Python is Scikit-learn. The following are some features of Scikit-learn that makes it so useful: 

 It is built on NumPy, SciPy, and Matplotlib. 

 

 It is an open source and can be reused under BSD license. 

 

 It is accessible to everybody and can be reused in various contexts. 

 

 Wide range of machine learning algorithms covering major areas of ML like 

classification, clustering, regression, dimensionality reduction, model selection etc. 

can be implemented with the help of it. 

Installation and Execution 

If you are using Anaconda distribution, then no need to install Scikit-learn separately as it is 

already installed with it. You just need to use the package into your Python script. For 

example, with following line of script we are importing dataset of breast cancer patients 

from Scikit-learn: 

https://www.tutorialspoint.com/python_pandas/index.htm
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from sklearn.datasets import load_breast_cancer 

On the other hand, if you are using standard Python distribution and having NumPy and 

SciPy then Scikit-learn can be installed using popular python package installer, pip. 

pip install -U scikit-learn 

After installing Scikit-learn, you can use it into your Python script as you have done above. 
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There are various ML algorithms, techniques and methods that can be used to build models 

for solving real-life problems by using data. In this chapter, we are going to discuss such 

different kinds of methods. 

Different Types of Methods 

The following are various ML methods based on some broad categories: 

Based on human supervision 

In the learning process, some of the methods that are based on human supervision are as 

follows: 

Supervised Learning 

Supervised learning algorithms or methods are the most commonly used ML algorithms. 

This method or learning algorithm take the data sample i.e. the training data and its 

associated output i.e. labels or responses with each data samples during the training 

process.  

The main objective of supervised learning algorithms is to learn an association between 

input data samples and corresponding outputs after performing multiple training data 

instances.   

For example, we have  

x: Input variables and  

Y: Output variable  

Now, apply an algorithm to learn the mapping function from the input to output as follows: 

Y=f(x) 

Now, the main objective would be to approximate the mapping function so well that even 

when we have new input data (x), we can easily predict the output variable (Y) for that 

new input data.  

It is called supervised because the whole process of learning can be thought as it is being 

supervised by a teacher or supervisor. Examples of supervised machine learning 

algorithms includes Decision tree, Random Forest, KNN, Logistic Regression etc. 

Based on the ML tasks, supervised learning algorithms can be divided into following two 

broad classes: 

 Classification 

 Regression 

 

 

3. Python Machine Learning – Methods for Machine Learning  
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Classification 

The key objective of classification-based tasks is to predict categorial output labels or 

responses for the given input data. The output will be based on what the model has learned 

in training phase. As we know that the categorial output responses means unordered and 

discrete values, hence each output response will belong to a specific class or category. We 

will discuss Classification and associated algorithms in detail in the upcoming chapters 

also. 

Regression 

The key objective of regression-based tasks is to predict output labels or responses which 

are continues numeric values, for the given input data. The output will be based on what 

the model has learned in its training phase. Basically, regression models use the input 

data features (independent variables) and their corresponding continuous numeric output 

values (dependent or outcome variables) to learn specific association between inputs and 

corresponding outputs.  We will discuss regression and associated algorithms in detail in 

further chapters also. 

Unsupervised Learning 

As the name suggests, it is opposite to supervised ML methods or algorithms which means 

in unsupervised machine learning algorithms we do not have any supervisor to provide 

any sort of guidance. Unsupervised learning algorithms are handy in the scenario in which 

we do not have the liberty, like in supervised learning algorithms, of having pre-labeled 

training data and we want to extract useful pattern from input data.  

For example, it can be understood as follows: 

Suppose we have:  

x: Input variables, then there would be no corresponding output variable and the 

algorithms need to discover the interesting pattern in data for learning.  

Examples of unsupervised machine learning algorithms includes K-means clustering, K-

nearest neighbors etc. 

Based on the ML tasks, unsupervised learning algorithms can be divided into following 

broad classes: 

 Clustering 

 Association 

 Dimensionality Reduction 

Clustering 

Clustering methods are one of the most useful unsupervised ML methods. These 

algorithms used to find similarity as well as relationship patterns among data samples and 

then cluster those samples into groups having similarity based on features. The real-world 

example of clustering is to group the customers by their purchasing behavior.  

Association 

Another useful unsupervised ML method is Association which is used to analyze large 

dataset to find patterns which further represents the interesting relationships between 

various items. It is also termed as Association Rule Mining or Market basket analysis 

which is mainly used to analyze customer shopping patterns. 
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Dimensionality Reduction 

This unsupervised ML method is used to reduce the number of feature variables for each 

data sample by selecting set of principal or representative features. A question arises here 

is that why we need to reduce the dimensionality? The reason behind is the problem of 

feature space complexity which arises when we start analyzing and extracting millions of 

features from data samples. This problem generally refers to “curse of dimensionality”. 

PCA (Principal Component Analysis), K-nearest neighbors and discriminant analysis are 

some of the popular algorithms for this purpose. 

Anomaly Detection 

This unsupervised ML method is used to find out the occurrences of rare events or 

observations that generally do not occur. By using the learned knowledge, anomaly 

detection methods would be able to differentiate between anomalous or a normal data 

point. Some of the unsupervised algorithms like clustering, KNN can detect anomalies 

based on the data and its features. 

Semi-supervised Learning 

Such kind of algorithms or methods are neither fully supervised nor fully unsupervised. 

They basically fall between the two i.e. supervised and unsupervised learning methods. 

These kinds of algorithms generally use small supervised learning component i.e. small 

amount of pre-labeled annotated data and large unsupervised learning component i.e. lots 

of unlabeled data for training. We can follow any of the following approaches for 

implementing semi-supervised learning methods: 

 The first and simple approach is to build the supervised model based on small 

amount of labeled and annotated data and then build the unsupervised model by 

applying the same to the large amounts of unlabeled data to get more labeled 

samples. Now, train the model on them and repeat the process. 

 

 The second approach needs some extra efforts. In this approach, we can first use 

the unsupervised methods to cluster similar data samples, annotate these groups 

and then use a combination of this information to train the model.  

Reinforcement Learning 

These methods are different from previously studied methods and very rarely used also. 

In this kind of learning algorithms, there would be an agent that we want to train over a 

period of time so that it can interact with a specific environment. The agent will follow a 

set of strategies for interacting with the environment and then after observing the 

environment it will take actions regards the current state of the environment.  The 

following are the main steps of reinforcement learning methods: 

 Step1: First, we need to prepare an agent with some initial set of strategies. 

 

 Step2: Then observe the environment and its current state. 

 

 Step3: Next, select the optimal policy regards the current state of the environment 

and perform important action. 

 

 Step4: Now, the agent can get corresponding reward or penalty as per accordance 

with the action taken by it in previous step. 
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 Step5: Now, we can update the strategies if it is required so. 

 

 Step6: At last, repeat steps 2-5 until the agent got to learn and adopt the optimal 

policies.  

Tasks Suited for Machine Learning 

The following diagram shows what type of task is appropriate for various ML problems:  

 

Based on learning ability 

In the learning process, the following are some methods that are based on learning ability: 

Batch Learning 

In many cases, we have end-to-end Machine Learning systems in which we need to train 

the model in one go by using whole available training data. Such kind of learning method 

or algorithm is called Batch or Offline learning. It is called Batch or Offline learning 

because it is a one-time procedure and the model will be trained with data in one single 

batch. The following are the main steps of Batch learning methods: 

  Step1: First, we need to collect all the training data for start training the model. 

Is data 

producing a 

Quantity? 

No Yes 

Is data 

Correlated or 

Redundant? 

Dimensionality 

Reduction 

Is data 

producing a 

category? 

Yes 

No 

Is data 

labeled? 

Yes No 

Classification Clustering 

Yes No 

Regression Bad Luck 
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Step2: Now, start the training of model by providing whole training data in one go. 

Step3: Next, stop learning/training process once you got satisfactory 

results/performance. 

Step4: Finally, deploy this trained model into production. Here, it will predict the output 

for new data sample. 

Online Learning 

It is completely opposite to the batch or offline learning methods. In these learning 

methods, the training data is supplied in multiple incremental batches, called mini-

batches, to the algorithm. Followings are the main steps of Online learning methods: 

Step1: First, we need to collect all the training data for starting training of the model. 

Step2: Now, start the training of model by providing a mini-batch of training data to the 

algorithm. 

Step3: Next, we need to provide the mini-batches of training data in multiple increments 

to the algorithm.   

Step4: As it will not stop like batch learning hence after providing whole training data in 

mini-batches, provide new data samples also to it. 

 Step5: Finally, it will keep learning over a period of time based on the new data samples. 

Based on Generalization Approach 

In the learning process, followings are some methods that are based on generalization 

approaches: 

Instance based Learning 

Instance based learning method is one of the useful methods that build the ML models by 

doing generalization based on the input data.  It is opposite to the previously studied 

learning methods in the way that this kind of learning involves ML systems as well as 

methods that uses the raw data points themselves to draw the outcomes for newer data 

samples without building an explicit model on training data.  

In simple words, instance-based learning basically starts working by looking at the input 

data points and then using a similarity metric, it will generalize and predict the new data 

points. 

Model based Learning 

In Model based learning methods, an iterative process takes place on the ML models that 

are built based on various model parameters, called hyperparameters and in which input 

data is used to extract the features. In this learning, hyperparameters are optimized based 

on various model validation techniques. That is why we can say that Model based learning 

methods uses more traditional ML approach towards generalization.   
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Suppose if you want to start a ML project then what is the first and most important thing 

you would require? It is the data that we need to load for starting any of the ML project. 

With respect to data, the most common format of data for ML projects is CSV (comma-

separated values).  

Basically, CSV is a simple file format which is used to store tabular data (number and text) 

such as a spreadsheet in plain text. In Python, we can load CSV data into with different 

ways but before loading CSV data we must have to take care about some considerations.   

Consideration While Loading CSV data 

CSV data format is the most common format for ML data, but we need to take care about 

following major considerations while loading the same into our ML projects: 

File Header 

In CSV data files, the header contains the information for each field. We must use the 

same delimiter for the header file and for data file because it is the header file that specifies 

how should data fields be interpreted.  

The following are the two cases related to CSV file header which must be considered: 

 Case-I: When Data file is having a file header: It will automatically assign the 

names to each column of data if data file is having a file header. 

 

 Case-II: When Data file is not having a file header: We need to assign the 

names to each column of data manually if data file is not having a file header. 

In both the cases, we must need to specify explicitly weather our CSV file contains header 

or not. 

Comments 

Comments in any data file are having their significance. In CSV data file, comments are 

indicated by a hash (#) at the start of the line. We need to consider comments while 

loading CSV data into ML projects because if we are having comments in the file then we 

may need to indicate, depends upon the method we choose for loading, whether to expect 

those comments or not.  

Delimiter 

In CSV data files, comma (,) character is the standard delimiter. The role of delimiter is to 

separate the values in the fields. It is important to consider the role of delimiter while 

uploading the CSV file into ML projects because we can also use a different delimiter such 

as a tab or white space. But in the case of using a different delimiter than standard one, 

we must have to specify it explicitly. 

4. Machine Learning with Python – Data Loading for ML 
Projects 
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Quotes 

 In CSV data files, double quotation (“ ”) mark is the default quote character. It is 

important to consider the role of quotes while uploading the CSV file into ML projects 

because we can also use other quote character than double quotation mark. But in case 

of using a different quote character than standard one, we must have to specify it 

explicitly.      

Methods to Load CSV Data File 

While working with ML projects, the most crucial task is to load the data properly into it. 

The most common data format for ML projects is CSV and it comes in various flavors and 

varying difficulties to parse. In this section, we are going to discuss about three common 

approaches in Python to load CSV data file: 

Load CSV with Python Standard Library  

The first and most used approach to load CSV data file is the use of Python standard library 

which provides us a variety of built-in modules namely csv module and the 

reader()function. The following is an example of loading CSV data file with the help of 

it: 

Example  

In this example, we are using the iris flower data set which can be downloaded into our local 

directory. After loading the data file, we can convert it into NumPy array and use it for ML 

projects. Following is the Python script for loading CSV data file: 

First, we need to import the csv module provided by Python standard library as follows: 

import csv 

Next, we need to import Numpy module for converting the loaded data into NumPy array. 

import numpy as np 

 

Now, provide the full path of the file, stored on our local directory, having the CSV data 

file: 

path = r"c:\iris.csv" 

Next, use the csv.reader()function to read data from CSV file: 

with open(path,'r') as f: 

    reader = csv.reader(f,delimiter = ',') 

    headers = next(reader) 

    data = list(reader) 

    data = np.array(data).astype(float) 
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We can print the names of the headers with the following line of script: 

print(headers) 

 

The following line of script will print the shape of the data i.e. number of rows & columns 

in the file: 

print(data.shape) 

 
Next script line will give the first three line of data file: 

print(data[:3]) 

 
Output 

['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] 

(150, 4) 

[[5.1 3.5 1.4 0.2] 

 [4.9 3.  1.4 0.2] 

 [4.7 3.2 1.3 0.2]] 

 

Load CSV with NumPy 

Another approach to load CSV data file is NumPy and numpy.loadtxt() function. The 

following is an example of loading CSV data file with the help of it: 

Example 

In this example, we are using the Pima Indians Dataset having the data of diabetic 

patients. This dataset is a numeric dataset with no header. It can also be downloaded into 

our local directory. After loading the data file, we can convert it into NumPy array and use 

it for ML projects. The following is the Python script for loading CSV data file: 

from numpy import loadtxt 

path = r"C:\pima-indians-diabetes.csv" 

datapath= open(path, 'r') 

data = loadtxt(datapath, delimiter=",") 

print(data.shape) 

print(data[:3]) 
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Output 

 

(768, 9) 

 

[[ 6.    148.     72.     35.      0.     33.6     0.627   50.      1.] 

 [ 1.     85.     66.     29.      0.     26.6     0.351   31.      0.] 

 [ 8.    183.     64.      0.      0.     23.3     0.672   32.      1.]] 

 Load CSV with Pandas 

Another approach to load CSV data file is by Pandas and pandas.read_csv()function. 

This is the very flexible function that returns a pandas.DataFrame which can be used 

immediately for plotting. The following is an example of loading CSV data file with the help 

of it: 

Example 

Here, we will be implementing two Python scripts, first is with Iris data set having headers 

and another is by using the Pima Indians Dataset which is a numeric dataset with no header. 

Both the datasets can be downloaded into local directory.  

Script-1 

The following is the Python script for loading CSV data file using Pandas on Iris Data set: 

from pandas import read_csv 

path = r"C:\iris.csv" 

data = read_csv(path) 

print(data.shape) 

print(data[:3]) 

 

Output: 

 

(150, 4) 

   sepal_length   sepal_width   petal_length    petal_width 

0           5.1          3.5           1.4          0.2 

1           4.9          3.0           1.4          0.2 

2           4.7          3.2           1.3          0.2 
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Script-2 

The following is the Python script for loading CSV data file, along with providing the 

headers names too, using Pandas on Pima Indians Diabetes dataset: 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

print(data.shape) 

print(data[:3]) 

Output 

(768, 9) 

   preg  plas  pres  skin  test  mass   pedi  age  class 

0     6   148    72    35     0  33.6  0.627   50      1 

1     1    85    66    29     0  26.6  0.351   31      0 

2     8   183    64     0     0  23.3  0.672   32      1 

 

The difference between above used three approaches for loading CSV data file can easily 

be understood with the help of given examples. 
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Introduction 

While working with machine learning projects, usually we ignore two most important parts 

called mathematics and data. It is because, we know that ML is a data driven approach 

and our ML model will produce only as good or as bad results as the data we provided to 

it.  

In the previous chapter, we discussed how we can upload CSV data into our ML project, 

but it would be good to understand the data before uploading it. We can understand the 

data by two ways, with statistics and with visualization. 

In this chapter, with the help of following Python recipes, we are going to understand ML 

data with statistics.   

Looking at Raw Data 

The very first recipe is for looking at your raw data. It is important to look at raw data 

because the insight we will get after looking at raw data will boost our chances to better 

pre-processing as well as handling of data for ML projects.  

Following is a Python script implemented by using head() function of Pandas DataFrame 

on Pima Indians diabetes dataset to look at the first 50 rows to get better understanding 

of it:  

Example 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

print(data.head(50)) 

Output 

preg  plas  pres  skin  test  mass   pedi  age  class 

0      6   148    72    35     0  33.6  0.627   50      1 

1      1    85    66    29     0  26.6  0.351   31      0 

2      8   183    64     0     0  23.3  0.672   32      1 

3      1    89    66    23    94  28.1  0.167   21      0 

4      0   137    40    35   168  43.1  2.288   33      1 

5. Machine Learning with Python – Understanding Data with 
Statistics 
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5      5   116    74     0     0  25.6  0.201   30      0 

6      3    78    50    32    88  31.0  0.248   26      1 

7     10   115     0     0     0  35.3  0.134   29      0 

8      2   197    70    45   543  30.5  0.158   53      1 

9      8   125    96     0     0   0.0  0.232   54      1 

10     4   110    92     0     0  37.6  0.191   30      0 

11    10   168    74     0     0  38.0  0.537   34      1 

12    10   139    80     0     0  27.1  1.441   57      0 

13     1   189    60    23   846  30.1  0.398   59      1 

14     5   166    72    19   175  25.8  0.587   51      1 

15     7   100     0     0     0  30.0  0.484   32      1 

16     0   118    84    47   230  45.8  0.551   31      1 

17     7   107    74     0     0  29.6  0.254   31      1 

18     1   103    30    38    83  43.3  0.183   33      0 

19     1   115    70    30    96  34.6  0.529   32      1 

20     3   126    88    41   235  39.3  0.704   27      0 

21     8    99    84     0     0  35.4  0.388   50      0 

22     7   196    90     0     0  39.8  0.451   41      1 

23     9   119    80    35     0  29.0  0.263   29      1 

24    11   143    94    33   146  36.6  0.254   51      1 

25    10   125    70    26   115  31.1  0.205   41      1 

26     7   147    76     0     0  39.4  0.257   43      1 

27     1    97    66    15   140  23.2  0.487   22      0 

28    13   145    82    19   110  22.2  0.245   57      0 

29     5   117    92     0     0  34.1  0.337   38      0 

30     5   109    75    26     0  36.0  0.546   60      0 

31     3   158    76    36   245  31.6  0.851   28      1 

32     3    88    58    11    54  24.8  0.267   22      0 

33     6    92    92     0     0  19.9  0.188   28      0 

34    10   122    78    31     0  27.6  0.512   45      0 

35     4   103    60    33   192  24.0  0.966   33      0 

36    11   138    76     0     0  33.2  0.420   35      0 

37     9   102    76    37     0  32.9  0.665   46      1 

38     2    90    68    42     0  38.2  0.503   27      1 

39     4   111    72    47   207  37.1  1.390   56      1 

40     3   180    64    25    70  34.0  0.271   26      0 

41     7   133    84     0     0  40.2  0.696   37      0 
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42     7   106    92    18     0  22.7  0.235   48      0 

43     9   171   110    24   240  45.4  0.721   54      1 

44     7   159    64     0     0  27.4  0.294   40      0 

45     0   180    66    39     0  42.0  1.893   25      1 

46     1   146    56     0     0  29.7  0.564   29      0 

47     2    71    70    27     0  28.0  0.586   22      0 

48     7   103    66    32     0  39.1  0.344   31      1 

49     7   105     0     0     0   0.0  0.305   24      0 

We can observe from the above output that first column gives the row number which can 

be very useful for referencing a specific observation. 

Checking Dimensions of Data 

It is always a good practice to know how much data, in terms of rows and columns, we 

are having for our ML project. The reasons behind are: 

 Suppose if we have too many rows and columns then it would take long time to 

run the algorithm and train the model. 

 

 Suppose if we have too less rows and columns then it we would not have enough 

data to well train the model. 

Following is a Python script implemented by printing the shape property on Pandas Data 

Frame. We are going to implement it on iris data set for getting the total number of rows 

and columns in it.  

Example 

from pandas import read_csv 

path = r"C:\iris.csv" 

data = read_csv(path) 

print(data.shape) 

Output 

(150, 4) 

We can easily observe from the output that iris data set, we are going to use, is having 

150 rows and 4 columns. 

Getting Each Attribute’s Data Type 

It is another good practice to know data type of each attribute. The reason behind is that, 

as per to the requirement, sometimes we may need to convert one data type to another. 

For example, we may need to convert string into floating point or int for representing 

categorial or ordinal values. We can have an idea about the attribute’s data type by looking 

at the raw data, but another way is to use dtypes property of Pandas DataFrame. With 
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the help of dtypes property we can categorize each attributes data type. It can be 

understood with the help of following Python script: 

Example  

from pandas import read_csv 

path = r"C:\iris.csv" 

data = read_csv(path) 

print(data.dtypes) 

Output 

sepal_length    float64 

sepal_width     float64 

petal_length    float64 

petal_width     float64 

dtype: object 

From the above output, we can easily get the datatypes of each attribute. 

Statistical Summary of Data 

We have discussed Python recipe to get the shape i.e. number of rows and columns, of 

data but many times we need to review the summaries out of that shape of data. It can 

be done with the help of describe() function of Pandas DataFrame that further provide 

the following 8 statistical properties of each & every data attribute: 

 Count 

 Mean 

 Standard Deviation  

 Minimum Value 

 Maximum value 

 25% 

 Median i.e. 50% 

 75% 

Example 

from pandas import read_csv 

from pandas import set_option 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 
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set_option('display.width', 100) 

set_option('precision', 2) 

print(data.shape) 

print(data.describe()) 

Output 

(768, 9) 

         preg    plas    pres    skin    test    mass    pedi     age   class 

count  768.00  768.00  768.00  768.00  768.00  768.00  768.00  768.00  768.00 

mean     3.85  120.89   69.11   20.54   79.80   31.99    0.47   33.24    0.35 

std      3.37   31.97   19.36   15.95  115.24    7.88    0.33   11.76    0.48 

min      0.00    0.00    0.00    0.00    0.00    0.00    0.08   21.00    0.00 

25%      1.00   99.00   62.00    0.00    0.00   27.30    0.24   24.00    0.00 

50%      3.00  117.00   72.00   23.00   30.50   32.00    0.37   29.00    0.00 

75%      6.00  140.25   80.00   32.00  127.25   36.60    0.63   41.00    1.00 

max     17.00  199.00  122.00   99.00  846.00   67.10    2.42   81.00    1.00 

 

From the above output, we can observe the statistical summary of the data of Pima Indian 

Diabetes dataset along with shape of data. 

Reviewing Class Distribution 

Class distribution statistics is useful in classification problems where we need to know the 

balance of class values. It is important to know class value distribution because if we have 

highly imbalanced class distribution i.e. one class is having lots more observations than 

other class, then it may need special handling at data preparation stage of our ML project. 

We can easily get class distribution in Python with the help of Pandas DataFrame. 

Example 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

count_class = data.groupby('class').size() 

print(count_class) 

Output: 

Class 

0    500 



Machine Learning with Python 

        

   32 

 

1    268 

dtype: int64 

From the above output, it can be clearly seen that the number of observations with class 

0 are almost double than number of observations with class 1.   

Reviewing Correlation between Attributes 

The relationship between two variables is called correlation. In statistics, the most common 

method for calculating correlation is Pearson’s Correlation Coefficient. It can have three 

values as follows: 

 Coefficient value = 1: It represents full positive correlation between variables. 

 Coefficient value = -1: It represents full negative correlation between variables. 

 Coefficient value = 0: It represents no correlation at all between variables. 

It is always good for us to review the pairwise correlations of the attributes in our dataset 

before using it into ML project because some machine learning algorithms such as linear 

regression and logistic regression will perform poorly if we have highly correlated 

attributes. In Python, we can easily calculate a correlation matrix of dataset attributes with 

the help of corr() function on Pandas DataFrame.  

Example  

from pandas import read_csv 

from pandas import set_option 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

set_option('display.width', 100) 

set_option('precision', 2) 

correlations = data.corr(method='pearson') 

print(correlations) 

Output 

preg  plas  pres  skin  test  mass  pedi   age  class 

preg   1.00  0.13  0.14 -0.08 -0.07  0.02 -0.03  0.54   0.22 

plas   0.13  1.00  0.15  0.06  0.33  0.22  0.14  0.26   0.47 

pres   0.14  0.15  1.00  0.21  0.09  0.28  0.04  0.24   0.07 

skin  -0.08  0.06  0.21  1.00  0.44  0.39  0.18 -0.11   0.07 

test  -0.07  0.33  0.09  0.44  1.00  0.20  0.19 -0.04   0.13 

mass   0.02  0.22  0.28  0.39  0.20  1.00  0.14  0.04   0.29 
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pedi  -0.03  0.14  0.04  0.18  0.19  0.14  1.00  0.03   0.17 

age    0.54  0.26  0.24 -0.11 -0.04  0.04  0.03  1.00   0.24 

class  0.22  0.47  0.07  0.07  0.13  0.29  0.17  0.24   1.00 

The matrix in above output gives the correlation between all the pairs of the attribute in 

dataset. 

Reviewing Skew of Attribute Distribution 

Skewness may be defined as the distribution that is assumed to be Gaussian but appears 

distorted or shifted in one direction or another, or either to the left or right. Reviewing the 

skewness of attributes is one of the important tasks due to following reasons:  

 Presence of skewness in data requires the correction at data preparation stage so 

that we can get more accuracy from our model.  

 

 Most of the ML algorithms assumes that data has a Gaussian distribution i.e. either 

normal of bell curved data.   

In Python, we can easily calculate the skew of each attribute by using skew() function on 

Pandas DataFrame. 

Example 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

print(data.skew()) 

Output 

preg     0.90 

plas     0.17 

pres    -1.84 

skin     0.11 

test     2.27 

mass    -0.43 

pedi     1.92 

age      1.13 

class    0.64 

dtype: float64 

From the above output, positive or negative skew can be observed. If the value is closer 

to zero, then it shows less skew. 
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Introduction 

In the previous chapter, we have discussed the importance of data for Machine Learning 

algorithms along with some Python recipes to understand the data with statistics. There 

is another way called Visualization, to understand the data.  

With the help of data visualization, we can see how the data looks like and what kind of 

correlation is held by the attributes of data. It is the fastest way to see if the features 

correspond to the output. With the help of following Python recipes, we can understand 

ML data with statistics. 

 

Univariate Plots: Understanding Attributes Independently 

The simplest type of visualization is single-variable or “univariate” visualization. With the 

help of univariate visualization, we can understand each attribute of our dataset 

independently. The following are some techniques in Python to implement univariate 

visualization: 

Histograms 

Histograms group the data in bins and is the fastest way to get idea about the distribution 

of each attribute in dataset. The following are some of the characteristics of histograms: 

 It provides us a count of the number of observations in each bin created for 

visualization. 

6. Machine Learning with Python – Understanding Data with 
Visualization 

Data Visualization Techniques 

Univariate Plots Multivariate Plots 

Histogram

s 

Density Plots Box Plots 
Correlation 

Matrix Plots 

Correlation 

Matrix Plots 
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 From the shape of the bin, we can easily observe the distribution i.e. weather it is 

Gaussian, skewed or exponential. 
 

 Histograms also help us to see possible outliers.  

Example 

The code shown below is an example of Python script creating the histogram of the 

attributes of Pima Indian Diabetes dataset. Here, we will be using hist() function on 

Pandas DataFrame to generate histograms and matplotlib for ploting them.  

from matplotlib import pyplot 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

data.hist() 

pyplot.show() 

 
Output 
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The above output shows that it created the histogram for each attribute in the dataset. 

From this, we can observe that perhaps age, pedi and test attribute may have exponential 

distribution while mass and plas have Gaussian distribution. 

Density Plots 

Another quick and easy technique for getting each attributes distribution is Density plots. 

It is also like histogram but having a smooth curve drawn through the top of each bin. We 

can call them as abstracted histograms. 

Example 

In the following example, Python script will generate Density Plots for the distribution of 

attributes of Pima Indian Diabetes dataset.    

from matplotlib import pyplot 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

data.plot(kind='density', subplots=True, layout=(3,3), sharex=False) 

pyplot.show() 

Output 
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From the above output, the difference between Density plots and Histograms can be easily 

understood. 

Box and Whisker Plots 

Box and Whisker plots, also called boxplots in short, is another useful technique to review 

the distribution of each attribute’s distribution. The following are the characteristics of this 

technique: 

 It is univariate in nature and summarizes the distribution of each attribute.  

 

 It draws a line for the middle value i.e. for median. 

 

 It draws a box around the 25% and 75%. 

 

 It also draws whiskers which will give us an idea about the spread of the data. 

 

 The dots outside the whiskers signifies the outlier values. Outlier values would be 

1.5 times greater than the size of the spread of the middle data. 

Example 

In the following example, Python script will generate Density Plots for the distribution of 

attributes of Pima Indian Diabetes dataset.    

from matplotlib import pyplot 

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

data.plot(kind='box', subplots=True, layout=(3,3), sharex=False,sharey=False) 

pyplot.show() 
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Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above plot of attribute’s distribution, it can be observed that age, test and skin 

appear skewed towards smaller values. 

Multivariate Plots: Interaction Among Multiple Variables 

Another type of visualization is multi-variable or “multivariate” visualization. With the help 

of multivariate visualization, we can understand interaction between multiple attributes of 

our dataset. The following are some techniques in Python to implement multivariate 

visualization: 

Correlation Matrix Plot 

Correlation is an indication about the changes between two variables. In our previous 

chapters, we have discussed Pearson’s Correlation coefficients and the importance of 

Correlation too. We can plot correlation matrix to show which variable is having a high or 

low correlation in respect to another variable. 

Example 

In the following example, Python script will generate and plot correlation matrix for the 

Pima Indian Diabetes dataset. It can be generated with the help of corr() function on Pandas 

DataFrame and plotted with the help of pyplot.  
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from matplotlib import pyplot 

from pandas import read_csv 

import numpy 

Path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(Path, names=names) 

correlations = data.corr() 

fig = pyplot.figure() 

ax = fig.add_subplot(111) 

cax = ax.matshow(correlations, vmin=-1, vmax=1) 

fig.colorbar(cax) 

ticks = numpy.arange(0,9,1) 

ax.set_xticks(ticks) 

ax.set_yticks(ticks) 

ax.set_xticklabels(names) 

ax.set_yticklabels(names) 

pyplot.show() 

 

Output 
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From the above output of correlation matrix, we can see that it is symmetrical i.e. the 

bottom left is same as the top right. It is also observed that each variable is positively 

correlated with each other. 

Scatter Matrix Plot 

Scatter plots shows how much one variable is affected by another or the relationship 

between them with the help of dots in two dimensions. Scatter plots are very much like 

line graphs in the concept that they use horizontal and vertical axes to plot data points. 

Example 

In the following example, Python script will generate and plot Scatter matrix for the Pima 

Indian Diabetes dataset. It can be generated with the help of scatter_matrix() function on 

Pandas DataFrame and plotted with the help of pyplot.  

from matplotlib import pyplot 

from pandas import read_csv 

from pandas.tools.plotting import scatter_matrix 

path = r"C:\pima-indians-diabetes.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=names) 

scatter_matrix(data) 

pyplot.show() 
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Output 
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Introduction 

Machine Learning algorithms are completely dependent on data because it is the most 

crucial aspect that makes model training possible. On the other hand, if we won’t be able 

to make sense out of that data, before feeding it to ML algorithms, a machine will be 

useless. In simple words, we always need to feed right data i.e. the data in correct scale, 

format and containing meaningful features, for the problem we want machine to solve.  

This makes data preparation the most important step in ML process. Data preparation may 

be defined as the procedure that makes our dataset more appropriate for ML process. 

Why Data Pre-processing? 

After selecting the raw data for ML training, the most important task is data pre-

processing. In broad sense, data preprocessing will convert the selected data into a form 

we can work with or can feed to ML algorithms.  We always need to preprocess our data 

so that it can be as per the expectation of machine learning algorithm. 

Data Pre-processing Techniques 

We have the following data preprocessing techniques that can be applied on data set to 

produce data for ML algorithms: 

Scaling: 

Most probably our dataset comprises of the attributes with varying scale, but we cannot 

provide such data to ML algorithm hence it requires rescaling. Data rescaling makes sure 

that attributes are at same scale. Generally, attributes are rescaled into the range of 0 

and 1. ML algorithms like gradient descent and k-Nearest Neighbors requires scaled data. 

We can rescale the data with the help of MinMaxScaler class of scikit-learn Python 

library. 

Example 

In this example we will rescale the data of Pima Indians Diabetes dataset which we used 

earlier. First, the CSV data will be loaded (as done in the previous chapters) and then with 

the help of MinMaxScaler class, it will be rescaled in the range of 0 and 1.   

The first few lines of the following script are same as we have written in previous chapters 

while loading CSV data. 

from pandas import read_csv 

from numpy import set_printoptions 

from sklearn import preprocessing 

path = r'C:\pima-indians-diabetes.csv' 

7. Machine Learning with Python – Preparing Data 
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names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

 

Now, we can use MinMaxScaler class to rescale the data in the range of 0 and 1.  

data_scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) 

data_rescaled = data_scaler.fit_transform(array) 

We can also summarize the data for output as per our choice. Here, we are setting the 

precision to 1 and showing the first 10 rows in the output.  

set_printoptions(precision=1) 

print ("\nScaled data:\n", data_rescaled[0:10]) 

Output 

Scaled data: 

 [[0.4 0.7 0.6 0.4 0.  0.5 0.2 0.5 1. ] 

 [0.1 0.4 0.5 0.3 0.  0.4 0.1 0.2 0. ] 

 [0.5 0.9 0.5 0.  0.  0.3 0.3 0.2 1. ] 

 [0.1 0.4 0.5 0.2 0.1 0.4 0.  0.  0. ] 

 [0.  0.7 0.3 0.4 0.2 0.6 0.9 0.2 1. ] 

 [0.3 0.6 0.6 0.  0.  0.4 0.1 0.2 0. ] 

 [0.2 0.4 0.4 0.3 0.1 0.5 0.1 0.1 1. ] 

 [0.6 0.6 0.  0.  0.  0.5 0.  0.1 0. ] 

 [0.1 1.  0.6 0.5 0.6 0.5 0.  0.5 1. ] 

 [0.5 0.6 0.8 0.  0.  0.  0.1 0.6 1. ]] 

From the above output, all the data got rescaled into the range of 0 and 1. 

Normalization 

Another useful data preprocessing technique is Normalization. This is used to rescale each 

row of data to have a length of 1. It is mainly useful in Sparse dataset where we have lots 

of zeros. We can rescale the data with the help of Normalizer class of scikit-learn 

Python library.  
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Types of Normalization 

In machine learning, there are two types of normalization preprocessing techniques as 

follows: 

L1 Normalization 

It may be defined as the normalization technique that modifies the dataset values in a 

way that in each row the sum of the absolute values will always be up to 1. It is also called 

Least Absolute Deviations. 

Example 

In this example, we use L1 Normalize technique to normalize the data of Pima Indians 

Diabetes dataset which we used earlier. First, the CSV data will be loaded and then with 

the help of Normalizer class it will be normalized.   

The first few lines of following script are same as we have written in previous chapters 

while loading CSV data. 

from pandas import read_csv 

from numpy import set_printoptions 

from sklearn.preprocessing import Normalizer 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv (path, names=names) 

array = dataframe.values 

 

Now, we can use Normalizer class with L1 to normalize the data. 

Data_normalizer = Normalizer(norm='l1').fit(array) 

Data_normalized = Data_normalizer.transform(array) 

We can also summarize the data for output as per our choice. Here, we are setting the 

precision to 2 and showing the first 3 rows in the output.  

set_printoptions(precision=2) 

print ("\nNormalized data:\n", Data_normalized [0:3]) 

Output 

Normalized data: 

 [[0.02 0.43 0.21 0.1  0.   0.1  0.   0.14 0.  ] 

 [0.   0.36 0.28 0.12 0.   0.11 0.   0.13 0.  ] 

 [0.03 0.59 0.21 0.   0.   0.07 0.   0.1  0.  ]] 
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L2 Normalization 

It may be defined as the normalization technique that modifies the dataset values in a 

way that in each row the sum of the squares will always be up to 1. It is also called least 

squares.  

Example 

In this example, we use L2 Normalization technique to normalize the data of Pima Indians 

Diabetes dataset which we used earlier. First, the CSV data will be loaded (as done in 

previous chapters) and then with the help of Normalizer class it will be normalized.   

The first few lines of following script are same as we have written in previous chapters 

while loading CSV data. 

from pandas import read_csv 

from numpy import set_printoptions 

from sklearn.preprocessing import Normalizer 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv (path, names=names) 

array = dataframe.values 

Now, we can use Normalizer class with L1 to normalize the data. 

Data_normalizer = Normalizer(norm='l2').fit(array) 

Data_normalized = Data_normalizer.transform(array) 

We can also summarize the data for output as per our choice. Here, we are setting the 

precision to 2 and showing the first 3 rows in the output.  

set_printoptions(precision=2) 

print ("\nNormalized data:\n", Data_normalized [0:3]) 

Output 

Normalized data: 

 [[0.03 0.83 0.4  0.2  0.   0.19 0.   0.28 0.01] 

 [0.01 0.72 0.56 0.24 0.   0.22 0.   0.26 0.  ] 

 [0.04 0.92 0.32 0.   0.   0.12 0.   0.16 0.01]] 

Binarization 

As the name suggests, this is the technique with the help of which we can make our data 

binary. We can use a binary threshold for making our data binary. The values above that 

threshold value will be converted to 1 and below that threshold will be converted to 0.  
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For example, if we choose threshold value = 0.5, then the dataset value above it will 

become 1 and below this will become 0. That is why we can call it binarizing the data or 

thresholding the data. This technique is useful when we have probabilities in our dataset 

and want to convert them into crisp values.  

We can binarize the data with the help of Binarizer class of scikit-learn Python library. 

Example 

In this example, we will rescale the data of Pima Indians Diabetes dataset which we used 

earlier. First, the CSV data will be loaded and then with the help of Binarizer class it will 

be converted into binary values i.e. 0 and 1 depending upon the threshold value. We are 

taking 0.5 as threshold value.   

The first few lines of following script are same as we have written in previous chapters 

while loading CSV data. 

from pandas import read_csv 

from sklearn.preprocessing import Binarizer 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

 

Now, we can use Binarize class to convert the data into binary values. 

binarizer = Binarizer(threshold=0.5).fit(array) 

Data_binarized = binarizer.transform(array) 

 

Here, we are showing the first 5 rows in the output.  

print ("\nBinary data:\n", Data_binarized [0:5]) 

 
Output 

Binary data: 

 [[1. 1. 1. 1. 0. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 0. 1. 0. 1. 0.] 

 [1. 1. 1. 0. 0. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 1. 1. 0. 1. 0.] 

 [0. 1. 1. 1. 1. 1. 1. 1. 1.]] 
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Standardization 

Another useful data preprocessing technique which is basically used to transform the data 

attributes with a Gaussian distribution. It differs the mean and SD (Standard Deviation) 

to a standard Gaussian distribution with a mean of 0 and a SD of 1. This technique is 

useful in ML algorithms like linear regression, logistic regression that assumes a Gaussian 

distribution in input dataset and produce better results with rescaled data. We can 

standardize the data (mean = 0 and SD =1) with the help of StandardScaler class of 

scikit-learn Python library. 

Example 

In this example, we will rescale the data of Pima Indians Diabetes dataset which we used 

earlier. First, the CSV data will be loaded and then with the help of StandardScaler class 

it will be converted into Gaussian Distribution with mean = 0 and SD = 1.   

The first few lines of following script are same as we have written in previous chapters 

while loading CSV data. 

from sklearn.preprocessing import StandardScaler 

from pandas import read_csv 

from numpy import set_printoptions 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

Now, we can use StandardScaler class to rescale the data. 

data_scaler = StandardScaler().fit(array) 

data_rescaled = data_scaler.transform(array) 

 
We can also summarize the data for output as per our choice. Here, we are setting the 

precision to 2 and showing the first 5 rows in the output.  

set_printoptions(precision=2) 

print ("\nRescaled data:\n", data_rescaled [0:5]) 

Output 

Rescaled data: 

 [[ 0.64  0.85  0.15  0.91 -0.69  0.2   0.47  1.43  1.37] 

 [-0.84 -1.12 -0.16  0.53 -0.69 -0.68 -0.37 -0.19 -0.73] 

 [ 1.23  1.94 -0.26 -1.29 -0.69 -1.1   0.6  -0.11  1.37] 

 [-0.84 -1.   -0.16  0.15  0.12 -0.49 -0.92 -1.04 -0.73] 
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 [-1.14  0.5  -1.5   0.91  0.77  1.41  5.48 -0.02  1.37]] 

Data Labeling 

We discussed the importance of good fata for ML algorithms as well as some techniques 

to pre-process the data before sending it to ML algorithms. One more aspect in this regard 

is data labeling. It is also very important to send the data to ML algorithms having proper 

labeling. For example, in case of classification problems, lot of labels in the form of words, 

numbers etc. are there on the data.  

What is Label Encoding? 

Most of the sklearn functions expect that the data with number labels rather than word 

labels. Hence, we need to convert such labels into number labels. This process is called 

label encoding. We can perform label encoding of data with the help of LabelEncoder() 

function of scikit-learn Python library. 

Example 

In the following example, Python script will perform the label encoding. 

First, import the required Python libraries as follows: 

import numpy as np 

from sklearn import preprocessing  

Now, we need to provide the input labels as follows: 

input_labels = ['red','black','red','green','black','yellow','white'] 

 
The next line of code will create the label encoder and train it.  

encoder = preprocessing.LabelEncoder() 

encoder.fit(input_labels) 

The next lines of script will check the performance by encoding the random ordered list: 

test_labels = ['green','red','black'] 

encoded_values = encoder.transform(test_labels) 

print("\nLabels =", test_labels) 

print("Encoded values =", list(encoded_values)) 

encoded_values = [3,0,4,1] 

decoded_list = encoder.inverse_transform(encoded_values) 

We can get the list of encoded values with the help of following python script: 
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print("\nEncoded values =", encoded_values) 

print("\nDecoded labels =", list(decoded_list))  

 
Output 

Labels = ['green', 'red', 'black'] 

Encoded values = [1, 2, 0] 

Encoded values = [3, 0, 4, 1] 

Decoded labels = ['white', 'black', 'yellow', 'green'] 
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In the previous chapter, we have seen in detail how to preprocess and prepare data for 

machine learning. In this chapter, let us understand in detail data feature selection and 

various aspects involved in it. 

Importance of Data Feature Selection 

The performance of machine learning model is directly proportional to the data features 

used to train it. The performance of ML model will be affected negatively if the data 

features provided to it are irrelevant. On the other hand, use of relevant data features can 

increase the accuracy of your ML model especially linear and logistic regression.  

Now the question arise that what is automatic feature selection? It may be defined as the 

process with the help of which we select those features in our data that are most relevant 

to the output or prediction variable in which we are interested. It is also called attribute 

selection.  

The following are some of the benefits of automatic feature selection before modeling the 

data: 

 Performing feature selection before data modeling will reduce the overfitting.  

 

 Performing feature selection before data modeling will increases the accuracy of ML 

model. 

 

 Performing feature selection before data modeling will reduce the training time    

Feature Selection Techniques 

The followings are automatic feature selection techniques that we can use to model ML 

data in Python: 

Univariate Selection 

This feature selection technique is very useful in selecting those features, with the help of 

statistical testing, having strongest relationship with the prediction variables. We can 

implement univariate feature selection technique with the help of SelectKBest0class of 

scikit-learn Python library. 

Example: 

In this example, we will use Pima Indians Diabetes dataset to select 4 of the attributes 

having best features with the help of chi-square statistical test. 

from pandas import read_csv 

from numpy import set_printoptions 

 

from sklearn.feature_selection import SelectKBest 

8. Machine Learning with Python – Data Feature Selection 
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from sklearn.feature_selection import chi2 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

 
Next, we will separate array into input and output components: 

X = array[:,0:8] 

Y = array[:,8] 

 
The following lines of code will select the best features from dataset: 

 

test = SelectKBest(score_func=chi2, k=4) 

fit = test.fit(X,Y) 

 
We can also summarize the data for output as per our choice. Here, we are setting the 

precision to 2 and showing the 4 data attributes with best features along with best score 

of each attribute:  

set_printoptions(precision=2) 

print(fit.scores_) 

featured_data = fit.transform(X) 

print ("\nFeatured data:\n", featured_data[0:4]) 

 

Output 

[ 111.52 1411.89   17.61   53.11 2175.57  127.67    5.39  181.3 ] 

 

Featured data: 

 [[148.    0.   33.6  50. ] 

 [ 85.    0.   26.6  31. ] 

 [183.    0.   23.3  32. ] 

 [ 89.   94.   28.1  21. ]] 
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Recursive Feature Elimination  

As the name suggests, RFE (Recursive feature elimination) feature selection technique 

removes the attributes recursively and builds the model with remaining attributes. We can 

implement RFE feature selection technique with the help of RFE class of scikit-learn 

Python library. 

Example 

In this example, we will use RFE with logistic regression algorithm to select the best 3 

attributes having the best features from Pima Indians Diabetes dataset to. 

from pandas import read_csv 

from sklearn.feature_selection import RFE 

from sklearn.linear_model import LogisticRegression 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

 
Next, we will separate the array into its input and output components: 

X = array[:,0:8] 

Y = array[:,8] 

 
The following lines of code will select the best features from a dataset: 

model = LogisticRegression() 

rfe = RFE(model, 3) 

fit = rfe.fit(X, Y) 

print("Number of Features: %d") 

print("Selected Features: %s") 

print("Feature Ranking: %s") 

 
Output 

Number of Features: 3 

Selected Features: [ True False False False False True True False] 

Feature Ranking: [1 2 3 5 6 1 1 4] 

We can see in above output, RFE choose preg, mass and pedi as the first 3 best features. 

They are marked as 1 in the output. 
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Principal Component Analysis (PCA) 

PCA, generally called data reduction technique, is very useful feature selection technique 

as it uses linear algebra to transform the dataset into a compressed form. We can 

implement PCA feature selection technique with the help of PCA class of scikit-learn 

Python library. We can select number of principal components in the output. 

Example: 

In this example, we will use PCA to select best 3 Principal components from Pima Indians 

Diabetes dataset. 

from pandas import read_csv 

from sklearn.decomposition import PCA 

path = r'C:\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(path, names=names) 

array = dataframe.values 

 
Next, we will separate array into input and output components: 

X = array[:,0:8] 

Y = array[:,8] 

 
The following lines of code will extract features from dataset: 

pca = PCA(n_components=3) 

fit = pca.fit(X) 

print("Explained Variance: %s") % fit.explained_variance_ratio_ 

print(fit.components_) 

Output 

Explained Variance: [ 0.88854663 0.06159078 0.02579012] 

[[ -2.02176587e-03 9.78115765e-02 1.60930503e-02 6.07566861e-02 

9.93110844e-01 1.40108085e-02 5.37167919e-04 -3.56474430e-03] 

[ 2.26488861e-02 9.72210040e-01 1.41909330e-01 -5.78614699e-02 

-9.46266913e-02 4.69729766e-02 8.16804621e-04 1.40168181e-01] 

[ -2.24649003e-02 1.43428710e-01 -9.22467192e-01 -3.07013055e-01 

2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01]] 
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We can observe from the above output that 3 Principal Components bear little resemblance 

to the source data. 

Feature Importance 

As the name suggests, feature importance technique is used to choose the importance 

features. It basically uses a trained supervised classifier to select features.  We can 

implement this feature selection technique with the help of ExtraTreeClassifier class of 

scikit-learn Python library.  

Example  

In this example, we will use ExtraTreeClassifier to select features from Pima Indians 

Diabetes dataset. 

from pandas import read_csv 

from sklearn.ensemble import ExtraTreesClassifier 

path = r'C:\Desktop\pima-indians-diabetes.csv' 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

dataframe = read_csv(data, names=names) 

array = dataframe.values 

 
Next, we will separate array into input and output components: 

X = array[:,0:8] 

Y = array[:,8] 

The following lines of code will extract features from dataset: 

model = ExtraTreesClassifier() 

model.fit(X, Y) 

print(model.feature_importances_) 

Output 

[ 0.11070069 0.2213717 0.08824115 0.08068703 0.07281761 0.14548537 0.12654214 

0.15415431] 

From the output, we can observe that there are scores for each attribute. The higher the 

score, higher is the importance of that attribute. 
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Machine Learning Algorithms – Classification 
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Introduction to Classification 

Classification may be defined as the process of predicting class or category from observed 

values or given data points. The categorized output can have the form such as “Black” or 

“White” or “spam” or “no spam”.  

Mathematically, classification is the task of approximating a mapping function (f) from 

input variables (X) to output variables (Y). It is basically belongs to the supervised machine 

learning in which targets are also provided along with the input data set.  

An example of classification problem can be the spam detection in emails. There can be 

only two categories of output, “spam” and “no spam”; hence this is a binary type 

classification.  

To implement this classification, we first need to train the classifier. For this example, 

“spam” and “no spam” emails would be used as the training data. After successfully train 

the classifier, it can be used to detect an unknown email.   

Types of Learners in Classification 

We have two types of learners in respective to classification problems: 

Lazy Learners 

As the name suggests, such kind of learners waits for the testing data to be appeared after 

storing the training data. Classification is done only after getting the testing data. They 

spend less time on training but more time on predicting. Examples of lazy learners are K-

nearest neighbor and case-based reasoning. 

Eager Learners 

As opposite to lazy learners, eager learners construct classification model without waiting 

for the testing data to be appeared after storing the training data. They spend more time 

on training but less time on predicting. Examples of eager learners are Decision Trees, 

Naïve Bayes and Artificial Neural Networks (ANN). 

Building a Classifier in Python 

Scikit-learn, a Python library for machine learning can be used to build a classifier in 

Python. The steps for building a classifier in Python are as follows: 

Step1: Importing necessary python package 

For building a classifier using scikit-learn, we need to import it. We can import it by using 

following script: 

9. Classification – Introduction  
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import sklearn  

 

Step2: Importing dataset 

After importing necessary package, we need a dataset to build classification prediction 

model. We can import it from sklearn dataset or can use other one as per our requirement. 

We are going to use sklearn’s Breast Cancer Wisconsin Diagnostic Database. We can 

import it with the help of following script: 

from sklearn.datasets import load_breast_cancer 

The following script will load the dataset; 

data = load_breast_cancer() 

We also need to organize the data and it can be done with the help of following scripts: 

label_names = data['target_names'] 

 labels = data['target'] 

 feature_names = data['feature_names'] 

 features = data['data'] 

The following command will print the name of the labels, ‘malignant’ and ‘benign’ in 

case of our database. 

print(label_names) 

The output of the above command is the names of the labels: 

['malignant' 'benign'] 

These labels are mapped to binary values 0 and 1. Malignant cancer is represented by 0 

and Benign cancer is represented by 1.  

The feature names and feature values of these labels can be seen with the help of following 

commands: 

print(feature_names[0]) 

The output of the above command is the names of the features for label 0 i.e. Malignant 

cancer: 

mean radius 

Similarly, names of the features for label can be produced as follows: 

print(feature_names[1]) 
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The output of the above command is the names of the features for label 1 i.e. Benign 

cancer: 

mean texture 

We can print the features for these labels with the help of following command: 

print(features[0]) 

This will give the following output: 

[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01 

 1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02 

 6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01 

 1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01 

 4.601e-01 1.189e-01] 

We can print the features for these labels with the help of following command: 

print(features[1]) 

 

This will give the following output: 

[2.057e+01 1.777e+01 1.329e+02 1.326e+03 8.474e-02 7.864e-02 8.690e-02 

 7.017e-02 1.812e-01 5.667e-02 5.435e-01 7.339e-01 3.398e+00 7.408e+01 

 5.225e-03 1.308e-02 1.860e-02 1.340e-02 1.389e-02 3.532e-03 2.499e+01 

 2.341e+01 1.588e+02 1.956e+03 1.238e-01 1.866e-01 2.416e-01 1.860e-01 

 2.750e-01 8.902e-02] 

 

Step3: Organizing data into training & testing sets 

As we need to test our model on unseen data, we will divide our dataset into two parts: a 

training set and a test set. We can use train_test_split() function of sklearn python 

package to split the data into sets. The following command will import the function: 

from sklearn.model_selection import train_test_split   

Now, next command will split the data into training & testing data. In this example, we 

are using taking 40 percent of the data for testing purpose and 60 percent of the data for 

training purpose: 

train, test, train_labels, test_labels = 

train_test_split(features,labels,test_size = 0.40, random_state  = 42) 
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Step4- Model evaluation 

After dividing the data into training and testing we need to build the model. We will be 

using Naïve Bayes algorithm for this purpose. The following commands will import the 

GaussianNB module: 

from sklearn.naive_bayes import GaussianNB 

Now, initialize the model as follows: 

gnb = GaussianNB() 

Next, with the help of following command we can train the model: 

model = gnb.fit(train, train_labels) 

Now, for evaluation purpose we need to make predictions. It can be done by using 

predict() function as follows: 

preds = gnb.predict(test) 

 print(preds) 

This will give the following output: 

[1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 

 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 

 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 

 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 

 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 

 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 

 0 0 1 1 0 1] 

The above series of 0s and 1s in output are the predicted values for the Malignant and 

Benign tumor classes. 

Step5- Finding accuracy 

We can find the accuracy of the model build in previous step by comparing the two arrays 

namely test_labels and preds. We will be using the accuracy_score() function to 

determine the accuracy. 

from sklearn.metrics import accuracy_score 

 print(accuracy_score(test_labels,preds)) 

 0.951754385965  

The above output shows that NaïveBayes classifier is 95.17% accurate.  
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Classification Evaluation Metrics 

The job is not done even if you have finished implementation of your Machine Learning 

application or model. We must have to find out how effective our model is? There can be 

different evaluation metrics, but we must choose it carefully because the choice of metrics 

influences how the performance of a machine learning algorithm is measured and 

compared.  

The following are some of the important classification evaluation metrics among which you 

can choose based upon your dataset and kind of problem:  

Confusion Matrix 

It is the easiest way to measure the performance of a classification problem where the 

output can be of two or more type of classes. A confusion matrix is nothing but a table 

with two dimensions viz. “Actual” and “Predicted” and furthermore, both the dimensions 

have “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)”, “False Negatives 

(FN)” as shown below: 

 

 

 

 

 

 

 

 

The explanation of the terms associated with confusion matrix are as follows: 

 True Positives (TP): It is the case when both actual class & predicted class of 

data point is 1. 

 

 True Negatives (TN): It is the case when both actual class & predicted class of 

data point is 0. 

 

 False Positives (FP): It is the case when actual class of data point is 0 & predicted 

class of data point is 1. 

 

 False Negatives (FN): It is the case when actual class of data point is 1 & 

predicted class of data point is 0. 

 

We can find the confusion matrix with the help of confusion_matrix() function of 

sklearn. With the help of the following script, we can find the confusion matrix of above 

built binary classifier: 

False Negatives (FN) 

True Positives (TP) False Positives (FP) 

True Negatives (TN) 

Actual 

Predicted 

1 0 

1 

0 
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from sklearn.metrics import confusion_matrix 

Output 

[[ 73   7] 

 [  4 144]] 

Accuracy 

It may be defined as the number of correct predictions made by our ML model. We can 

easily calculate it by confusion matrix with the help of following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

For above built binary classifier, TP + TN = 73+144 = 217 and TP+FP+FN+TN = 

73+7+4+144=228. 

Hence, Accuracy = 217/228 = 0.951754385965 which is same as we have calculated after 

creating our binary classifier. 

Precision 

Precision, used in document retrievals, may be defined as the number of correct 

documents returned by our ML model. We can easily calculate it by confusion matrix with 

the help of following formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

For the above built binary classifier, TP = 73 and TP+FP = 73+7 = 80. 

Hence, Precision = 73/80 = 0.915  

Recall or Sensitivity 

Recall may be defined as the number of positives returned by our ML model. We can easily 

calculate it by confusion matrix with the help of following formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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For above built binary classifier, TP = 73 and TP+FN = 73+4 = 77. 

Hence, Precision = 73/77 = 0.94805       

Specificity  

Specificity, in contrast to recall, may be defined as the number of negatives returned by 

our ML model. We can easily calculate it by confusion matrix with the help of following 

formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

For the above built binary classifier, TN = 144 and TN+FP = 144+7 = 151. 

Hence, Precision = 144/151 = 0.95364  

Various ML Classification Algorithms 

The followings are some important ML classification algorithms: 

 Logistic Regression 

 Support Vector Machine (SVM) 

 Decision Tree 

 Naïve Bayes 

 Random Forest 

We will be discussing all these classification algorithms in detail in further chapters. 

Applications 

Some of the most important applications of classification algorithms are as follows: 

 Speech Recognition 

 Handwriting Recognition 

 Biometric Identification 

 Document Classification 
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Introduction to Logistic Regression 

Logistic regression is a supervised learning classification algorithm used to predict the 

probability of a target variable. The nature of target or dependent variable is dichotomous, 

which means there would be only two possible classes.  

In simple words, the dependent variable is binary in nature having data coded as either 1 

(stands for success/yes) or 0 (stands for failure/no).  

Mathematically, a logistic regression model predicts P(Y=1) as a function of X. It is one of 

the simplest ML algorithms that can be used for various classification problems such as 

spam detection, Diabetes prediction, cancer detection etc.     

Types of Logistic Regression 

Generally, logistic regression means binary logistic regression having binary target 

variables, but there can be two more categories of target variables that can be predicted 

by it. Based on those number of categories, Logistic regression can be divided into 

following types: 

Binary or Binomial 

In such a kind of classification, a dependent variable will have only two possible types 

either 1 and 0. For example, these variables may represent success or failure, yes or no, 

win or loss etc. 

Multinomial 

In such a kind of classification, dependent variable can have 3 or more possible unordered 

types  or the types having no quantitative significance. For example, these variables may 

represent “Type A” or “Type B” or “Type C”. 

Ordinal 

In such a kind of classification, dependent variable can have 3 or more possible ordered 

types or the types having a quantitative significance. For example, these variables may 

represent “poor” or “good”, “very good”, “Excellent” and each category can have the scores 

like 0,1,2,3. 

Logistic Regression Assumptions 

Before diving into the implementation of logistic regression, we must be aware of the 

following assumptions about the same: 

10. Classification Algorithms – Logistic Regression 
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 In case of binary logistic regression, the target variables must be binary always 

and the desired outcome is represented by the factor level 1. 

 

 There should not be any multi-collinearity in the model, which means  the 

independent variables must be independent of each other. 

 

 We must include meaningful variables in our model. 

 

 We should choose a large sample size for logistic regression.  

Binary Logistic Regression model 

The simplest form of logistic regression is binary or binomial logistic regression in which 

the target or dependent variable can have only 2 possible types either 1 or 0. It allows us 

to model a relationship between multiple predictor variables and a binary/binomial target 

variable. In case of logistic regression, the linear function is basically used as an input to 

another function such as 𝑔 in the following relation: 

ℎ𝜃(𝑥) =  𝑔(𝜃𝑇𝑥)𝑤ℎ𝑒𝑟𝑒 0 ≤ ℎ𝜃 ≤ 1 

Here, 𝑔 is the logistic or sigmoid function which can be given as follows: 

𝑔(𝑧) =
1

1 + 𝑒−𝑍
 𝑤ℎ𝑒𝑟𝑒 𝑧 =  𝜃𝑇𝑥 

To sigmoid curve can be represented with the help of following graph. We can see the 

values of y-axis lie between 0 and 1 and crosses the axis at 0.5. 

 

 

 

 

 

 

 

The classes can be divided into positive or negative. The output comes under the 

probability of positive class if it lies between 0 and 1. For our implementation, we are 

interpreting the output of hypothesis function as positive if it is ≥ 0.5, otherwise negative. 

We also need to define a loss function to measure how well the algorithm performs using 

the weights on functions, represented by theta as follows: 

ℎ = 𝑔(𝑋𝜃) 

𝐽(𝜃) =  
1

𝑚
  . (−𝑦𝑇 log(ℎ) − (1 − 𝑦)𝑇 log(1 − ℎ)) 
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Now, after defining the loss function our prime goal is to minimize the loss function. It can 

be done with the help of fitting the weights which means by increasing or decreasing the 

weights. With the help of derivatives of the loss function w.r.t each weight, we would be 

able to know what parameters should have high weight and what should have smaller 

weight.  

The following gradient descent equation tells us how loss would change if we modified the 

parameters: 

𝛿𝐽(𝜃)

𝛿𝜃𝑗
=

1

𝑚
𝑋𝑇(𝑔(𝑋𝜃) − 𝑦) 

Implementation in Python 

Now we will implement the above concept of binomial logistic regression in Python. For 

this purpose, we are using a multivariate flower dataset named ‘iris’ which have 3 classes 

of 50 instances each, but we will be using the first two feature columns. Every class 

represents a type of iris flower.  

First, we need to import the necessary libraries as follows: 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn import datasets 

Next, load the iris dataset as follows: 

iris = datasets.load_iris() 

X = iris.data[:, :2] 

y = (iris.target != 0) * 1 

We can plot our training data s follows: 

plt.figure(figsize=(6, 6)) 

plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='g', label='0') 

plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='y', label='1') 

plt.legend(); 
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Next, we will define sigmoid function, loss function and gradient descend as follows:  

class LogisticRegression: 

    def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, 

verbose=False): 

        self.lr = lr 

        self.num_iter = num_iter 

        self.fit_intercept = fit_intercept 

        self.verbose = verbose 

     

    def __add_intercept(self, X): 

        intercept = np.ones((X.shape[0], 1)) 

        return np.concatenate((intercept, X), axis=1) 

     

    def __sigmoid(self, z): 

        return 1 / (1 + np.exp(-z)) 

    def __loss(self, h, y): 

        return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() 

     

    def fit(self, X, y): 

        if self.fit_intercept: 

            X = self.__add_intercept(X) 
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       Now, initialize the weights as follows: 

        self.theta = np.zeros(X.shape[1]) 

         

        for i in range(self.num_iter): 

            z = np.dot(X, self.theta) 

            h = self.__sigmoid(z) 

            gradient = np.dot(X.T, (h - y)) / y.size 

            self.theta -= self.lr * gradient 

             

            z = np.dot(X, self.theta) 

            h = self.__sigmoid(z) 

            loss = self.__loss(h, y) 

                 

            if(self.verbose ==True and i % 10000 == 0): 

                print(f'loss: {loss} \t') 

   With the help of the following script, we can predict the output probabilities:  

    def predict_prob(self, X): 

        if self.fit_intercept: 

            X = self.__add_intercept(X) 

     

        return self.__sigmoid(np.dot(X, self.theta)) 

     

    def predict(self, X): 

        return self.predict_prob(X).round() 

Next, we can evaluate the model and plot it as follows: 

model = LogisticRegression(lr=0.1, num_iter=300000) 

preds = model.predict(X) 

(preds == y).mean() 

 

plt.figure(figsize=(10, 6)) 

plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='g', label='0') 

plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='y', label='1') 

plt.legend() 

x1_min, x1_max = X[:,0].min(), X[:,0].max(), 

x2_min, x2_max = X[:,1].min(), X[:,1].max(), 
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xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, 

x2_max)) 

grid = np.c_[xx1.ravel(), xx2.ravel()] 

probs = model.predict_prob(grid).reshape(xx1.shape) 

plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='red'); 

 

 

 

Multinomial Logistic Regression Model 

Another useful form of logistic regression is multinomial logistic regression in which the 

target or dependent variable can have 3 or more possible unordered types i.e. the types 

having no quantitative significance.  

Implementation in Python 

 Now we will implement the above concept of multinomial logistic regression in Python. 

For this purpose, we are using a dataset from sklearn named digit.  

First, we need to import the necessary libraries as follows: 

Import sklearn 

from sklearn import datasets  

from sklearn import linear_model 

from sklearn import metrics  
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from sklearn.model_selection import train_test_split  

    

Next, we need to load digit dataset:  

digits = datasets.load_digits()  

    

Now, define the feature matrix(X) and response vector(y)as follows:  

X = digits.data  

y = digits.target  

   

With the help of next line of code, we can split X and y into training and testing sets:  

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.4,                                                    random_state=

1)  

Now create an object of logistic regression as follows:  

digreg = linear_model.LogisticRegression()  

    

Now, we need to train the model by using the training sets as follows:  

digreg.fit(X_train, y_train)  

   

Next, make the predictions on testing set as follows:  

y_pred = digreg.predict(X_test)  

    

Next print the accuracy of the model as follows: 

print("Accuracy of Logistic Regression model is:",   

metrics.accuracy_score(y_test, y_pred)*100)  

Output 

Accuracy of Logistic Regression model is: 95.6884561891516 

From the above output we can see the accuracy of our model is around 96 percent. 
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Introduction to SVM 

Support vector machines (SVMs) are powerful yet flexible supervised machine learning 

algorithms which are used both for classification and regression. But generally, they are 

used in classification problems. In 1960s, SVMs were first introduced but later they got 

refined in 1990. SVMs have their unique way of implementation as compared to other 

machine learning algorithms. Lately, they are extremely popular because of their ability 

to handle multiple continuous and categorical variables. 

Working of SVM 

An SVM model is basically a representation of different classes in a hyperplane in 

multidimensional space. The hyperplane will be generated in an iterative manner by SVM 

so that the error can be minimized. The goal of SVM is to divide the datasets into classes 

to find a maximum marginal hyperplane (MMH). 

 

 

 

 

 

 

 

 

 

The followings are important concepts in SVM: 

 Support Vectors: Datapoints that are closest to the hyperplane is called support 

vectors. Separating line will be defined with the help of these data points. 

 

 Hyperplane: As we can see in the above diagram, it is a decision plane or space 

which is divided between a set of objects having different classes. 

 

 Margin: It may be defined as the gap between two lines on the closet data points 

of different classes. It can be calculated as the perpendicular distance from the line 

to the support vectors. Large margin is considered as a good margin and small 

margin is considered as a bad margin. 

11. Classification Algorithms – Support Vector Machine (SVM) 
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The main goal of SVM is to divide the datasets into classes to find a maximum marginal 

hyperplane (MMH) and it can be done in the following two steps: 

 First, SVM will generate hyperplanes iteratively that segregates the classes in best 

way.  

 

 Then, it will choose the hyperplane that separates the classes correctly. 

Implementing SVM in Python 

For implementing SVM in Python we will start with the standard libraries import as follows: 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

import seaborn as sns; sns.set() 

Next, we are creating a sample dataset, having linearly separable data, from 

sklearn.dataset.sample_generator for classification using SVM: 

from sklearn.datasets.samples_generator import make_blobs 

X, y = make_blobs(n_samples=100, centers=2, 

                  random_state=0, cluster_std=0.50) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer'); 

The following would be the output after generating sample dataset having 100 samples 

and 2 clusters: 

 

 

 

 

 

 

We know that SVM supports discriminative classification. it divides the classes from each 

other by simply finding a line in case of two dimensions or manifold in case of multiple 

dimensions. It is implemented on the above dataset as follows: 

xfit = np.linspace(-1, 3.5) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer') 
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plt.plot([0.6], [2.1], 'x', color='black', markeredgewidth=4, markersize=12) 

 

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]: 

    plt.plot(xfit, m * xfit + b, '-k') 

 

plt.xlim(-1, 3.5); 

 

The output is as follows: 

 

 

 

 

 

 

 

 

 

We can see from the above output that there are three different separators that perfectly 

discriminate the above samples.  

As discussed, the main goal of SVM is to divide the datasets into classes to find a maximum 

marginal hyperplane (MMH) hence rather than drawing a zero line between classes we can 

draw around each line a margin of some width up to the nearest point. It can be done as 

follows: 

xfit = np.linspace(-1, 3.5) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer') 

 

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: 

    yfit = m * xfit + b 

    plt.plot(xfit, yfit, '-k') 

    plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', 

                     color='#AAAAAA', alpha=0.4) 

 

plt.xlim(-1, 3.5);  
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From the above image in output, we can easily observe the “margins” within the 

discriminative classifiers. SVM will choose the line that maximizes the margin. 

Next, we will use Scikit-Learn’s support vector classifier to train an SVM model on this 

data. Here, we are using linear kernel to fit SVM as follows: 

from sklearn.svm import SVC # "Support vector classifier" 

model = SVC(kernel='linear', C=1E10) 

model.fit(X, y) 

The output is as follows: 

SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0, 

  decision_function_shape='ovr', degree=3, gamma='auto_deprecated', 

  kernel='linear', max_iter=-1, probability=False, random_state=None, 

  shrinking=True, tol=0.001, verbose=False) 

Now, for a better understanding, the following will plot the decision functions for 2D SVC: 

def decision_function(model, ax=None, plot_support=True): 

     

    if ax is None: 

        ax = plt.gca() 

    xlim = ax.get_xlim() 

    ylim = ax.get_ylim() 

For evaluating model, we need to create grid as follows: 

    x = np.linspace(xlim[0], xlim[1], 30) 

    y = np.linspace(ylim[0], ylim[1], 30) 
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    Y, X = np.meshgrid(y, x) 

    xy = np.vstack([X.ravel(), Y.ravel()]).T 

    P = model.decision_function(xy).reshape(X.shape) 

     

 Next, we need to plot decision boundaries and margins as follows: 

    ax.contour(X, Y, P, colors='k', 

               levels=[-1, 0, 1], alpha=0.5, 

               linestyles=['--', '-', '--']) 

     

 Now, similarly plot the support vectors as follows:  

   

    if plot_support: 

        ax.scatter(model.support_vectors_[:, 0], 

                   model.support_vectors_[:, 1], 

                   s=300, linewidth=1, facecolors='none'); 

    ax.set_xlim(xlim) 

    ax.set_ylim(ylim)  

Now, use this function to fit our models as follows: 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer') 

decision_function(model); 
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We can observe from the above output that an SVM classifier fit to the data with margins 

i.e. dashed lines and support vectors, the pivotal elements of this fit, touching the dashed 

line. These support vector points are stored in the support_vectors_ attribute of the 

classifier as follows: 

model.support_vectors_ 

The output is as follows: 

array([[0.5323772 , 3.31338909], 

       [2.11114739, 3.57660449], 

       [1.46870582, 1.86947425]]) 

SVM Kernels 

In practice, SVM algorithm is implemented with kernel that transforms an input data space 

into the required form. SVM uses a technique called the kernel trick in which kernel takes 

a low dimensional input space and transforms it into a higher dimensional space. In simple 

words, kernel converts non-separable problems into separable problems by adding more 

dimensions to it. It makes SVM more powerful, flexible and accurate. The following are 

some of the types of kernels used by SVM: 

Linear Kernel 

It can be used as a dot product between any two observations. The formula of linear kernel 

is as below: 

𝐾(𝑥, 𝑥𝑖) = 𝑠𝑢𝑚(𝑥 ∗ 𝑥𝑖) 

From the above formula, we can see that the product between two vectors say 𝑥 & 𝑥𝑖 is the 

sum of the multiplication of each pair of input values. 

Polynomial Kernel 

It is more generalized form of linear kernel and distinguish curved or nonlinear input space. 

Following is the formula for polynomial kernel: 

    K(x, xi) = 1 + sum(x * xi)^d   
 

Here d is the degree of polynomial, which we need to specify manually in the learning 

algorithm. 

 

Radial Basis Function (RBF) Kernel 

RBF kernel, mostly used in SVM classification, maps input space in indefinite dimensional 

space. Following formula explains it mathematically: 

 

   K(x,xi) = exp(-gamma * sum((x – xi^2)) 
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Here, gamma ranges from 0 to 1. We need to manually specify it in the learning algorithm. 

A good default value of gamma is 0.1. 

As we implemented SVM for linearly separable data, we can implement it in Python for the 

data that is not linearly separable. It can be done by using kernels.  

Example 

The following is an example for creating an SVM classifier by using kernels. We will be 

using iris dataset from scikit-learn: 

We will start by importing following packages: 

import pandas as pd 

import numpy as np 

from sklearn import svm, datasets 

import matplotlib.pyplot as plt 

Now, we need to load the input data: 

iris = datasets.load_iris() 

From this dataset, we are taking first two features as follows: 

X = iris.data[:, :2] 

y = iris.target 

Next, we will plot the SVM boundaries with original data as follows: 

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 

h = (x_max / x_min)/100 

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 

 np.arange(y_min, y_max, h)) 

X_plot = np.c_[xx.ravel(), yy.ravel()] 

Now, we need to provide the value of regularization parameter as follows: 

C = 1.0  

Next, SVM classifier object can be created as follows: 

 Svc_classifier = svm.SVC(kernel='linear', C=C).fit(X, y) 

Z = svc_classifier.predict(X_plot) 

Z = Z.reshape(xx.shape) 

plt.figure(figsize=(15, 5)) 

plt.subplot(121) 
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plt.contourf(xx, yy, Z, cmap=plt.cm.tab10, alpha=0.3) 

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1) 

plt.xlabel('Sepal length') 

plt.ylabel('Sepal width') 

plt.xlim(xx.min(), xx.max()) 

plt.title('Support Vector Classifier with linear kernel') 

 

Output 

Text(0.5, 1.0, 'Support Vector Classifier with linear kernel') 

 

 

 

 

 

 

 

 

 

 

 

 

For creating SVM classifier with rbf kernel, we can change the kernel to rbf as follows: 

Svc_classifier = svm.SVC(kernel='rbf', gamma =‘auto’,C=C).fit(X, y) 

Z = svc_classifier.predict(X_plot) 

Z = Z.reshape(xx.shape) 

plt.figure(figsize=(15, 5)) 

plt.subplot(121) 

plt.contourf(xx, yy, Z, cmap=plt.cm.tab10, alpha=0.3) 

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1) 

plt.xlabel('Sepal length') 

plt.ylabel('Sepal width') 

plt.xlim(xx.min(), xx.max()) 

plt.title('Support Vector Classifier with rbf kernel') 
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Output 

Text(0.5, 1.0, 'Support Vector Classifier with rbf kernel') 

 

 

 

 

 

 

 

 

 

 

 

 

We put the value of gamma to ‘auto’ but you can provide its value between 0 to 1 also. 

Pros and Cons of SVM Classifiers 

Pros of SVM classifiers 

SVM classifiers offers great accuracy and work well with high dimensional space. SVM 

classifiers basically use a subset of training points hence in result uses very less memory. 

Cons of SVM classifiers 

They have high training time hence in practice not suitable for large datasets. Another 

disadvantage is that SVM classifiers do not work well with overlapping classes. 
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Introduction to Decision Tree 

In general, Decision tree analysis is a predictive modelling tool that can be applied across 

many areas. Decision trees can be constructed by an algorithmic approach that can split 

the dataset in different ways based on different conditions. Decisions tress are the most 

powerful algorithms that falls under the category of supervised algorithms.  

They can be used for both classification and regression tasks. The two main entities of a 

tree are decision nodes, where the data is split and leaves, where we got outcome. The 

example of a binary tree for predicting whether a person is fit or unfit providing various 

information like age, eating habits and exercise habits, is given below: 

   

 

In the above decision tree, the question are decision nodes and final outcomes are leaves. 

We have the following two types of decision trees: 

 Classification decision trees: In this kind of decision trees, the decision variable 

is categorical. The above decision tree is an example of classification decision tree. 

 

 Regression decision trees: In this kind of decision trees, the decision variable is 

continuous.  

12. Classification Algorithms – Decision Tree 
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Implementing Decision Tree Algorithm 

Gini Index 

It is the name of the cost function that is used to evaluate the binary splits in the dataset 

and works with the categorial target variable “Success” or “Failure”.  

Higher the value of Gini index, higher the homogeneity. A perfect Gini index value is 0 and 

worst is 0.5 (for 2 class problem). Gini index for a split can be calculated with the help of 

following steps: 

 First, calculate Gini index for sub-nodes by using the formula p^2+q^2 , which is 

the sum of the square of probability for success and failure. 

 

 Next, calculate Gini index for split using weighted Gini score of each node of that 

split. 

Classification and Regression Tree (CART) algorithm uses Gini method to generate binary 

splits. 

Split Creation 

A split is basically including an attribute in the dataset and a value. We can create a split 

in dataset with the help of following three parts: 

 Part1: Calculating Gini Score: We have just discussed this part in the previous 

section. 

 

 Part2: Splitting a dataset: It may be defined as separating a dataset into two 

lists of rows having index of an attribute and a split value of that attribute. After 

getting the two groups - right and left, from the dataset, we can calculate the value 

of split by using Gini score calculated in first part. Split value will decide in which 

group the attribute will reside.  

 

 Part3: Evaluating all splits: Next part after finding Gini score and splitting 

dataset is the evaluation of all splits. For this purpose, first, we must check every 

value associated with each attribute as a candidate split. Then we need to find the 

best possible split by evaluating the cost of the split. The best split will be used as 

a node in the decision tree.     

Building a Tree 

As we know that a tree has root node and terminal nodes. After creating the root node, 

we can build the tree by following two parts: 

Part1: Terminal node creation 

While creating terminal nodes of decision tree, one important point is to decide when to 

stop growing tree or creating further terminal nodes. It can be done by using two criteria 

namely maximum tree depth and minimum node records as follows: 

 Maximum Tree Depth: As name suggests, this is the maximum number of the 

nodes in a tree after root node. We must stop adding terminal nodes once a tree 
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reached at maximum depth i.e. once a tree got maximum number of terminal 

nodes.  

 

 Minimum Node Records: It may be defined as the minimum number of training 

patterns that a given node is responsible for. We must stop adding terminal nodes 

once tree reached at these minimum node records or below this minimum. 

Terminal node is used to make a final prediction. 

Part2: Recursive Splitting 

As we understood about when to create terminal nodes, now we can start building our 

tree. Recursive splitting is a method to build the tree. In this method, once a node is 

created, we can create the child nodes (nodes added to an existing node) recursively on 

each group of data, generated by splitting the dataset, by calling the same function again 

and again. 

Prediction 

 After building a decision tree, we need to make a prediction about it. Basically, prediction 

involves navigating the decision tree with the specifically provided row of data.  

We can make a prediction with the help of recursive function, as did above. The same 

prediction routine is called again with the left or the child right nodes. 

Assumptions   

The following are some of the assumptions we make while creating decision tree: 

 While preparing decision trees, the training set is as root node. 

 

 Decision tree classifier prefers the features values to be categorical. In case if you 

want to use continuous values then they must be done discretized prior to model 

building. 

 

 Based on the attribute’s values, the records are recursively distributed. 

 

 Statistical approach will be used to place attributes at any node position i.e.as root 

node or internal node. 

Implementation in Python 

Example 

In the following example, we are going to implement Decision Tree classifier on Pima 

Indian Diabetes: 

First, start with importing necessary python packages: 

import pandas as pd 

from sklearn.tree import DecisionTreeClassifier  

from sklearn.model_selection import train_test_split  
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Next, download the iris dataset from its weblink as follows: 

col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 'bmi', 'pedigree', 

'age', 'label'] 

pima = pd.read_csv(r"C:\pima-indians-diabetes.csv", header=None, 

names=col_names) 

pima.head() 

 

 pregnant glucose bp skin insulin bmi pedigree age label 
0 6 148 72 35 0 33.6 0.627 50 1 
1 1 85 66 29 0 26.6 0.351 31 0 
2 8 183 64 0 0 23.3 0.672 32 1 
3 1 89 66 23 94 28.1 0.167 21 0 
4 0 137 40 35 168 43.1 2.288 33 1 

 

Now, split the dataset into features and target variable as follows: 

feature_cols = ['pregnant', 'insulin', 'bmi', 'age','glucose','bp','pedigree'] 

X = pima[feature_cols] # Features 

y = pima.label # Target variable 

Next, we will divide the data into train and test split. The following code will split the 

dataset into 70% training data and 30% of testing data: 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=1)  

Next, train the model with the help of  DecisionTreeClassifier class of sklearn as 

follows: 

clf = DecisionTreeClassifier() 

clf = clf.fit(X_train,y_train) 

At last we need to make prediction. It can be done with the help of following script: 

y_pred = clf.predict(X_test) 

Next, we can get the accuracy score, confusion matrix and classification report as follows:  

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

result = confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 

result1 = classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1) 
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result2 = accuracy_score(y_test,y_pred)  

print("Accuracy:",result2) 

Output 

Confusion Matrix: 

[[116  30] 

 [ 46  39]] 

Classification Report: 

              precision    recall  f1-score   support 

 

           0       0.72      0.79      0.75       146 

           1       0.57      0.46      0.51        85 

 

   micro avg       0.67      0.67      0.67       231 

   macro avg       0.64      0.63      0.63       231 

weighted avg       0.66      0.67      0.66       231 

 

Accuracy: 0.670995670995671 

Visualizing Decision Tree 

The above decision tree can be visualized with the help of following code: 

from sklearn.tree import export_graphviz 

from sklearn.externals.six import StringIO   

from IPython.display import Image   

import pydotplus 

 

dot_data = StringIO() 

export_graphviz(clf, out_file=dot_data,   

                filled=True, rounded=True, 

                special_characters=True,feature_names = 

feature_cols,class_names=['0','1']) 

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())   

graph.write_png('Pima_diabetes_Tree.png') 

Image(graph.create_png()) 
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Introduction to Naïve Bayes Algorithm 

Naïve Bayes algorithms is a classification technique based on applying Bayes’ theorem 

with a strong assumption that all the predictors are independent to each other. In simple 

words, the assumption is that the presence of a feature in a class is independent to the 

presence of any other feature in the same class. For example, a phone may be considered 

as smart if it is having touch screen, internet facility, good camera etc. Though all these 

features are dependent on each other, they contribute independently  to the probability of 

that the phone is a smart phone.    

In Bayesian classification, the main interest is to find the posterior probabilities i.e. the 

probability of a label given some observed features, 𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). With the help of Bayes 

theorem, we can express this in quantitative form as follows: 

𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =  
𝑃(𝐿)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝐿)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
 

Here, 𝑃(𝐿 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is the posterior probability of class. 

𝑃(𝐿) is the prior probability of class. 

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | 𝐿) is the likelihood which is the probability of predictor given class. 

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is the prior probability of predictor. 

Building model using Naïve Bayes in Python 

Python library, Scikit learn is the most useful library that helps us to build a Naïve Bayes 

model in Python. We have the following three types of Naïve Bayes model under Scikit 

learn Python library: 

Gaussian Naïve Bayes 

It is the simplest Naïve Bayes classifier having the assumption that the data from each 

label is drawn from a simple Gaussian distribution. 

Multinomial Naïve Bayes 

Another useful Naïve Bayes classifier is Multinomial Naïve Bayes in which the features are 

assumed to be drawn from a simple Multinomial distribution. Such kind of Naïve Bayes are 

most appropriate for the features that represents discrete counts. 

Bernoulli Naïve Bayes 

Another important model is Bernoulli Naïve Bayes in which features are assumed to be 

binary (0s and 1s). Text classification with ‘bag of words’ model can be an application of 

Bernoulli Naïve Bayes.    

13. Classification Algorithms - Naïve Bayes 



Machine Learning with Python 

        

   87 

 

Example 

Depending on our data set, we can choose any of the Naïve Bayes model explained above. 

Here, we are implementing Gaussian Naïve Bayes model in Python: 

We will start with required imports as follows: 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 

Now, by using make_blobs() function of Scikit learn, we can generate blobs of points 

with Gaussian distribution as follows: 

from sklearn.datasets import make_blobs 

X, y = make_blobs(300, 2, centers=2, random_state=2, cluster_std=1.5) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer'); 

Next, for using GaussianNB model, we need to import and make its object as follows: 

from sklearn.naive_bayes import GaussianNB 

model_GBN = GaussianNB() 

model_GNB.fit(X, y); 

Now, we have to do prediction. It can be done after generating some new data as follows: 

rng = np.random.RandomState(0) 

Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2) 

ynew = model_GNB.predict(Xnew) 

Next, we are plotting new data to find its boundaries: 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer') 

lim = plt.axis() 

plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='summer', alpha=0.1) 

plt.axis(lim); 

Now, with the help of following line of codes, we can find the posterior probabilities of first 

and second label: 

yprob = model_GNB.predict_proba(Xnew) 

yprob[-10:].round(3) 
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Output 

array([[0.998, 0.002], 

       [1.   , 0.   ], 

       [0.987, 0.013], 

       [1.   , 0.   ], 

       [1.   , 0.   ], 

       [1.   , 0.   ], 

       [1.   , 0.   ], 

       [1.   , 0.   ], 

       [0.   , 1.   ], 

       [0.986, 0.014]]) 

Pros & Cons  

Pros 

The followings are some pros of using Naïve Bayes classifiers: 

 Naïve Bayes classification is easy to implement and fast. 

 

 It will converge faster than discriminative models like logistic regression.  

 

 It requires less training data. 

 

 It is highly scalable in nature, or they scale linearly with the number of predictors 

and data points. 

 

 It can make probabilistic predictions and can handle continuous as well as discrete 

data.  

 

 Naïve Bayes classification algorithm can be used for binary as well as multi-class 

classification problems both. 

Cons 

The followings are some cons of using Naïve Bayes classifiers: 

 One of the most important cons of Naïve Bayes classification is its strong feature 

independence because in real life it is almost impossible to have a set of features 

which are completely independent of each other. 

 

 Another issue with Naïve Bayes classification is its ‘zero frequency’ which means 

that if a categorial variable has a category but not being observed in training data 

set, then Naïve Bayes model will assign a zero probability to it and it will be unable 

to make a prediction. 
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Applications of Naïve Bayes classification 

The following are some common applications of Naïve Bayes classification: 

Real-time prediction: Due to its ease of implementation and fast computation, it can be 

used to do prediction in real-time. 

Multi-class prediction: Naïve Bayes classification algorithm can be used to predict 

posterior probability of multiple classes of target variable. 

Text classification: Due to the feature of multi-class prediction, Naïve Bayes 

classification algorithms are well suited for text classification. That is why it is also used 

to solve problems like spam-filtering and sentiment analysis. 

Recommendation system: Along with the algorithms like collaborative filtering, Naïve 

Bayes makes a Recommendation system which can be used to filter unseen information 

and to predict weather a user would like the given resource or not. 
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Introduction 

Random forest is a supervised learning algorithm which is used for both classification as 

well as regression. But however, it is mainly used for classification problems. As we know 

that a forest is made up of trees and more trees means more robust forest. Similarly, 

random forest algorithm creates decision trees on data samples and then gets the 

prediction from each of them and finally selects the best solution by means of voting. It is 

an ensemble method which is better than a single decision tree because it reduces the 

over-fitting by averaging the result. 

Working of Random Forest Algorithm 

We can understand the working of Random Forest algorithm with the help of following 

steps: 

Step1: First, start with the selection of random samples from a given dataset. 

Step2: Next, this algorithm will construct a decision tree for every sample. Then it will get 

the prediction result from every decision tree.  

Step3: In this step, voting will be performed for every predicted result. 

Step4: At last, select the most voted prediction result as the final prediction result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. Classification Algorithms – Random Forest 
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The following diagram will illustrate its working: 

 

Implementation in Python 

First, start with importing necessary Python packages: 

import numpy as np   

import matplotlib.pyplot as plt   

import pandas as pd   

Next, download the iris dataset from its weblink as follows: 

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data" 

Next, we need to assign column names to the dataset as follows: 

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 

'Class'] 

Now, we need to read dataset to pandas dataframe as follows: 

dataset = pd.read_csv(path, names=headernames) 

dataset.head()   
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sepal-
length 

sepal-
width 

petal-
length 

petal-width Class 

0 5.1 3.5 1.4 0.2 Iris-setosa 

1 4.9 3.0 1.4 0.2 Iris-setosa 

2 4.7 3.2 1.3 0.2 Iris-setosa 

3 4.6 3.1 1.5 0.2 Iris-setosa 

4 5.0 3.6 1.4 0.2 Iris-setosa 

 
Data Preprocessing will be done with the help of following script lines: 

X = dataset.iloc[:, :-1].values   

y = dataset.iloc[:, 4].values 

Next, we will divide the data into train and test split. The following code will split the 

dataset into 70% training data and 30% of testing data:  

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30) 

Next, train the model with the help of RandomForestClassifier class of sklearn as 

follows: 

from sklearn.ensemble import RandomForestClassifier   

classifier = RandomForestClassifier(n_estimators=50)   

classifier.fit(X_train, y_train)   

At last, we need to make prediction. It can be done with the help of following script: 

y_pred = classifier.predict(X_test)   

Next, print the results as follows: 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

result = confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 

result1 = classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1) 

result2 = accuracy_score(y_test,y_pred)  

print("Accuracy:",result2) 
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Output 

Confusion Matrix: 

[[14  0  0] 

 [ 0 18  1] 

 [ 0  0 12]] 

Classification Report: 

                 precision    recall  f1-score   support 

 

    Iris-setosa       1.00      1.00      1.00        14 

Iris-versicolor       1.00      0.95      0.97        19 

 Iris-virginica       0.92      1.00      0.96        12 

 

      micro avg       0.98      0.98      0.98        45 

      macro avg       0.97      0.98      0.98        45 

   weighted avg       0.98      0.98      0.98        45 

 

Accuracy: 0.9777777777777777 

 

Pros and Cons of Random Forest 

Pros 

The following are the advantages of Random Forest algorithm: 

 It overcomes the problem of overfitting by averaging or combining the results of 

different decision trees. 

 

 Random forests work well for a large range of data items than a single decision 

tree does. 

 

 Random forest has less variance then single decision tree. 

 

 Random forests are very flexible and possess very high accuracy. 

 

 Scaling of data does not require in random forest algorithm. It maintains good 

accuracy even after providing data without scaling. 

 

 Random Forest algorithms maintains good accuracy even a large proportion of the 

data is missing. 

Cons 

The following are the disadvantages of Random Forest algorithm: 
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 Complexity is the main disadvantage of Random forest algorithms.  

 

 Construction of Random forests are much harder and time-consuming than decision 

trees. 

 

 More computational resources are required to implement Random Forest algorithm. 

 

 It is less intuitive in case when we have a large collection of decision trees. 

 

 The prediction process using random forests is very time-consuming in comparison 

with other algorithms. 
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Machine Learning Algorithms - Regression 
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Introduction to Regression 

Regression is another important and broadly used statistical and machine learning tool. 

The key objective of regression-based tasks is to predict output labels or responses which 

are continues numeric values, for the given input data. The output will be based on what 

the model has learned in training phase. Basically, regression models use the input data 

features (independent variables) and their corresponding continuous numeric output 

values (dependent or outcome variables) to learn specific association between inputs and 

corresponding outputs.  

 

 

 

 

 

 

 

 

15. Regression Algorithms – Overview  
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Types of Regression Models 

 

 

 

 

 

 

 

Regression models are of following two types: 

Simple regression model: This is the most basic regression model in which predictions 

are formed from a single, univariate feature of the data. 

Multiple regression model: As name implies, in this regression model the predictions 

are formed from multiple features of the data. 

Building a Regressor in Python 

Regressor model in Python can be constructed just like we constructed the classifier. 

Scikit-learn, a Python library for machine learning can also be used to build a regressor in 

Python.  

In the following example, we will be building basic regression model that will fit a line to 

the data i.e. linear regressor. The necessary steps for building a regressor in Python are 

as follows: 

Step1: Importing necessary python package 

For building a regressor using scikit-learn, we need to import it along with other necessary 

packages. We can import the by using following script: 

import numpy as np 

from sklearn import linear_model 

import sklearn.metrics as sm 

import matplotlib.pyplot as plt 

Step2: Importing dataset 

After importing necessary package, we need a dataset to build regression prediction 

model. We can import it from sklearn dataset or can use other one as per our requirement. 

We are going to use our saved input data. We can import it with the help of following 

script: 

input = r'C:\linear.txt'  

Next, we need to load this data. We are using np.loadtxt function to load it. 

 

Regression Models 

Simple 

(Univariate Features) 

Multiple 

(Multiple Features) 
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 input_data = np.loadtxt(input, delimiter=',') 

 X, y = input_data[:, :-1], input_data[:, -1] 

 

Step3: Organizing data into training & testing sets 

As we need to test our model on unseen data hence, we will divide our dataset into two 

parts: a training set and a test set. The following command will perform it: 

training_samples = int(0.6 * len(X)) 

testing_samples = len(X) - num_training 

 

X_train, y_train = X[:training_samples], y[:training_samples] 

 

X_test, y_test = X[training_samples:], y[training_samples:] 

Step4- Model evaluation & prediction 

After dividing the data into training and testing we need to build the model. We will be 

using LineaRegression() function of Scikit-learn for this purpose. Following command 

will create a linear regressor object.  

 reg_linear= linear_model.LinearRegression() 

Next, train this model with the training samples as follows:  

 reg_linear.fit(X_train, y_train) 

Now, at last we need to do the prediction with the testing data. 

 y_test_pred = reg_linear.predict(X_test) 

Step5- Plot & visualization 

After prediction, we can plot and visualize it with the help of following script: 

plt.scatter(X_test, y_test, color='red') 

plt.plot(X_test, y_test_pred, color='black', linewidth=2) 

plt.xticks(()) 

plt.yticks(()) 

plt.show() 
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Output 

 

 

 

 

 

 

 

 

In the above output, we can see the regression line between the data points. 

Step6- Performance computation: We can also compute the performance of our 

regression model with the help of various performance metrics as follows: 

print("Regressor model performance:") 

print("Mean absolute error(MAE) =", round(sm.mean_absolute_error(y_test, 

y_test_pred), 2)) 

print("Mean squared error(MSE) =", round(sm.mean_squared_error(y_test, 

y_test_pred), 2))  

print("Median absolute error =", round(sm.median_absolute_error(y_test, 

y_test_pred), 2))  

print("Explain variance score =", round(sm.explained_variance_score(y_test, 

y_test_pred), 2)) 

print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2)) 

Output 

Regressor model performance: 

Mean absolute error(MAE) = 1.78 

Mean squared error(MSE) = 3.89 

Median absolute error = 2.01 

Explain variance score = -0.09 

R2 score = -0.09 
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Types of  ML Regression Algorithms 

The most useful and popular ML regression algorithm is Linear regression algorithm which 

further divided into two types namely: 

 Simple Linear Regression algorithm 

 Multiple Linear Regression algorithm.  

We will discuss about it and implement it in Python in the next chapter. 

Applications 

The applications of ML regression algorithms are as follows: 

Forecasting or Predictive analysis: One of the important uses of regression is 

forecasting or predictive analysis. For example, we can forecast GDP, oil prices or in simple 

words the quantitative data that changes with the passage of time.   

Optimization: We can optimize business processes with the help of regression. For 

example, a store manager can create a statistical model to understand the peek time of 

coming of customers. 

Error correction: In business, taking correct decision is equally important as optimizing 

the business process. Regression can help us to take correct decision as well in correcting 

the already implemented decision. 

Economics: It is the most used tool in economics. We can use regression to predict 

supply, demand, consumption, inventory investment etc. 

Finance: A financial company is always interested in minimizing the risk portfolio and 

want to know the factors that affects the customers. All these can be predicted with the 

help of regression model. 
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Introduction to Linear Regression 

Linear regression may be defined as the statistical model that analyzes the linear 

relationship between a dependent variable with given set of independent variables. Linear 

relationship between variables means that when the value of one or more independent 

variables will change (increase or decrease), the value of dependent variable will also 

change accordingly (increase or decrease).  

Mathematically the relationship can be represented with the help of following equation: 

𝑌 = 𝑚𝑋 + 𝑏 

Here, 𝑌 is the dependent variable we are trying to predict 

𝑋 is the dependent variable we are using to make predictions. 

𝑚 is the slop of the regression line which represents the effect 𝑋 has on 𝑌 

𝑏 is a constant, known as the 𝑌-intercept. If 𝑋 =  0, 𝑌 would be equal to 𝑏. 

Furthermore, the linear relationship can be positive or negative in nature as explained 

below:      

Positive Linear Relationship 

A linear relationship will be called positive if both independent and dependent variable 

increases. It can be understood with the help of following graph: 

 

 

 

 

 

 

 

 

 

16. Regression Algorithms – Linear Regression 

Positive Linear Relationship 
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Negative Linear relationship 

A linear relationship will be called positive if independent increases and dependent variable 

decreases. It can be understood with the help of following graph: 

  

 

 

 

 

 

 

 

 

Types of Linear Regression 

Linear regression is of the following two types: 

 Simple Linear Regression 

 Multiple Linear Regression 

Simple Linear Regression (SLR) 

It is the most basic version of linear regression which predicts a response using a single 

feature. The assumption in SLR is that the two variables are linearly related.  

Python implementation   

We can implement SLR in Python in two ways, one is to provide your own dataset and 

other is to use dataset from scikit-learn python library. 

Example1: In the following Python implementation example, we are using our own 

dataset. 

First, we will start with importing necessary packages as follows: 

%matplotlib inline  

import numpy as np  

import matplotlib.pyplot as plt  

 

 

Negative Linear Relationship 
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Next, define a function which will calculate the important values for SLR: 

def coef_estimation(x, y):  

The following script line will give number of observations n:  

    n = np.size(x) 

The mean of x and y vector can be calculated as follows:  

    m_x, m_y = np.mean(x), np.mean(y)  

 We can find cross-deviation and deviation about x as follows: 

    SS_xy = np.sum(y*x) - n*m_y*m_x  

    SS_xx = np.sum(x*x) - n*m_x*m_x  

Next, regression coefficients i.e. b can be calculated as follows: 

    b_1 = SS_xy / SS_xx  

    b_0 = m_y - b_1*m_x    

    return(b_0, b_1)  

Next, we need to define a function which will plot the regression line as well as will predict 

the response vector: 

def plot_regression_line(x, y, b):  

The following script line will plot the actual points as scatter plot:  

    plt.scatter(x, y, color = "m", marker = "o", s = 30)  

The following script line will predict response vector:  

    y_pred = b[0] + b[1]*x  

The following script lines will plot the regression line and will put the labels on them:  

    plt.plot(x, y_pred, color = "g")  

    plt.xlabel('x')  

    plt.ylabel('y')  

    plt.show()  

 

At last, we need to define main() function for providing dataset and calling the function 

we defined above:  
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def main():  

    x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])  

    y = np.array([100, 300, 350, 500, 750, 800, 850, 900, 1050, 1250])  

   

    b = coef_estimation(x, y)  

    print("Estimated coefficients:\nb_0 = {} \nb_1 = {}".format(b[0], b[1]))  

   

    plot_regression_line(x, y, b)  

   

if __name__ == "__main__":  

    main() 

 

Output 

Estimated coefficients: 

b_0 = 154.5454545454545  

b_1 = 117.87878787878788 

 

 

 

 

 

 

 

 

 

 

Example2: In the following Python implementation example, we are using diabetes 

dataset from scikit-learn. 

First, we will start with importing necessary packages as follows: 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn import datasets, linear_model 

from sklearn.metrics import mean_squared_error, r2_score 
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Next, we will load the diabetes dataset and create its object: 

diabetes = datasets.load_diabetes() 

As we are implementing SLR, we will be using only one feature as follows: 

X = diabetes.data[:, np.newaxis, 2] 

Next, we need to split the data into training and testing sets as follows: 

X_train = X[:-30] 

X_test = X[-30:] 

Next, we need to split the target into training and testing sets as follows: 

y_train = diabetes.target[:-30] 

y_test = diabetes.target[-30:] 

Now, to train the model we need to create linear regression object as follows: 

regr = linear_model.LinearRegression() 

Next, train the model using the training sets as follows: 

regr.fit(X_train, y_train) 

Next, make predictions using the testing set as follows: 

y_pred = regr.predict(X_test) 

Next, we will be printing some coefficient like MSE, Variance score etc. as follows: 

print('Coefficients: \n', regr.coef_) 

print("Mean squared error: %.2f" 

      % mean_squared_error(y_test, y_pred)) 

print('Variance score: %.2f' % r2_score(y_test, y_pred)) 

Now, plot the outputs as follows: 

plt.scatter(X_test, y_test,  color='blue') 

plt.plot(X_test, y_pred, color='red', linewidth=3) 

plt.xticks(()) 

plt.yticks(()) 

plt.show() 
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Output 

Coefficients:  

 [941.43097333] 

Mean squared error: 3035.06 

Variance score: 0.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple Linear Regression (MLR) 

It is the extension of simple linear regression that predicts a response using two or more 

features. Mathematically we can explain it as follows:  

Consider a dataset having n observations, p features i.e. independent variables and y as 

one response i.e. dependent variable the regression line for p features can be calculated 

as follows:   

𝒉(𝒙𝒊) =  𝒃𝟎 +  𝒃𝟏𝒙𝒊𝟏 + 𝒃𝟐𝒙𝒊𝟐 + ⋯ + 𝒃𝒑𝒙𝒊𝒑 

Here, 𝒉(𝒙𝒊) is the predicted response value and 𝒃𝟎, 𝒃𝟏, 𝒃𝟐 … , 𝒃𝒑 are the regression 

coefficients. 

Multiple Linear Regression models always includes the errors in the data known as residual 

error which changes the calculation as follows: 

𝒉(𝒙𝒊) =  𝒃𝟎 +  𝒃𝟏𝒙𝒊𝟏 + 𝒃𝟐𝒙𝒊𝟐 + ⋯ + 𝒃𝒑𝒙𝒊𝒑 +  𝒆𝒊 

 

We can also write the above equation as follows: 

𝒚𝒊 = 𝒉(𝒙𝒊) +  𝒆𝒊 or  𝒆𝒊 =  𝒚𝒊 −  𝒉(𝒙𝒊) 
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Python Implementation 

in this example, we will be using Boston housing dataset from scikit learn: 

First, we will start with importing necessary packages as follows: 

%matplotlib inline 

import matplotlib.pyplot as plt  

import numpy as np  

from sklearn import datasets, linear_model, metrics  

Next, load the dataset as follows: 

boston = datasets.load_boston(return_X_y=False)  

The following script lines will define feature matrix, X and response vector, Y: 

X = boston.data  

y = boston.target    

Next, split the dataset into training and testing sets as follows: 

from sklearn.model_selection import train_test_split  

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7, 

random_state=1)  

   

Now, create linear regression object and train the model as follows:  

reg = linear_model.LinearRegression()  

   

reg.fit(X_train, y_train)  

   

print('Coefficients: \n', reg.coef_)  

   

print('Variance score: {}'.format(reg.score(X_test, y_test)))  

   

   

plt.style.use('fivethirtyeight')  

   

plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,  

            color = "green", s = 10, label = 'Train data')  

   

plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,  
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            color = "blue", s = 10, label = 'Test data')  

   

plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)  

plt.legend(loc = 'upper right')  

plt.title("Residual errors")  

plt.show() 

 

Output 

Coefficients:  

 [-1.16358797e-01  6.44549228e-02  1.65416147e-01  1.45101654e+00 

 -1.77862563e+01  2.80392779e+00  4.61905315e-02 -1.13518865e+00 

  3.31725870e-01 -1.01196059e-02 -9.94812678e-01  9.18522056e-03 

 -7.92395217e-01] 

Variance score: 0.709454060230326 

 

 

 

Assumptions 

The following are some assumptions about dataset that is made by Linear Regression 

model: 

Multi-collinearity: Linear regression model assumes that there is very little or no multi-

collinearity in the data. Basically, multi-collinearity occurs when the independent variables 

or features have dependency in them. 
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Auto-correlation: Another assumption Linear regression model assumes is that there is 

very little or no auto-correlation in the data. Basically, auto-correlation occurs when there 

is dependency between residual errors. 

Relationship between variables: Linear regression model assumes that the relationship 

between response and feature variables must be linear.  
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Machine Learning Algorithms – Clustering  
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Introduction to Clustering 

Clustering methods are one of the most useful unsupervised ML methods. These methods 

are used to find similarity as well as the relationship patterns among data samples and 

then cluster those samples into groups having similarity based on features.  

Clustering is important because it determines the intrinsic grouping among the present 

unlabeled data. They basically make some assumptions about data points to constitute 

their similarity. Each assumption will construct different but equally valid clusters.  

For example, below is the diagram which shows clustering system grouped together the 

similar kind of data in different clusters: 

  

Cluster Formation Methods 

It is not necessary that clusters will be formed in spherical form. Followings are some other 

cluster formation methods: 

Density-based 

In these methods, the clusters are formed as the dense region. The advantage of these 

methods is that they have good accuracy as well as good ability to merge two clusters. 

Ex. Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points 

to identify Clustering structure (OPTICS) etc. 

Hierarchical-based 

In these methods, the clusters are formed as a tree type structure based on the hierarchy. 

They have two categories namely, Agglomerative (Bottom up approach) and Divisive (Top 

down approach). Ex. Clustering using Representatives (CURE), Balanced iterative 

Reducing Clustering using Hierarchies (BIRCH) etc. 

Partitioning 

17. Clustering Algorithms - Overview 

Clustering 

System 
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In these methods, the clusters are formed by portioning the objects into k clusters. 

Number of clusters will be equal to the number of partitions. Ex. K-means, Clustering Large 

Applications based upon randomized Search (CLARANS). 

Grid 

In these methods, the clusters are formed as a grid like structure. The advantage of these 

methods is that all the clustering operation done on these grids are fast and independent 

of the number of data objects. Ex. Statistical Information Grid (STING), Clustering in Quest 

(CLIQUE). 

Measuring Clustering Performance 

One of the most important consideration regarding ML model is assessing its performance 

or you can say model’s quality. In case of supervised learning algorithms, assessing the 

quality of our model is easy because we already have labels for every example.  

On the other hand, in case of unsupervised learning algorithms we are not that much 

blessed because we deal with unlabeled data. But still we have some metrics that give the 

practitioner an insight about the happening of change in clusters depending on algorithm.    

Before we deep dive into such metrics, we must understand that these metrics only 

evaluates the comparative performance of models against each other rather than 

measuring the validity of the model’s prediction. Followings are some of the metrics that 

we can deploy on clustering algorithms to measure the quality of model: 

Silhouette Analysis 

Silhouette analysis used to check the quality of clustering model by measuring the distance 

between the clusters. It basically provides us a way to assess the parameters like number 

of clusters with the help of Silhouette score. This score measures how close each point 

in one cluster is to points in the neighboring clusters. 

Analysis of Silhouette Score 

The range of Silhouette score is [-1, 1]. Its analysis is as follows: 

 +1 Score:- Near +1 Silhouette score indicates that the sample is far away from 

its neighboring cluster. 

 

 0 Score:- 0 Silhouette score indicates that the sample is on or very close to the 

decision boundary separating two neighboring clusters.  

 

 -1 Score: -1 Silhouette score indicates that the samples have been assigned to 

the wrong clusters. 

The calculation of Silhouette score can be done by using the following formula:  

𝒔𝒊𝒍𝒉𝒐𝒖𝒆𝒕𝒕𝒆 𝒔𝒄𝒐𝒓𝒆 = (𝒑 − 𝒒)/𝐦𝐚𝐱 (𝒑, 𝒒) 

Here, 𝑝 = mean distance to the points in the nearest cluster  

And, 𝑞 = mean intra-cluster distance to all the points.  
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Davis-Bouldin Index 

DB index is another good metric to perform the analysis of clustering algorithms. With the 

help of DB index, we can understand the following points about clustering model:  

 Weather the clusters are well-spaced from each other or not? 

 How much dense the clusters are? 

We can calculate DB index with the help of following formula: 

𝐷𝐵 =  
1

𝑛
∑ 𝑚𝑎𝑥𝑗≠𝑖(

𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖, 𝑐𝑗)
)

𝑛

𝑖=1

 

Here, 𝑛 = number of clusters  

𝜎𝑖  = average distance of all points in cluster 𝑖 from the cluster centroid 𝑐𝑖.  

Less the DB index, better the clustering model is. 

Dunn Index 

It works same as DB index but there are following points in which both differs:  

 The Dunn index considers only the worst case i.e. the clusters that are close 

together while DB index considers dispersion and separation of all the clusters in 

clustering model. 

 

 Dunn index increases as the performance increases while DB index gets better 

when clusters are well-spaced and dense. 

We can calculate Dunn index with the help of following formula: 

𝐷 =  
𝑚𝑖𝑛1≤𝑖<𝑗≤𝑛𝑝(𝑖, 𝑗)

𝑚𝑎𝑥1≤𝑖<𝑘≤𝑛𝑞(𝑘)
 

Here, 𝑖, 𝑗, 𝑘 = each indices for clusters 

𝑝 = inter-cluster distance 

q = intra-cluster distance 

Types of ML Clustering Algorithms 

The following are the most important and useful ML clustering algorithms: 

K-means Clustering 

This clustering algorithm computes the centroids and iterates until we it finds optimal 

centroid. It assumes that the number of clusters are already known. It is also called flat 

clustering algorithm. The number of clusters identified from data by algorithm is 

represented by ‘K’ in K-means.    

Mean-Shift Algorithm 

It is another powerful clustering algorithm used in unsupervised learning. Unlike K-means 

clustering, it does not make any assumptions hence it is a non-parametric algorithm.  
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Hierarchical Clustering 

It is another unsupervised learning algorithm that is used to group together the unlabeled 

data points having similar characteristics. 

We will be discussing all these algorithms in detail in the upcoming chapters. 

Applications of Clustering 

We can find clustering useful in the following areas: 

Data summarization and compression: Clustering is widely used in the areas where 

we require data summarization, compression and reduction as well. The examples are 

image processing and vector quantization. 

Collaborative systems and customer segmentation: Since clustering can be used to 

find similar products or same kind of users, it can be used in the area of collaborative 

systems and customer segmentation.  

Serve as a key intermediate step for other data mining tasks: Cluster analysis can 

generate a compact summary of data for classification, testing, hypothesis generation; 

hence, it serves as a key intermediate step for other data mining tasks also. 

Trend detection in dynamic data: Clustering can also be used for trend detection in 

dynamic data by making various clusters of similar trends.  

Social network analysis: Clustering can be used in social network analysis. The 

examples are generating sequences in images, videos or audios. 

Biological data analysis: Clustering can also be used to make clusters of images, videos 

hence it can successfully be used in biological data analysis. 
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Introduction to K-Means Algorithm 

K-means clustering algorithm computes the centroids and iterates until we it finds optimal 

centroid. It assumes that the number of clusters are already known. It is also called flat 

clustering algorithm. The number of clusters identified from data by algorithm is 

represented by ‘K’ in K-means.  

In this algorithm, the data points are assigned to a cluster in such a manner that the sum 

of the squared distance between the data points and centroid would be minimum. It is to 

be understood that less variation within the clusters will lead to more similar data points 

within same cluster.  

Working of K-Means Algorithm 

We can understand the working of K-Means clustering algorithm with the help of following 

steps: 

Step1: First, we need to specify the number of clusters, K, need to be generated by this 

algorithm. 

Step2: Next, randomly select K data points and assign each data point to a cluster. In 

simple words, classify the data based on the number of data points. 

Step3: Now it will compute the cluster centroids.  

Step4: Next, keep iterating the following until we find optimal centroid which is the 

assignment of data points to the clusters that are not changing any more: 

4.1:  First, the sum of squared distance between data points and centroids would 

be computed. 

4.2: Now, we have to assign each data point to the cluster that is closer than other 

cluster (centroid). 

4.3:  At last compute the centroids for the clusters by taking the average of all 

data points of that cluster. 

K-means follows Expectation-Maximization approach to solve the problem. The 

Expectation-step is used for assigning the data points to the closest cluster and the 

Maximization-step is used for computing the centroid of each cluster. 

While working with K-means algorithm we need to take care of the following things: 

 While working with clustering algorithms including K-Means, it is recommended to 

standardize the data because such algorithms use distance-based measurement to 

determine the similarity between data points. 

18. Clustering Algorithms – K-means Algorithm 
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 Due to the iterative nature of K-Means and random initialization of centroids, K-

Means may stick in a local optimum and may not converge to global optimum. That 

is why it is recommended to use different initializations of centroids.  

Implementation in Python 

The following two examples of implementing K-Means clustering algorithm will help us in 

its better understanding: 

Example1 

It is a simple example to understand how k-means works. In this example, we are going 

to first generate 2D dataset containing 4 different blobs and after that will apply k-means 

algorithm to see the result.  

First, we will start by importing the necessary packages: 

%matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set()   

import numpy as np 

from sklearn.cluster import KMeans 

The following code will generate the 2D, containing four blobs: 

from sklearn.datasets.samples_generator import make_blobs 

X, y_true = make_blobs(n_samples=400, centers=4, cluster_std=0.60, 

random_state=0) 

Next, the following code will help us to visualize the dataset: 

plt.scatter(X[:, 0], X[:, 1], s=20); 

plt.show() 
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Next, make an object of KMeans along with providing number of clusters, train the model 

and do the prediction as follows:  

kmeans = KMeans(n_clusters=4) 

kmeans.fit(X) 

y_kmeans = kmeans.predict(X) 

 

Now, with the help of following code we can plot and visualize the cluster’s centers picked 

by k-means Python estimator: 

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=20, cmap='summer') 

centers = kmeans.cluster_centers_ 

plt.scatter(centers[:, 0], centers[:, 1], c='blue', s=100, alpha=0.9); 

plt.show() 
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Example 2 

Let us move to another example in which we are going to apply K-means clustering on 

simple digits dataset. K-means will try to identify similar digits without using the original 

label information. 

First, we will start by importing the necessary packages: 

%matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set()   

import numpy as np 

from sklearn.cluster import KMeans 

Next, load the digit dataset from sklearn and make an object of it. We can also find number 

of rows and columns in this dataset as follows: 

from sklearn.datasets import load_digits 

digits = load_digits() 

digits.data.shape 

Output 

(1797, 64) 

The above output shows that this dataset is having 1797 samples with 64 features. 

We can perform the clustering as we did in Example 1 above: 

kmeans = KMeans(n_clusters=10, random_state=0) 

clusters = kmeans.fit_predict(digits.data) 

kmeans.cluster_centers_.shape 

Output 

(10, 64) 

The above output shows that K-means created 10 clusters with 64 features. 

fig, ax = plt.subplots(2, 5, figsize=(8, 3)) 

centers = kmeans.cluster_centers_.reshape(10, 8, 8) 

for axi, center in zip(ax.flat, centers): 

    axi.set(xticks=[], yticks=[]) 

    axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary) 
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Output 

As output, we will get following image showing clusters centers learned by k-means. 

 

 

 

 

 

 

The following lines of code will match the learned cluster labels with the true labels found 

in them: 

from scipy.stats import mode 

labels = np.zeros_like(clusters) 

for i in range(10): 

    mask = (clusters == i) 

    labels[mask] = mode(digits.target[mask])[0] 

Next, we can check the accuracy as follows: 

from sklearn.metrics import accuracy_score 

accuracy_score(digits.target, labels) 

Output 

0.7935447968836951 

The above output shows that the accuracy is around 80%. 

Advantages and Disadvantages 

Advantages 
The following are some advantages of K-Means clustering algorithms: 

 It is very easy to understand and implement. 

 

 If we have large number of variables then, K-means would be faster than 

Hierarchical clustering. 

 

 On re-computation of centroids, an instance can change the cluster.  

 

 Tighter clusters are formed with K-means as compared to Hierarchical clustering. 

Disadvantages:  
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The following are some disadvantages of K-Means clustering algorithms: 

 It is a bit difficult to predict the number of clusters i.e. the value of k. 

 

 Output is strongly impacted by initial inputs like number of clusters (value of k) 

 

 Order of data will have strong impact on the final output. 

 

 It is very sensitive to rescaling. If we will rescale our data by means of 

normalization or standardization, then the output will completely change. 

 

 It is not good in doing clustering job if the clusters have a complicated geometric 

shape. 

Applications of K-Means Clustering Algorithm 

The main goals of cluster analysis are: 

 To get a meaningful intuition from the data we are working with. 

 

 Cluster-then-predict where different models will be built for different subgroups. 

To fulfill the above-mentioned goals, K-means clustering is performing well enough. It can 

be used in following applications: 

 Market segmentation 

 Document Clustering 

 Image segmentation 

 Image compression 

 Customer segmentation 

 Analyzing the trend on dynamic data 
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Introduction to Mean-Shift Algorithm 

As discussed earlier, it is another powerful clustering algorithm used in unsupervised 

learning. Unlike K-means clustering, it does not make any assumptions; hence it is a non-

parametric algorithm.  

Mean-shift algorithm basically assigns the datapoints to the clusters iteratively by shifting 

points towards the highest density of datapoints i.e. cluster centroid.  

The difference between K-Means algorithm and Mean-Shift is that later one does not need 

to specify the number of clusters in advance because the number of clusters will be 

determined by the algorithm w.r.t data. 

Working of Mean-Shift Algorithm 

We can understand the working of Mean-Shift clustering algorithm with the help of 

following steps: 

Step1: First, start with the data points assigned to a cluster of their own. 

Step2: Next, this algorithm will compute the centroids.  

Step3: In this step, location of new centroids will be updated. 

Step4: Now, the process will be iterated and moved to the higher density region. 

Step5: At last, it will be stopped once the centroids reach at position from where it cannot 

move further. 

Implementation in Python 

It is a simple example to understand how Mean-Shift algorithm works. In this example, 

we are going to first generate 2D dataset containing 4 different blobs and after that will 

apply Mean-Shift algorithm to see the result.  

%matplotlib inline 

import numpy as np 

from sklearn.cluster import MeanShift 

import matplotlib.pyplot as plt 

from matplotlib import style 

style.use("ggplot") 

from sklearn.datasets.samples_generator import make_blobs 

centers = [[3,3,3],[4,5,5],[3,10,10]] 

X, _ = make_blobs(n_samples = 700, centers = centers, cluster_std = 0.5) 

19. Clustering Algorithms – Mean Shift Algorithm 
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plt.scatter(X[:,0],X[:,1]) 

plt.show() 

 

 

 

 

 

 

 

 

 

ms = MeanShift() 

ms.fit(X) 

labels = ms.labels_ 

cluster_centers = ms.cluster_centers_ 

print(cluster_centers) 

n_clusters_ = len(np.unique(labels)) 

print("Estimated clusters:", n_clusters_) 

colors = 10*['r.','g.','b.','c.','k.','y.','m.'] 

for i in range(len(X)): 

    plt.plot(X[i][0], X[i][1], colors[labels[i]], markersize = 3) 

plt.scatter(cluster_centers[:,0],cluster_centers[:,1], 

            marker=".",color='k', s=20, linewidths = 5, zorder=10) 

plt.show() 

Output 

[[ 2.98462798  9.9733794  10.02629344] 

 [ 3.94758484  4.99122771  4.99349433] 

 [ 3.00788996  3.03851268  2.99183033]] 

Estimated clusters: 3 
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Advantages and Disadvantages 

Advantages 

The following are some advantages of Mean-Shift clustering algorithm: 

 It does not need to make any model assumption as like in K-means or Gaussian 

mixture. 

 

 It can also model the complex clusters which have nonconvex shape. 

 

 It only needs one parameter named bandwidth which automatically determines the 

number of clusters. 

 

 There is no issue of local minima as like in K-means. 

 

 No problem generated from outliers. 

Disadvantages 

The following are some disadvantages of Mean-Shift clustering algorithm: 

Mean-shift algorithm does not work well in case of high dimension, where number 

of clusters changes abruptly. 

 

 We do not have any direct control on the number of clusters but in some      

applications, we need a specific number of clusters. 

 

    It cannot differentiate between meaningful and meaningless modes. 
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Introduction to Hierarchical Clustering 

Hierarchical clustering is another unsupervised learning algorithm that is used to group 

together the unlabeled data points having similar characteristics. Hierarchical clustering 

algorithms falls into following two categories:  

Agglomerative hierarchical algorithms: In agglomerative hierarchical algorithms, 

each data point is treated as a single cluster and then successively merge or agglomerate 

(bottom-up approach) the pairs of clusters. The hierarchy of the clusters is represented 

as a dendrogram or tree structure.  

Divisive hierarchical algorithms: On the other hand, in divisive hierarchical algorithms, 

all the data points are treated as one big cluster and the process of clustering involves 

dividing (Top-down approach) the one big cluster into various small clusters.     

Steps to Perform Agglomerative Hierarchical Clustering 

We are going to explain the most used and important Hierarchical clustering i.e. 

agglomerative. The steps to perform the same is as follows:  

Step1: Treat each data point as single cluster. Hence, we will be having, say K clusters at 

start. The number of data points will also be K at start.   

Step2: Now, in this step we need to form a big cluster by joining two closet datapoints. 

This will result in total of K-1 clusters. 

Step3: Now, to form more clusters we need to join two closet clusters. This will result in 

total of K-2 clusters. 

Step4: Now, to form one big cluster repeat the above three steps until K would become 0 

i.e. no more data points left to join. 

Step5: At last, after making one single big cluster, dendrograms will be used to divide 

into multiple clusters depending upon the problem. 

Role of Dendrograms in Agglomerative Hierarchical Clustering 

As we discussed in the last step, the role of dendrogram starts once the big cluster is 

formed. Dendrogram will be used to split the clusters into multiple cluster of related data 

points depending upon our problem. It can be understood with the help of following 

example: 

Example1 

To understand, let us start with importing the required libraries as follows: 

%matplotlib inline 

20. Clustering Algorithms – Hierarchical Clustering 
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import matplotlib.pyplot as plt 

import numpy as np 

Next, we will be plotting the datapoints we have taken for this example: 

X = np.array([[7,8],[12,20],[17,19],[26,15],[32,37],[87,75],[73,85],  

[62,80],[73,60],[87,96],]) 

labels = range(1, 11)   

plt.figure(figsize=(10, 7))   

plt.subplots_adjust(bottom=0.1)   

plt.scatter(X[:,0],X[:,1], label='True Position') 

 

for label, x, y in zip(labels, X[:, 0], X[:, 1]):   

    plt.annotate(label,xy=(x, y), xytext=(-3, 3),textcoords='offset points', 

ha='right', va='bottom') 

plt.show()   

 
 

 

 

 

 

 

 

 

From the above diagram, it is very easy to see that we have two clusters in out datapoints 

but in the real world data, there can be thousands of clusters. Next, we will be plotting the 

dendrograms of our datapoints by using Scipy library: 

from scipy.cluster.hierarchy import dendrogram, linkage   

from matplotlib import pyplot as plt 

linked = linkage(X, 'single') 

labelList = range(1, 11) 

plt.figure(figsize=(10, 7))   
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dendrogram(linked, orientation='top',labels=labelList, 

distance_sort='descending',show_leaf_counts=True) 

plt.show()   

 

 

 

 
 

 

 

 

 

 

 

 

 

Now, once the big cluster is formed, the longest vertical distance is selected. A vertical 

line is then drawn through it as shown in the following diagram. As the horizontal line 

crosses the blue line at two points, the number of clusters would be two. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Next, we need to import the class for clustering and call its fit_predict method to predict 

the cluster. We are importing AgglomerativeClustering class of sklearn.cluster 

library: 
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from sklearn.cluster import AgglomerativeClustering 

cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', 

linkage='ward')   

cluster.fit_predict(X)    

Next, plot the cluster with the help of following code: 

plt.scatter(X[:,0],X[:,1], c=cluster.labels_, cmap='rainbow') 

 

 

 
 

 

 

 

 

 

 

 

 

The above diagram shows the two clusters from our datapoints. 

Example2 

As we understood the concept of dendrograms from the simple example discussed above, 

let us move to another example in which we are creating clusters of the data point in Pima 

Indian Diabetes Dataset by using hierarchical clustering: 

import matplotlib.pyplot as plt   

import pandas as pd   

%matplotlib inline 

import numpy as np   

from pandas import read_csv 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 
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Y = array[:,8] 

data.shape 

(768, 9) 

data.head() 

 
preg Plas Pres skin test mass pedi age class 

0 6 148 72 35 0 33.6 0.627 50 1 

1 1 85 66 29 0 26.6 0.351 31 0 

2 8 183 64 0 0 23.3 0.672 32 1 

3 1 89 66 23 94 28.1 0.167 21 0 

4 0 137 40 35 168 43.1 2.288 33 1 

 

patient_data = data.iloc[:, 3:5].values 

import scipy.cluster.hierarchy as shc 

plt.figure(figsize=(10, 7))   

plt.title("Patient Dendograms")   

dend = shc.dendrogram(shc.linkage(data, method='ward'))   
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from sklearn.cluster import AgglomerativeClustering 

cluster = AgglomerativeClustering(n_clusters=4, affinity='euclidean', 

linkage='ward')   

cluster.fit_predict(patient_data) 

plt.figure(figsize=(10, 7))   

plt.scatter(patient_data[:,0], patient_data[:,1], c=cluster.labels_, 

cmap='rainbow')   
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Machine Learning Algorithms - KNN Algorithm   
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Introduction 

K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which can be 

used for both classification as well as regression predictive problems. However, it is mainly 

used for classification predictive problems in industry. The following two properties would 

define KNN well: 

 Lazy learning algorithm: KNN is a lazy learning algorithm because it does not 

have a specialized training phase and uses all the data for training while 

classification. 

 

 Non-parametric learning algorithm: KNN is also a non-parametric learning 

algorithm because it doesn’t assume anything about the underlying data. 

Working of KNN Algorithm 

K-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new 

datapoints which further means that the new data point will be assigned a value based on 

how closely it matches the points in the training set. We can understand its working with 

the help of following steps: 

Step1: For implementing any algorithm, we need dataset. So during the first step of KNN, 

we must load the training as well as test data.  

Step2: Next, we need to choose the value of K i.e. the nearest data points. K can be any 

integer. 

Step3: For each point in the test data do the following: 

3.1: Calculate the distance between test data and each row of training data with the help 

of any of the method namely: Euclidean, Manhattan or Hamming distance. The most 

commonly used method to calculate distance is Euclidean. 

3.2: Now, based on the distance value, sort them in ascending order.  

3.3: Next, it will choose the top K rows from the sorted array. 

3.4: Now, it will assign a class to the test point based on most frequent class of these 

rows. 

Step4: End  

Example 

The following is an example to understand the concept of K and working of KNN algorithm: 

Suppose we have a dataset which can be plotted as follows:  

 

21.  KNN Algorithm – Finding Nearest Neighbors  
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Now, we need to classify new data point with black dot (at point 60,60) into blue or red 

class. We are assuming K = 3 i.e. it would find three nearest data points. It is shown in 

the next diagram: 

   

 

 

 

 

 

 

 

 

 

 

We can see in the above diagram the three nearest neighbors of the data point with black 

dot. Among those three, two of them lies in Red class hence the black dot will also be 

assigned in red class. 

Implementation in Python 

As we know K-nearest neighbors (KNN) algorithm can be used for both classification as 

well as regression. The following are the recipes in Python to use KNN as classifier as well 

as regressor: 
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KNN as Classifier 

First, start with importing necessary python packages: 

import numpy as np   

import matplotlib.pyplot as plt   

import pandas as pd   

Next, download the iris dataset from its weblink as follows: 

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data" 

Next, we need to assign column names to the dataset as follows: 

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 

'Class'] 

 
Now, we need to read dataset to pandas dataframe as follows: 

dataset = pd.read_csv(path, names=headernames) 

dataset.head()   

 

 

sepal-length sepal-width petal-length petal-width Class 

0 5.1 3.5 1.4 0.2 Iris-setosa 
1 4.9 3.0 1.4 0.2 Iris-setosa 
2 4.7 3.2 1.3 0.2 Iris-setosa 
3 4.6 3.1 1.5 0.2 Iris-setosa 
4 5.0 3.6 1.4 0.2 Iris-setosa 

 
Data Preprocessing will be done with the help of following script lines: 

X = dataset.iloc[:, :-1].values   

y = dataset.iloc[:, 4].values 

Next, we will divide the data into train and test split. Following code will split the dataset 

into 60% training data and 40% of testing data:  

from sklearn.model_selection import train_test_split   

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40) 

Next, data scaling will be done as follows:  

from sklearn.preprocessing import StandardScaler   

scaler = StandardScaler()   

scaler.fit(X_train) 

X_train = scaler.transform(X_train)   
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X_test = scaler.transform(X_test) 

Next, train the model with the help of KNeighborsClassifier class of sklearn as follows: 

from sklearn.neighbors import KNeighborsClassifier   

classifier = KNeighborsClassifier(n_neighbors=8)   

classifier.fit(X_train, y_train)   

At last we need to make prediction. It can be done with the help of following script: 

y_pred = classifier.predict(X_test)   

Next, print the results as follows: 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

result = confusion_matrix(y_test, y_pred) 

print("Confusion Matrix:") 

print(result) 

result1 = classification_report(y_test, y_pred) 

print("Classification Report:",) 

print (result1) 

result2 = accuracy_score(y_test,y_pred)  

print("Accuracy:",result2) 

Output 

Confusion Matrix: 

[[21  0  0] 

 [ 0 16  0] 

 [ 0  7 16]] 

Classification Report: 

                 precision    recall  f1-score   support 

 

    Iris-setosa       1.00      1.00      1.00        21 

Iris-versicolor       0.70      1.00      0.82        16 

 Iris-virginica       1.00      0.70      0.82        23 

 

      micro avg       0.88      0.88      0.88        60 

      macro avg       0.90      0.90      0.88        60 

 weighted avg       0.92      0.88      0.88        60 
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Accuracy: 0.8833333333333333 

KNN as Regressor 

First, start with importing necessary Python packages: 

import numpy as np   

import pandas as pd   

Next, download the iris dataset from its weblink as follows: 

path = "https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data" 

Next, we need to assign column names to the dataset as follows: 

headernames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 

'Class'] 

 
Now, we need to read dataset to pandas dataframe as follows: 

data = pd.read_csv(url, names=headernames)  

array = data.values  

X = array[:,:2] 

Y = array[:,2] 

data.shape 

 

output:(150, 5) 

Next, import KNeighborsRegressor from sklearn to fit the model: 

from sklearn.neighbors import KNeighborsRegressor 

knnr = KNeighborsRegressor(n_neighbors=10) 

knnr.fit(X, y) 

At last, we can find the MSE as follows: 

print ("The MSE is:",format(np.power(y-knnr.predict(X),2).mean())) 

Output 

The MSE is: 0.12226666666666669 
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Pros  and Cons of KNN 

Pros 

 It is very simple algorithm to understand and interpret. 

 

 It is very useful for nonlinear data because there is no assumption about data in 

this algorithm. 

 

 It is a versatile algorithm as we can use it for classification as well as regression. 

 

 It has relatively high accuracy but there are much better supervised learning 

models than KNN. 

Cons 

 It is computationally a bit expensive algorithm because it stores all the training 

data. 

 

 High memory storage required as compared to other supervised learning 

algorithms. 

 

 Prediction is slow in case of big N. 

 

 It is very sensitive to the scale of data as well as irrelevant features. 

Applications of KNN 

The following are some of the areas in which KNN can be applied successfully: 

Banking System 

KNN can be used in banking system to predict weather an individual is fit for loan approval? 

Does that individual have the characteristics similar to the defaulters one? 

Calculating Credit Ratings 

KNN algorithms can be used to find an individual’s credit rating by comparing with the 

persons having similar traits. 

Politics 

With the help of KNN algorithms, we can classify a potential voter into various classes like 

“Will Vote”, “Will not Vote”, “Will Vote to Party ‘Congress’, “Will Vote to Party ‘BJP’. 

Other areas in which KNN algorithm can be used are Speech Recognition, Handwriting 

Detection, Image Recognition and Video Recognition.  
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There are various metrics which we can use to evaluate the performance of ML algorithms, 

classification as well as regression algorithms. We must carefully choose the metrics for 

evaluating ML performance because: 

 How the performance of ML algorithms is measured and compared will be 

dependent entirely on the metric you choose. 

 

 How you weight the importance of various characteristics in the result will be 

influenced completely by the metric you choose.  

Performance Metrics for Classification Problems 

We have discussed classification and its algorithms in the previous chapters. Here, we are 

going to discuss various performance metrics that can be used to evaluate predictions for 

classification problems.  

Confusion Matrix 

It is the easiest way to measure the performance of a classification problem where the 

output can be of two or more type of classes. A confusion matrix is nothing but a table 

with two dimensions viz. “Actual” and “Predicted” and furthermore, both the dimensions 

have “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)”, “False Negatives 

(FN)” as shown below: 

 

 

 

 

 

 

 

 

Explanation of the terms associated with confusion matrix are as follows: 

 True Positives (TP): It is the case when both actual class & predicted class of 

data point is 1. 

 

 True Negatives (TN): It is the case when both actual class & predicted class of 

data point is 0. 

 

 False Positives (FP): It is the case when actual class of data point is 0 & predicted 

class of data point is 1. 

22. Machine Learning Algorithms – Performance Metrics 

False Negatives (FN) 

True Positives (TP) False Positives (FP) 

True Negatives (TN) 

Actual 

Predicted 

1 0 

1 

0 
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 False Negatives (FN): It is the case when actual class of data point is 1 & 

predicted class of data point is 0. 

We can use confusion_matrix function of sklearn.metrics to compute Confusion Matrix 

of our classification model. 

Classification Accuracy 

It is most common performance metric for classification algorithms. It may be defined as 

the number of correct predictions made as a ratio of all predictions made. We can easily 

calculate it by confusion matrix with the help of following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

We can use accuracy_score function of sklearn.metrics to compute accuracy of our 

classification model. 

Classification Report 

This report consists of the scores of Precisions, Recall, F1 and Support. They are explained 

as follows: 

Precision 

Precision, used in document retrievals, may be defined as the number of correct 

documents returned by our ML model. We can easily calculate it by confusion matrix with 

the help of following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall or Sensitivity 

Recall may be defined as the number of positives returned by our ML model. We can easily 

calculate it by confusion matrix with the help of following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity  

Specificity, in contrast to recall, may be defined as the number of negatives returned by 

our ML model. We can easily calculate it by confusion matrix with the help of following 

formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Support  

Support may be defined as the number of samples of the true response that lies in each 

class of target values. 

F1 Score 

This score will give us the harmonic mean of precision and recall. Mathematically, F1 score 

is the weighted average of the precision and recall. The best value of F1 would be 1 and 

worst would be 0. We can calculate F1 score with the help of following formula: 

𝑭𝟏 =  𝟐 ∗  (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗  𝒓𝒆𝒄𝒂𝒍𝒍) / (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝒓𝒆𝒄𝒂𝒍𝒍) 

     F1 score is having equal relative contribution of precision and recall. 

We can use classification_report function of sklearn.metrics to get the classification 

report of our classification model. 

AUC (Area Under ROC curve)  

AUC (Area Under Curve)-ROC (Receiver Operating Characteristic) is a performance metric, 

based on varying threshold values, for classification problems. As name suggests, ROC is 

a probability curve and AUC measure the separability. In simple words, AUC-ROC metric 

will tell us about the capability of model in distinguishing the classes. Higher the AUC, 

better the model. 

Mathematically, it can be created by plotting TPR (True Positive Rate) i.e. Sensitivity or 

recall vs FPR (False Positive Rate) i.e. 1-Specificity, at various threshold values. Following 

is the graph showing ROC, AUC having TPR at y-axis and FPR at x-axis: 

 

 

 

 

 

 

 

 

 

We can use roc_auc_score function of sklearn.metrics to compute AUC-ROC. 

LOGLOSS (Logarithmic Loss)  

It is also called Logistic regression loss or cross-entropy loss. It basically defined on 

probability estimates and measures the performance of a classification model where the 

input is a probability value between 0 and 1. It can be understood more clearly by 

differentiating it with accuracy. As we know that accuracy is the count of predictions 

(predicted value = actual value) in our model whereas Log Loss is the amount of 

uncertainty of our prediction based on how much it varies from the actual label. With the 

ROC TPR 

FPR 

AOC 
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help of Log Loss value, we can have more accurate view of the performance of our model. 

We can use log_loss function of sklearn.metrics to compute Log Loss. 

Example 

The following is a simple recipe in Python which will give us an insight about how we can 

use the above explained performance metrics on binary classification model: 

from sklearn.metrics import confusion_matrix  

from sklearn.metrics import accuracy_score  

from sklearn.metrics import classification_report  

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import log_loss 

X_actual = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]  

Y_predic = [1, 0, 1, 1, 1, 0, 1, 1, 0, 0]  

results = confusion_matrix(X_actual, Y_predic)  

print ('Confusion Matrix :') 

print(results)  

print ('Accuracy Score is',accuracy_score(X_actual, Y_predic))  

print ('Classification Report : ') 

print (classification_report(X_actual, Y_predic))  

print('AUC-ROC:',roc_auc_score(X_actual, Y_predic)) 

print('LOGLOSS Value is',log_loss(X_actual, Y_predic)) 

Output 

Confusion Matrix : 

[[3 3] 

 [1 3]] 

Accuracy Score is 0.6 

Classification Report :  

              precision    recall  f1-score   support 

 

           0       0.75      0.50      0.60         6 

           1       0.50      0.75      0.60         4 

   micro avg       0.60      0.60      0.60        10 

   macro avg       0.62      0.62      0.60        10 

weighted avg       0.65      0.60      0.60        10 

AUC-ROC: 0.625 

LOGLOSS Value is 13.815750437193334 
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Performance Metrics for Regression Problems 

We have discussed regression and its algorithms in previous chapters. Here, we are going 

to discuss various performance metrics that can be used to evaluate predictions for 

regression problems.  

Mean Absolute Error (MAE)  

It is the simplest error metric used in regression problems. It is basically the sum of 

average of the absolute difference between the predicted and actual values. In simple 

words, with MAE, we can get an idea of how wrong the predictions were. MAE does not 

indicate the direction of the model i.e. no indication about underperformance or 

overperformance of the model. The following is the formula to calculate MAE: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑌 − �̂�| 

Here, 𝑌=Actual Output Values 

And �̂� = Predicted Output Values. 

We can use mean_absolute_error function of sklearn.metrics to compute MAE. 

Mean Square Error (MSE)  

MSE is like the MAE, but the only difference is that the it squares the difference of actual 

and predicted output values before summing them all instead of using the absolute value. 

The difference can be noticed in the following equation: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌 − �̂�) 

Here, 𝑌=Actual Output Values 

And �̂� = Predicted Output Values. 

We can use mean_squared_error function of sklearn.metrics to compute MSE. 

R Squared (R2) 

R Squared metric is generally used for explanatory purpose and provides an indication of 

the goodness or fit of a set of predicted output values to the actual output values. The 

following formula will help us understanding it: 

𝑅2 = 1 −
1

𝑛
∑ (𝑌𝑖−𝑌�̂�)2𝑛

𝑖=1

1

𝑛
∑ (𝑌𝑖−𝑌�̅�)2𝑛

𝑖=1

  

In the above equation, numerator is MSE and the denominator is the variance in 𝑌 values. 

We can use r2_score function of sklearn.metrics to compute R squared value. 
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Example  

The following is a simple recipe in Python which will give us an insight about how we can 

use the above explained performance metrics on regression model: 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_error 

X_actual = [5, -1, 2, 10] 

Y_predic = [3.5, -0.9, 2, 9.9] 

print ('R Squared =',r2_score(X_actual, Y_predic)) 

print ('MAE =',mean_absolute_error(X_actual, Y_predic)) 

print ('MSE =',mean_squared_error(X_actual, Y_predic)) 

Output 

R Squared = 0.9656060606060606 

MAE = 0.42499999999999993 

MSE = 0.5674999999999999 
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Introduction 

In order to execute and produce results successfully, a machine learning model must 

automate some standard workflows. The process of automate these standard workflows 

can be done with the help of Scikit-learn Pipelines. From a data scientist’s perspective, 

pipeline is a generalized, but very important concept. It basically allows data flow from its 

raw format to some useful information. The working of pipelines can be understood with 

the help of following diagram: 

 

The blocks of ML pipelines are as follows: 

Data ingestion: As the name suggests, it is the process of importing the data for use in 

ML project. The data can be extracted in real time or batches from single or multiple 

systems. It is one of the most challenging steps because the quality of data can affect the 

whole ML model. 

Data Preparation: After importing the data, we need to prepare data to be used for our 

ML model. Data preprocessing is one of the most important technique of data preparation. 

ML Model Training: Next step is to train our ML model. We have various ML algorithms 

like supervised, unsupervised, reinforcement to extract the features from data, and make 

predictions.  

Model Evaluation: Next, we need to evaluate the ML model. In case of AutoML pipeline, 

ML model can be evaluated with the help of various statistical methods and business rules. 

ML Model retraining: In case of AutoML pipeline, it is not necessary that the first model 

is best one. The first model is considered as a baseline model and we can train it repeatably 

to increase model’s accuracy. 

23. Machine Learning with Pipelines – Automatic Workflows  

Data  

Ingestion 

Data 

Preparation 

ML Model 

Training 

Model 

Evaluation 

Deployment 

ML Model 

Re-training 
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Deployment: At last, we need to deploy the model. This step involves applying and 

migrating the model to business operations for their use.    

Challenges Accompanying ML Pipelines 

In order to create ML pipelines, data scientists face many challenges. These challenges fall 

into the following three categories: 

Quality of Data 

The success of any ML model depends heavily on the quality of data. If the data we are 

providing to ML model is not accurate, reliable and robust, then we are going to end with 

wrong or misleading output. 

Data Reliability 

Another challenge associated with ML pipelines is the reliability of data we are providing 

to the ML model. As we know, there can be various sources from which data scientist can 

acquire data but to get the best results, it must be assured that the data sources are 

reliable and trusted. 

Data Accessibility 

To get the best results out of ML pipelines, the data itself must be accessible which requires 

consolidation, cleansing and curation of data. As a result of data accessibility property, 

metadata will be updated with new tags.       

Modelling ML Pipeline  and Data Preparation 

Data leakage, happening from training dataset to testing dataset, is an important issue 

for data scientist to deal with while preparing data for ML model. Generally, at the time of 

data preparation, data scientist uses techniques like standardization or normalization on 

entire dataset before learning. But these techniques cannot help us from the leakage of 

data because the training dataset would have been influenced by the scale of the data in 

the testing dataset. 

By using ML pipelines, we can prevent this data leakage because pipelines ensure that 

data preparation like standardization is constrained to each fold of our cross-validation 

procedure.  

Example 

The following is an example in Python that demonstrate data preparation and model 

evaluation workflow. For this purpose, we are using Pima Indian Diabetes dataset from 

Sklearn. First, we will be creating pipeline that standardized the data. Then a Linear 

Discriminative analysis model will be created and at last the pipeline will be evaluated 

using 10-fold cross validation. 

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 
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from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

Next, we will create a pipeline with the help of the following code: 

estimators = [] 

estimators.append(('standardize', StandardScaler())) 

estimators.append(('lda', LinearDiscriminantAnalysis())) 

model = Pipeline(estimators) 

At last, we are going to evaluate this pipeline and output its accuracy as follows: 

kfold = KFold(n_splits=20, random_state=7) 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output 

0.7790148448043184 

The above output is the summary of accuracy of the setup on the dataset. 

Modelling ML Pipeline and Feature Extraction 

Data leakage can also happen at feature extraction step of ML model. That is why feature 

extraction procedures should also be restricted to stop data leakage in our training dataset. 

As in the case of data preparation, by using ML pipelines, we can prevent this data leakage 

also. FeatureUnion, a tool provided by ML pipelines can be used for this purpose.  

Example 

The following is an example in Python that demonstrates feature extraction and model 

evaluation workflow. For this purpose, we are using Pima Indian Diabetes dataset from 

Sklearn.  

First, 3 features will be extracted with PCA (Principal Component Analysis). Then, 6 

features will be extracted with Statistical Analysis. After feature extraction, result of 

multiple feature selection and extraction procedures will be combined by using 
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FeatureUnion tool. At last, a Logistic Regression model will be created, and the pipeline 

will be evaluated using 10-fold cross validation. 

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.pipeline import Pipeline 

from sklearn.pipeline import FeatureUnion 

from sklearn.linear_model import LogisticRegression 

from sklearn.decomposition import PCA 

from sklearn.feature_selection import SelectKBest 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

Next, feature union will be created as follows: 

features = [] 

features.append(('pca', PCA(n_components=3))) 

features.append(('select_best', SelectKBest(k=6))) 

feature_union = FeatureUnion(features) 

Next, pipeline will be creating with the help of following script lines: 

estimators = [] 

estimators.append(('feature_union', feature_union)) 

estimators.append(('logistic', LogisticRegression())) 

model = Pipeline(estimators) 

At last, we are going to evaluate this pipeline and output its accuracy as follows: 

kfold = KFold(n_splits=20, random_state=7) 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 
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Output 

0.7789811066126855 

The above output is the summary of accuracy of the setup on the dataset. 
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Performance Improvement with Ensembles 

Ensembles can give us boost in the machine learning result by combining several models. 

Basically, ensemble models consist of several individually trained supervised learning 

models and their results are merged in various ways to achieve better predictive 

performance compared to a single model. Ensemble methods can be divided into following 

two groups: 

Sequential ensemble methods 

As the name implies, in these kind of ensemble methods, the base learners are generated 

sequentially. The motivation of such methods is to exploit the dependency among base 

learners. 

Parallel ensemble methods 

As the name implies, in these kind of ensemble methods, the base learners are generated 

in parallel. The motivation of such methods is to exploit the independence among base 

learners. 

Ensemble Learning Methods 

The following are the most popular ensemble learning methods i.e. the methods for 

combining the predictions from different models: 

Bagging  

The term bagging is also known as bootstrap aggregation. In bagging methods, ensemble 

model tries to improve prediction accuracy and decrease model variance by combining 

predictions of individual models trained over randomly generated training samples. The 

final prediction of ensemble model will be given by calculating the average of all predictions 

from the individual estimators. One of the best examples of bagging methods are random 

forests. 

Boosting  

In boosting method, the main principle of building ensemble model is to build it 

incrementally by training each base model estimator sequentially. As the name suggests, 

it basically combine several week base learners, trained sequentially over multiple 

iterations of training data, to build powerful ensemble. During the training of week base 

learners, higher weights are assigned to those learners which were misclassified earlier. 

The example of boosting method is AdaBoost. 

 

 

24. Machine Learning – Improving Performance of ML Models 
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Voting 

In this ensemble learning model, multiple models of different types are built and some 

simple statistics, like calculating mean or median etc., are used to combine the predictions. 

This prediction will serve as the additional input for training to make the final prediction.  

Bagging Ensemble Algorithms 

The following are three bagging ensemble algorithms: 

Bagged Decision Tree:  

As we know that bagging ensemble methods work well with the algorithms that have high 

variance and, in this concern, the best one is decision tree algorithm. In the following 

Python recipe, we are going to build bagged decision tree ensemble model by using 

BaggingClassifier function of sklearn with DecisionTreeClasifier (a classification & 

regression trees algorithm) on Pima Indians diabetes dataset.  

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import BaggingClassifier 

from sklearn.tree import DecisionTreeClassifier 

Now, we need to load the Pima diabetes dataset as we did in the previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

seed = 7 

kfold = KFold(n_splits=10, random_state=seed) 

cart = DecisionTreeClassifier() 

We need to provide the number of trees we are going to build. Here we are building 150 

trees: 

num_trees = 150 
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Next, build the model with the help of following script: 

model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, 

random_state=seed) 

Calculate and print the result as follows: 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output: 

0.7733766233766234 

The output above shows that we got around 77% accuracy of our bagged decision tree 

classifier model. 

Random Forest 

It is an extension of bagged decision trees. For individual classifiers, the samples of 

training dataset are taken with replacement, but the trees are constructed in such a way 

that reduces the correlation between them. Also, a random subset of features is considered 

to choose each split point rather than greedily choosing the best split point in construction 

of each tree.  

In the following Python recipe, we are going to build bagged random forest ensemble 

model by using RandomForestClassifier class of sklearn on Pima Indians diabetes 

dataset.  

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

seed = 7 



Machine Learning with Python 

        

   151 

 

kfold = KFold(n_splits=10, random_state=seed) 

We need to provide the number of trees we are going to build. Here we are building 150 

trees with split points chosen from 5 features: 

num_trees = 150 

max_features = 5 

Next, build the model with the help of following script: 

model = RandomForestClassifier(n_estimators=num_trees, 

max_features=max_features) 

Calculate and print the result as follows: 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7629357484620642 

The output above shows that we got around 76% accuracy of our bagged random forest 

classifier model. 

Extra Trees  

It is another extension of bagged decision tree ensemble method. In this method, the 

random trees are constructed from the samples of the training dataset.  

In the following Python recipe, we are going to build extra tree ensemble model by using 

ExtraTreesClassifier class of sklearn on Pima Indians diabetes dataset.  

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import ExtraTreesClassifier 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 
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Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

seed = 7 

kfold = KFold(n_splits=10, random_state=seed) 

We need to provide the number of trees we are going to build. Here we are building 150 

trees with split points chosen from 5 features: 

num_trees = 150 

max_features = 5 

Next, build the model with the help of following script: 

model = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features) 

Calculate and print the result as follows: 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7551435406698566 

The output above shows that we got around 75.5% accuracy of our bagged extra trees 

classifier model. 

Boosting Ensemble Algorithms 

The followings are the two most common boosting ensemble algorithms: 

AdaBoost  

It is one the most successful boosting ensemble algorithm. The main key of this algorithm 

is in the way they give weights to the instances in dataset. Due to this the algorithm needs 

to pay less attention to the instances while constructing subsequent models.  

In the following Python recipe, we are going to build Ada Boost ensemble model for 

classification by using AdaBoostClassifier class of sklearn on Pima Indians diabetes 

dataset.  

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import AdaBoostClassifier 
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Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

seed = 5 

kfold = KFold(n_splits=10, random_state=seed) 

We need to provide the number of trees we are going to build. Here we are building 150 

trees with split points chosen from 5 features: 

num_trees = 50 

Next, build the model with the help of following script: 

model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) 

Calculate and print the result as follows: 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7539473684210527 

 

The output above shows that we got around 75% accuracy of our AdaBoost classifier 

ensemble model. 

Stochastic Gradient Boosting 

It is also called Gradient Boosting Machines. In the following Python recipe, we are going 

to build Stochastic Gradient Boostingensemble model for classification by using 

GradientBoostingClassifier class of sklearn on Pima Indians diabetes dataset.  

First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 
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from sklearn.ensemble import GradientBoostingClassifier 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

seed = 5 

kfold = KFold(n_splits=10, random_state=seed) 

We need to provide the number of trees we are going to build. Here we are building 150 

trees with split points chosen from 5 features: 

num_trees = 50 

Next, build the model with the help of following script: 

model = GradientBoostingClassifier(n_estimators=num_trees, random_state=seed) 

Calculate and print the result as follows: 

results = cross_val_score(model, X, Y, cv=kfold) 

print(results.mean()) 

Output 

 0.7746582365003418 

 

The output above shows that we got around 77.5% accuracy of our Gradient Boosting 

classifier ensemble model. 

Voting Ensemble Algorithms 

As discussed, voting first creates two or more standalone models from training dataset 

and then a voting classifier will wrap the model along with taking the average of the 

predictions of sub-model whenever needed new data. 

In the following Python recipe, we are going to build Voting ensemble model for 

classification by using VotingClassifier class of sklearn on Pima Indians diabetes 

dataset. We are combining the predictions of logistic regression, Decision Tree classifier 

and SVM together for a classification problem as follows: 
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First, import the required packages as follows: 

from pandas import read_csv 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.svm import SVC 

from sklearn.ensemble import VotingClassifier 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, give the input for 10-fold cross validation as follows: 

kfold = KFold(n_splits=10, random_state=7) 

Next, we need to create sub-models as follows: 

estimators = [] 

model1 = LogisticRegression() 

estimators.append(('logistic', model1)) 

model2 = DecisionTreeClassifier() 

estimators.append(('cart', model2)) 

model3 = SVC() 

estimators.append(('svm', model3)) 

Now, create the voting ensemble model by combining the predictions of above created sub 

models. 

ensemble = VotingClassifier(estimators) 

results = cross_val_score(ensemble, X, Y, cv=kfold) 

print(results.mean()) 
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Output 

0.7382262474367738 

The output above shows that we got around 74% accuracy of our voting classifier 

ensemble model. 
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Performance Improvement with Algorithm Tuning 

As we know that ML models are parameterized in such a way that their behavior can be 

adjusted for a specific problem. Algorithm tuning means finding the best combination of 

these parameters so that the performance of ML model can be improved. This process 

sometimes called hyperparameter optimization and the parameters of algorithm itself are 

called hyperparameters and coefficients found by ML algorithm are called parameters. 

Performance Improvement with Algorithm Tuning 

Here, we are going to discuss about some methods for algorithm parameter tuning 

provided by Python Scikit-learn. 

Grid Search Parameter Tuning 

It is a parameter tuning approach. The key point of working of this method is that it builds 

and evaluate the model methodically for every possible combination of algorithm 

parameter specified in a grid. Hence, we can say that this algorithm is having search 

nature.  

Example  

In the following Python recipe, we are going to perform grid search by using GridSearchCV 

class of sklearn for evaluating various alpha values for the Ridge Regression algorithm 

on Pima Indians diabetes dataset.  

First, import the required packages as follows: 

import numpy 

from pandas import read_csv 

from sklearn.linear_model import Ridge 

from sklearn.model_selection import GridSearchCV 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 

data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

25. Machine Learning – Improving Performance of ML Model 
(Contd…) 
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Next, evaluate the various alpha values as follows; 

alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) 

param_grid = dict(alpha=alphas) 

Now, we need to apply grid search on our model: 

model = Ridge() 

grid = GridSearchCV(estimator=model, param_grid=param_grid) 

grid.fit(X, Y) 

Print the result with following script line: 

print(grid.best_score_) 

print(grid.best_estimator_.alpha) 

Output: 

0.2796175593129722 

1.0 

The above output gives us the optimal score and the set of parameters in the grid that 

achieved that score. The alpha value in this case is 1.0. 

Random Search Parameter Tuning 

It is a parameter tuning approach. The key point of working of this method is that it 

samples the algorithm parameters from a random distribution for a fixed number of 

iterations.  

Example 

In the following Python recipe, we are going to perform random search by using 

RandomizedSearchCV class of sklearn for evaluating different alpha values between 0 

and 1 for the Ridge Regression algorithm on Pima Indians diabetes dataset.  

First, import the required packages as follows: 

import numpy 

from pandas import read_csv 

from scipy.stats import uniform 

from sklearn.linear_model import Ridge 

from sklearn.model_selection import RandomizedSearchCV 

Now, we need to load the Pima diabetes dataset as did in previous examples: 

path = r"C:\pima-indians-diabetes.csv" 

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 

'class'] 
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data = read_csv(path, names=headernames) 

array = data.values  

X = array[:,0:8] 

Y = array[:,8] 

Next, evaluate the various alpha values on Ridge regression algorithm as follows; 

param_grid = {'alpha': uniform()} 

model = Ridge() 

random_search = RandomizedSearchCV(estimator=model, 

param_distributions=param_grid, n_iter=50, 

random_state=7) 

random_search.fit(X, Y) 

Print the result with following script line: 

print(random_search.best_score_) 

print(random_search.best_estimator_.alpha) 

Output 

0.27961712703051084 

0.9779895119966027 

The above output gives us the optimal score just similar to the grid search. 

 


