LUCENE - DELETE DOCUMENT OPERATION

Delete document is another important operation as part of indexing process.This operation is used
when already indexed contents are updated and indexes become invalid or indexes become very
large in size then in order to reduce the size and update the index, delete operations are carried

out.

We delete Documents containing Fields to IndexWriter where IndexWriter is used to update

inde

Now

Xes.

we'll show you a step by step process to get a kick start in understanding of delete document

using a basic example.

Del

ete a document from an index.

Create a method to delete a lucene document of an obsolete text file.

private void deleteDocument(File file) throws IOException{

//delete indexes for a file

writer.deleteDocument(new Term(LuceneConstants.FILE_NAME, file.getName()));

writer.commit();

}

System.out.println("index contains deleted files: "+writer.hasDeletions());
System.out.println("index contains documents: "+writer.maxDoc());
System.out.println("index contains deleted documents: "+writer.numDoc());

Create a IndexWriter

pri

IndexWriter class acts as a core component which creates/updates indexes during indexing
process.

Create object of IndexWriter.

Create a lucene directory which should point to location where indexes are to be stored.

Initialize the IndexWricrter object created with the index directory, a standard analyzer
having version information and other required/optional parameters.

vate IndexWriter writer;

public Indexer(String indexDirectoryPath) throws IOException{

}

//this directory will contain the indexes
Directory indexDirectory =
FSDirectory.open(new File(indexDirectoryPath));
//create the indexer
writer = new IndexWriter (indexDirectory,
new StandardAnalyzer (Version.LUCENE_36), true,
IndexWriter .MaxFieldLength.UNLIMITED);

Delete document and start reindexing process

Following two are the ways to delete the document.

o deleteDocumentsTerm - Delete all the documents containing the term.

¢ deleteDocumentsTerm[] - Delete all the documents containing any of the terms in the array.

http://www.tutorialspoint.com/lucene/lucene_deletedocument.htm

o deleteDocumentsQuery - Delete all the documents matching the query.
o deleteDocumentsQuery[] - Delete all the documents matching the query in the array.

e deleteAll - Delete all the documents.

private void indexFile(File file) throws IOException{
System.out.println("Deleting index for "+file.getCanonicalPath());
deleteDocument(file);

}

Example Application

Let us create a test Lucene application to test indexing process.

Step Description

1 Create a project with a name LuceneFirstApplication under a package
com.tutorialspoint.lucene as explained in the Lucene - First Application chapter. You can
also use the project created in EJB - First Application chapter as such for this chapter to
understand indexing process.

2 Create LuceneConstants.java,TextFileFilter.java and Indexer.java as explained in the
Lucene - First Application chapter. Keep rest of the files unchanged.

3 Create LuceneTester.java as mentioned below.

4 Clean and Build the application to make sure business logic is working as per the

requirements.

LuceneConstants.java

This class is used to provide various constants to be used across the sample application.

package com.tutorialspoint.lucene;

public class LuceneConstants {
public static final String CONTENTS='"contents";
public static final String FILE_NAME="filename";

public static final String FILE_PATH="filepath";
public static final int MAX_SEARCH = 10;

}

TextFileFilter.java

This class is used as a .txt file filter.

package com.tutorialspoint.lucene;

import java.io.File;
import java.io.FileFilter;

public class TextFileFilter implements FileFilter {
@Override

public boolean accept(File pathname) {
return pathname.getName().toLowerCase().endswWith(".txt");
}

}

Indexer.java

This class is used to index the raw data so that we can make it searchable using lucene library.

package com.tutorialspoint.lucene;

import
import
import
import

import
import
import
import
import
import
import
import
import

public

java.io.File;
java.io.FileFilter;
java.io.FileReader;
java.io.IOException;

org.apache.lucene.analysis.standard.StandardAnalyzer;
org.apache.lucene.document.Document;
org.apache.lucene.document.Field;
org.apache.lucene.index.CorruptIndexException;
org.apache.lucene.index.IndexWriter;
org.apache.lucene.index.Term;
org.apache.lucene.store.Directory;
org.apache.lucene.store.FSDirectory;
org.apache.lucene.util.Version;

class Indexer {

private IndexWriter writer;

public Indexer(String indexDirectoryPath) throws IOException{

}

//this directory will contain the indexes
Directory indexDirectory =
FSDirectory.open(new File(indexDirectoryPath));

//create the indexer

writer = new IndexWriter (indexDirectory,

new StandardAnalyzer (Version.LUCENE_36), true,
IndexWriter .MaxFieldLength.UNLIMITED);

public void close() throws CorruptIndexException, IOException{

}

writer.close();

private void deleteDocument(File file) throws IOException{

wri

}

pri

}

//delete indexes for a file

writer.deleteDocuments(

new Term (LuceneConstants.FILE_NAME, file.getName()));
ter.commit();
vate void indexFile(File file) throws IOException{

System.out.println("Deleting index: "+file.getCanonicalPath());
deleteDocument(file);

public int createIndex(String dataDirPath, FileFilter filter)

throws IOException{
//get all files in the data directory
File[] files = new File(dataDirPath).listFiles();

for (File file : files) {
if(!file.isDirectory()
&& !'file.isHidden()
&& file.exists()
&& file.canRead()
&& filter.accept(file)

H

3
3

return writer.numbDocs();

indexFile(file);

LuceneTester.java

This class is used to test the indexing capability of lucene library.

package com.tutorialspoint.lucene;
import java.io.IOException;
public class LuceneTester {

String indexDir = "E:\\Lucene\\Index";
String dataDir = "E:\\Lucene\\Data";
Indexer indexer;

public static void main(String[] args) {

LuceneTester tester;

try {
tester = new LuceneTester();
tester.createIndex();

} catch (IOException e) {
e.printStackTrace();

}

}

private void createIndex() throws IOException{
indexer = new Indexer (indexDir);
int numIndexed;
long startTime = System.currentTimeMillis();
numIndexed = indexer.createIndex(dataDir, new TextFileFilter());
long endTime = System.currentTimeMillis();
indexer.close();

}

Data & Index directory creation

I've used 10 text files named from recordl.txt to record10.txt containing simply names and other
details of the students and put them in the directory E:\Lucene\Data. Test Data. An index
directory path should be created as E:\Lucene\lndex. After running this program, you can see the
list of index files created in that folder.

Running the Program:

Once you are done with creating source, creating the raw data, data directory and index directory,
you are ready for this step which is compiling and running your program. To do this, Keep
LuceneTester.Java file tab active and use either Run option available in the Eclipse IDE or use Ctrl
+ F11 to compile and run your LuceneTester application. If everything is fine with your
application, this will print the following message in Eclipse IDE's console:

:\Lucene\Data\recordl.txt
:\Lucene\Data\record10.txt
:\Lucene\Data\record2.txt
:\Lucene\Data\record3.txt
:\Lucene\Data\record4.txt
:\Lucene\Data\record5.txt
:\Lucene\Data\record6.txt
:\Lucene\Data\record7.txt
Deleting index E:\Lucene\Data\record8.txt
Deleting index E:\Lucene\Data\record9.txt
10 File indexed, time taken: 109 ms

Deleting index
Deleting index
Deleting index
Deleting index
Deleting index
Deleting index
Deleting index
Deleting index

mmmmmimimimimm

Once you've run the program successfully, you will have following contentin your index
directory:

L
=k
m

Mame Date modified Type

| _0.fdt 5/25/2014 3:15 PM FOT File LK

m

/lucene/data.zip

L] D felx

|;] Ofnm

|_| _0.frg

@ o

U Dprx

| | 0

|| Dtis

|_, segments.gen

(RS |

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 2:15 PM
5/25/2014 315 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM
5/25/2014 3:15 PM

FOX File
FMM File
FRQ File

Mixed Mode CD C...

PRX File
TII File
TIS File
GEM File
File

1KB
1 KB
1 KB
1KB
1KB
1 KB
1KB
1 KB
1KB

