LUCENE - TERMRANGEQUERY

Introduction

TermRangeQuery is the used when a range of textual terms are to be searched.

Class

declaration

Following is the declaration for org.apache.lucene.search.TermRangeQuery class:

public class TermRangeQuery
extends MultiTermQuery

Class

Class

constructors

Constructor & Description

TermRangeQuery
Stringfield, StringlowerTerm, StringupperTerm, booleanincludeL ower, booleanincludeUpper

Constructs a queryselecting all terms greater/equal than lowerTerm but less/equal than
upperTerm.

TermRangeQuery
Stringfield, StringlowerTerm, StringupperTerm, booleanincludeL ower, booleanincludeUpper, Collatorcollator

Constructs a query selecting all terms greater/equal than lowerTerm but less/equal than
upperTerm.

methods

Method & Description

boolean equalsObjectobj

Collator getCollator

Returns the collator used to determine range inclusion, if any.

protected FilteredTermEnum getEnumindexReaderreader

Construct the enumeration to be used, expanding the pattern term.

String getField

Returns the field name for this query.

http://www.tutorialspoint.com/lucene/lucene_termrangequery.htm

10

String getLowerTerm

Returns the lower value of this range query.

String getUpperTerm

Returns the upper value of this range query.

int hashCode

boolean includesLower

Returns true if the lower endpoint is inclusive.

boolean includesUpper

Returns true if the upper endpoint is inclusive.

String toStringsStringfield

Prints a user-readable version of this query.

Methods inherited

This class inherits methods from the following classes:

Us

e org.apache.lucene.search.MultiTermQuery
e org.apache.lucene.search.Query

e java.lang.Object

age

private void searchUsingTermRangeQuery(String searchQueryMin,

}

String searchQueryMax)throws IOException, ParseException{

searcher = new Searcher (indexDir);

long startTime = System.currentTimeMillis();

//create the term query object

Query query = new TermRangeQuery(LuceneConstants.FILE_NAME,
searchQueryMin, searchQueryMax, true, false);

//do the search

TopDocs hits = searcher.search(query);

long endTime = System.currentTimeMillis();

System.out.println(hits.totalHits +

" documents found. Time :" + (endTime - startTime) + "ms");
for(ScoreDoc scoreDoc : hits.scoreDocs) {

Document doc = searcher.getDocument(scoreDoc);

System.out.println("File: "+ doc.get(LuceneConstants.FILE_PATH));
}

searcher.close();

Example Application

Let us create a test Lucene application to test search using TermRangeQuery.

Step Description

Create a project with a name LuceneFirstApplication under a package
com.tutorialspoint.lucene as explained in the Lucene - First Application chapter. You can
also use the project created in Lucene - First Application chapter as such for this chapter
to understand searching process.

Create LuceneConstants.java and Searcher.java as explained in the Lucene - First
Application chapter. Keep rest of the files unchanged.

Create LuceneTester.java as mentioned below.

Clean and Build the application to make sure business logic is working as per the

1
2
3
4
requirements.
LuceneConstants.java

This class is used to provide various constants to be used across the sample application.

package com.tutorialspoint.lucene;

public class LuceneConstants {
public static
public static
public static
public static

Searcher.java

final String CONTENTS="contents";
final String FILE_NAME="filename";
final String FILE_PATH="filepath";
final int MAX_SEARCH = 10;

This class is used to read the indexes made on raw data and searches data using lucene library.

package com.tutorialspoint.lucene;

import java.io.File;
java.io.IOException;

import

import
import
import
import
import
import
import
import
import
import
import
import

public

org.apache
org.apache
org.apache

org.apache.

org.apache
org.apache
org.apache
org.apache
org.apache
org.apache
org.apache

org.apache.

class Sear

.lucene
.lucene
.lucene
lucene
.lucene
.lucene
.lucene
.lucene
.lucene
.lucene
.lucene
lucene

cher {

.analysis.standard.StandardAnalyzer;
.document.Document;
.index.CorruptIndexException;
.queryParser .ParseException;
.queryParser .QueryParser;
.search.IndexSearcher;
.search.Query;
.search.ScorebDoc;
.search.TopDocs;
.store.Directory;
.store.FSDirectory;
.util.Version;

IndexSearcher indexSearcher;
QueryParser queryParser;

Que

ry query,

public Searcher(String indexDirectoryPath) throws IOException{
Directory indexDirectory =

FSDirectory.open(new File(indexDirectoryPath));
indexSearcher = new IndexSearcher (indexDirectory);
queryParser = new QueryParser (Version.LUCENE_36,

LuceneConstants.CONTENTS,

new StandardAnalyzer (Version.LUCENE_36));

}

public TopDocs search(String searchQuery)
throws IOException, ParseException{
query = queryParser .parse(searchQuery);
return indexSearcher.search(query, LuceneConstants.MAX_SEARCH);

}

public TopDocs search(Query query) throws IOException, ParseException{
return indexSearcher.search(query, LuceneConstants.MAX_SEARCH);

}

public Document getDocument(ScoreDoc scoreDoc)
throws CorruptIndexException, IOException{
return indexSearcher.doc(scoreDoc.doc);

}

public void close() throws IOException{
indexSearcher .close();

}

LuceneTester.java

This class is used to test the searching capability of lucene library.

package com.tutorialspoint.lucene;
import java.io.IOException;

import org.apache.lucene.document.Document;

import org.apache.lucene.queryParser .ParseException;
import org.apache.lucene.search.Query;

import org.apache.lucene.search.ScorebDoc;

import org.apache.lucene.search.TermRangeQuery;
import org.apache.lucene.search.TopDocs;

public class LuceneTester {

String indexDir = "E:\\Lucene\\Index";
String databir = "E:\\Lucene\\Data";
Searcher searcher;

public static void main(String[] args) {
LuceneTester tester;
try {
tester = new LuceneTester();
tester.searchUsingTermRangeQuery("record2.txt", "record6.txt");
} catch (IOException e) {
e.printStackTrace();
} catch (ParseException e) {
e.printStackTrace();
}

}

private void searchUsingTermRangeQuery(String searchQueryMin,
String searchQueryMax)throws IOException, ParseException{
searcher = new Searcher (indexDir);
long startTime = System.currentTimeMillis();
//create the term query object
Query query = new TermRangeQuery (LuceneConstants.FILE_NAME,
searchQueryMin, searchQueryMax, true, false);
//do the search
TopDocs hits = searcher.search(query);
long endTime = System.currentTimeMillis();

System.out.println(hits.totalHits +
" documents found. Time :" + (endTime - startTime) + "ms");
for(ScoreDoc scoreDoc : hits.scoreDocs) {

Document doc = searcher.getDocument(scoreDoc);
System.out.println("File: "+ doc.get(LuceneConstants.FILE_PATH));

}

searcher.close();

}

Data & Index directory creation

I've used 10 text files named from recordl.txt to record10.txt containing simply names and other
details of the students and put them in the directory E:\Lucene\Data. Test Data. An index
directory path should be created as E:\Lucene\lndex. After running the indexing program during
chapter Lucene - Indexing Process, you can see the list of index files created in that folder.

Running the Program:

Once you are done with creating source, creating the raw data, data directory, index directory and
indexes, you are ready for this step which is compiling and running your program. To do this, Keep
LuceneTester.Java file tab active and use either Run option available in the Eclipse IDE or use Ctrl
+ F11 to compile and run your LuceneTester application. If everything is fine with your
application, this will print the following message in Eclipse IDE's console:

4 documents found. Time :17ms

File: E:\Lucene\Data\record2.txt
File: E:\Lucene\Data\record3.txt
File: E:\Lucene\Data\record4.txt

Cila* E:*\liirana\Nata\rarnrdk tvt

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/lucene/data.zip

