LUCENE - FIELD OPTIONS

Field is the most important and the foundation unit of indexing process. It is the actual object
containing the contents to be indexed. When we add a field, lucene provides numerous controls on
the field using Field Options which states how much a field is to be searchable.

We add Documents containing Fields to IndexWriter where IndexWriter is used to update or create
indexes.

Now we'll show you a step by step process to get a kick start in understanding of various Field
options using a basic example.

Various Field Options

¢ Index.ANALYZED - First analyze then do indexing. Used for normal text indexing. Analyzer
will break the field's value into stream of tokens and each token is searcable sepearately.

e Index.NOT_ANALYZED - Don't analyze but do indexing. Used for complete text indexing for
example person's names, URL etc.

e Index.ANALYZED_NO_NORMS - Varient of Index.ANALYZED. Analyzer will break the field's
value into stream of tokens and each token is searcable sepearately but NORMs are not
stored in the indexes.NORMS are used to boost searching but are sometime memory
consuming.

¢ Index.Index.NOT_ANALYZED_NO_NORMS - Varient of Index.NOT_ANALYZED. Indexing is
done but NORMS are not stored in the indexes.

e Index.NO - Field value is not searchable.

Use of Field Options
¢ Create a method to get a lucene document from a textfile.

¢ Create various types of fields which are key value pairs containing keys as names and values
as contents to be indexed.

e Setfield to be analyzed or not. In our case, only contents is to be analyzed as it can contain
data such as a, am, are, an etc. which are not required in search operations.

¢ Add the newly created fields to the document object and return it to the caller method.

private Document getDocument(File file) throws IOException{
Document document = new Document();

//index file contents

Field contentField = new Field(LuceneConstants.CONTENTS,
new FileReader (file));

//index file name

Field fileNameField = new Field(LuceneConstants.FILE_NAME,
file.getName(),
Field.Store.YES, Field.Index.NOT_ANALYZED);

//index file path

Field filePathField = new Field(LuceneConstants.FILE_PATH,
file.getCanonicalPath(),
Field.Store.YES, Field.Index .NOT_ANALYZED);

document.add(contentField);
document.add(fileNameField);
document.add(filePathField);

http://www.tutorialspoint.com/lucene/lucene_fieldoptions.htm

return document;

}

Example Application

Let us create a test Lucene application to test indexing process.

Step Description

1 Create a project with a name LuceneFirstApplication under a package
com.tutorialspoint.lucene as explained in the Lucene - First Application chapter. You can
also use the project created in EJB - First Application chapter as such for this chapter to
understand indexing process.

2 Create LuceneConstants.java,TextFileFilter.java and Indexer.java as explained in the
Lucene - First Application chapter. Keep rest of the files unchanged.

3 Create LuceneTester.java as mentioned below.

4 Clean and Build the application to make sure business logic is working as per the

requirements.

LuceneConstants.java

This class is used to provide various constants to be used across the sample application.

package com.tutorialspoint.lucene;

public class LuceneConstants {
public static final String CONTENTS='"contents";
public static final String FILE_NAME="filename";

public static final String FILE_PATH="filepath";
public static final int MAX_SEARCH = 10;

}

TextFileFilter.java

This class is used as a .txt file filter.

package com.tutorialspoint.lucene;

import java.io.File;
import java.io.FileFilter;

public class TextFileFilter implements FileFilter {
@Override

public boolean accept(File pathname) {
return pathname.getName().toLowerCase().endswWith(".txt");
}

}

Indexer.java

This class is used to index the raw data so that we can make it searchable using lucene library.

package com.tutorialspoint.lucene;

import java.io.File;
import java.io.FileFilter;
import java.io.FileReader;
import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer ;
import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.FSDirectory;

import org.apache.lucene.util.Version;

public class Indexer {
private IndexWriter writer;

public Indexer(String indexDirectoryPath) throws IOException{
//this directory will contain the indexes
Directory indexDirectory =
FSDirectory.open(new File(indexDirectoryPath));

//create the indexer

writer = new IndexWriter (indexDirectory,
new StandardAnalyzer (Version.LUCENE_36), true,
IndexWriter .MaxFieldLength.UNLIMITED);

}

public void close() throws CorruptIndexException, IOException{
writer.close();
}

private Document getDocument(File file) throws IOException{
Document document = new Document();

//index file contents

Field contentField = new Field(LuceneConstants.CONTENTS,
new FileReader(file));

//index file name

Field fileNameField = new Field(LuceneConstants.FILE_NAME,
file.getName(),
Field.Store.YES, Field.Index.NOT_ANALYZED);

//index file path

Field filePathField = new Field(LuceneConstants.FILE_PATH,
file.getCanonicalPath(),
Field.Store.YES, Field.Index .NOT_ANALYZED);

document.add(contentField);
document.add(fileNameField);
document.add(filePathField);

return document;

}

private void indexFile(File file) throws IOException{
System.out.println("Indexing "+file.getCanonicalPath());
Document document = getDocument(file);
writer.addDocument(document);

}

public int createIndex(String dataDirPath, FileFilter filter)
throws IOException{
//get all files in the data directory
File[] files = new File(dataDirPath).listFiles();

for (File file : files) {
if(!file.isDirectory()
&& !file.isHidden()
&& file.exists()
&& file.canRead()
&& filter.accept(file)
A

indexFile(file);

}

}
return writer.numDocs();
}
}
LuceneTester.java

This class is used to test the indexing capability of lucene library.

package com.tutorialspoint.lucene;
import java.io.IOException;
public class LuceneTester {

String indexDir = "E:\\Lucene\\Index";
String databir = "E:\\Lucene\\Data";
Indexer indexer;

public static void main(String[] args) {

LuceneTester tester;

try {
tester = new LuceneTester();
tester.createIndex();

} catch (IOException e) {
e.printStackTrace();

}

}

private void createIndex() throws IOException{
indexer = new Indexer(indexDir);
int numIndexed;
long startTime = System.currentTimeMillis();
numIndexed = indexer.createIndex(dataDir, new TextFileFilter());
long endTime = System.currentTimeMillis();
indexer.close();
System.out.println(numIndexed+" File indexed, time taken:
+(endTime-startTime)+" ms");

}

Data & Index directory creation

I've used 10 text files named from recordl.txt to record10.txt containing simply names and other
details of the students and put them in the directory E:\Lucene\Data. Test Data. An index
directory path should be created as E:\Lucene\lndex. After running this program, you can see the
list of index files created in that folder.

Running the Program:

Once you are done with creating source, creating the raw data, data directory and index directory,
you are ready for this step which is compiling and running your program. To do this, Keep
LuceneTester.Java file tab active and use either Run option available in the Eclipse IDE or use Ctrl
+ F11 to compile and run your LuceneTester application. If everything is fine with your
application, this will print the following message in Eclipse IDE's console:

Indexing E:\Lucene\Data\recordl.txt
Indexing E:\Lucene\Data\recordl0.txt
Indexing E:\Lucene\Data\record2.txt
Indexing E:\Lucene\Data\record3.txt
Indexing E:\Lucene\Data\record4.txt
Indexing E:\Lucene\Data\record5.txt
Indexing E:\Lucene\Data\record6.txt
Indexing E:\Lucene\Data\record7.txt
Indexing E:\Lucene\Data\record8.txt
Indexing E:\Lucene\Data\record9.txt

/lucene/data.zip

10 File indexed,

Once you've run the program successfully, you will have following contentin your index

directory:

Mame

(] Oufdt
|| _O.fdx
L] &fnm

L] Bfrg

@ o

L Opmx

L] Ot

L] _Gtis

|| segments.gen

|| segments’ 1

time taken:

109 ms

Date modified

5/25,/2014 315 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 315 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25,/2014 315 PM
5/25/2014 3:15 PM

Type

FOT File
FOX File
FMM File
FRQ File

Mixed Mode CD C...

PRX File
TII File
TIS File
GEM File
File

Size

1 KB
1KB
1 KB
1KB
1KB
1KB
1 KB
1 KB
1 KB
1KB

