
http://www.tutorialspoint.com/lucene/lucene_phrasequery.htm Copyright © tutorialspoint.com

LUCENE - PHRASEQUERYLUCENE - PHRASEQUERY

Introduction
Phrase query is used to search documents which contain a particular sequence of terms.

Class declaration
Following is the declaration for org.apache.lucene.search.PhraseQuery class:

public class PhraseQuery
 extends Query

Class constructors

S.N. Constructor & Description

1
PhraseQuery

Constructs an empty phrase query.

Class methods

S.N. Method & Description

1
void addTermterm

Adds a term to the end of the query phrase.

2
void addTermterm, intposition

Adds a term to the end of the query phrase.

3
Weight createWeightSearchersearcher

Expert: Constructs an appropriate Weight implementation for this query.

4
boolean equalsObjecto

Returns true iff o is equal to this.

5
void extractTermsSet < Term > queryTerms

Expert: adds all terms occurring in this query to the terms set.

6
int[] getPositions

http://www.tutorialspoint.com/lucene/lucene_phrasequery.htm

Returns the relative positions of terms in this phrase.

7
int getSlop

Returns the slop.

8
Term[] getTerms

Returns the set of terms in this phrase.

9
int hashCode

Returns a hash code value for this object.

10
Query rewriteIndexReaderreader

Expert: called to re-write queries into primitive queries.

11
void setSlopints

Sets the number of other words permitted between words in query phrase.

12
String toStringStringf

Prints a user-readable version of this query.

Methods inherited
This class inherits methods from the following classes:

org.apache.lucene.search.Query

java.lang.Object

Usage

private void searchUsingPhraseQuery(String[] phrases)
 throws IOException, ParseException{
 searcher = new Searcher(indexDir);
 long startTime = System.currentTimeMillis();

 PhraseQuery query = new PhraseQuery();
 query.setSlop(0);

 for(String word:phrases){
 query.add(new Term(LuceneConstants.FILE_NAME,word));
 }

 //do the search
 TopDocs hits = searcher.search(query);
 long endTime = System.currentTimeMillis();

 System.out.println(hits.totalHits +
 " documents found. Time :" + (endTime - startTime) + "ms");
 for(ScoreDoc scoreDoc : hits.scoreDocs) {

 Document doc = searcher.getDocument(scoreDoc);
 System.out.println("File: "+ doc.get(LuceneConstants.FILE_PATH));
 }
 searcher.close();
}

Example Application
Let us create a test Lucene application to test search using PhraseQuery.

Step Description

1 Create a project with a name LuceneFirstApplication under a package
com.tutorialspoint.lucene as explained in the Lucene - First Application chapter. You can
also use the project created in Lucene - First Application chapter as such for this chapter
to understand searching process.

2 Create LuceneConstants.java and Searcher.java as explained in the Lucene - First
Application chapter. Keep rest of the files unchanged.

3 Create LuceneTester.java as mentioned below.

4 Clean and Build the application to make sure business logic is working as per the
requirements.

LuceneConstants.java

This class is used to provide various constants to be used across the sample application.

package com.tutorialspoint.lucene;

public class LuceneConstants {
 public static final String CONTENTS="contents";
 public static final String FILE_NAME="filename";
 public static final String FILE_PATH="filepath";
 public static final int MAX_SEARCH = 10;
}

Searcher.java

This class is used to read the indexes made on raw data and searches data using lucene library.

package com.tutorialspoint.lucene;

import java.io.File;
import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

public class Searcher {

 IndexSearcher indexSearcher;
 QueryParser queryParser;
 Query query;

 public Searcher(String indexDirectoryPath) throws IOException{
 Directory indexDirectory =
 FSDirectory.open(new File(indexDirectoryPath));
 indexSearcher = new IndexSearcher(indexDirectory);
 queryParser = new QueryParser(Version.LUCENE_36,
 LuceneConstants.CONTENTS,
 new StandardAnalyzer(Version.LUCENE_36));
 }

 public TopDocs search(String searchQuery)
 throws IOException, ParseException{
 query = queryParser.parse(searchQuery);
 return indexSearcher.search(query, LuceneConstants.MAX_SEARCH);
 }

 public TopDocs search(Query query) throws IOException, ParseException{
 return indexSearcher.search(query, LuceneConstants.MAX_SEARCH);
 }

 public Document getDocument(ScoreDoc scoreDoc)
 throws CorruptIndexException, IOException{
 return indexSearcher.doc(scoreDoc.doc);
 }

 public void close() throws IOException{
 indexSearcher.close();
 }
}

LuceneTester.java

This class is used to test the searching capability of lucene library.

package com.tutorialspoint.lucene;

import java.io.IOException;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.Term;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.search.PhraseQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;

public class LuceneTester {

 String indexDir = "E:\\Lucene\\Index";
 String dataDir = "E:\\Lucene\\Data";
 Searcher searcher;

 public static void main(String[] args) {
 LuceneTester tester;
 try {
 tester = new LuceneTester();
 String[] phrases = new String[]{"record1.txt"};
 tester.searchUsingPhraseQuery(phrases);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ParseException e) {
 e.printStackTrace();
 }
 }

 private void searchUsingPhraseQuery(String[] phrases)
 throws IOException, ParseException{
 searcher = new Searcher(indexDir);
 long startTime = System.currentTimeMillis();

 PhraseQuery query = new PhraseQuery();
 query.setSlop(0);

 for(String word:phrases){
 query.add(new Term(LuceneConstants.FILE_NAME,word));
 }

 //do the search
 TopDocs hits = searcher.search(query);
 long endTime = System.currentTimeMillis();

 System.out.println(hits.totalHits +
 " documents found. Time :" + (endTime - startTime) + "ms");
 for(ScoreDoc scoreDoc : hits.scoreDocs) {
 Document doc = searcher.getDocument(scoreDoc);
 System.out.println("File: "+ doc.get(LuceneConstants.FILE_PATH));
 }
 searcher.close();
 }
}

Data & Index directory creation
I've used 10 text files named from record1.txt to record10.txt containing simply names and other
details of the students and put them in the directory E:\Lucene\Data. Test Data. An index
directory path should be created as E:\Lucene\Index. After running the indexing program during
chapter Lucene - Indexing Process, you can see the list of index files created in that folder.

Running the Program:
Once you are done with creating source, creating the raw data, data directory, index directory and
indexes, you are ready for this step which is compiling and running your program. To do this, Keep
LuceneTester.Java file tab active and use either Run option available in the Eclipse IDE or use Ctrl
+ F11 to compile and run your LuceneTester application. If everything is fine with your
application, this will print the following message in Eclipse IDE's console:

1 documents found. Time :14ms
File: E:\Lucene\Data\record1.txt

Processing math: 100%

/lucene/data.zip

