LUA - ITERATORS

Iterator is a construct that enables you to traverse through the elements of the so called collection
or container. In Lua, these collections often refer to tables, which are used to create various data
structures like array.

Generic For Iterator

A generic for iterator provides the key value pairs of each element in the collection. A simple
example is given below.

array = {"Lua", "Tutorial"}
for key,value in ipairs(array)
do

print(key, value)
end

When we run the above code, we will get the following output —

1 Lua
2 Tutorial

The above example uses the default ipairs iterator function provided by Lua.

In Lua we use functions to represent iterators. Based on the state maintenance in these iterator
functions, we have two main types —

e Stateless Iterators
o Stateful Iterators
Stateless Iterators
By the name itself we can understand that this type of iterator function does not retain any state.

Let us now see an example of creating our own iterator using a simple function that prints the
squares of n numbers.

function square(iteratorMaxCount, currentNumber)

if currentNumber<iteratorMaxCount
then

currentNumber = currentNumber+1

return currentNumber, currentNumber*currentNumber
end

end
for i,n in square, 3,0
do

print(i, n)
end

When we run the above program, we will get the following output.

wN R
© s R

The above code can be modified slightly to mimic the way ipairs function of iterators work. It is
shown below.


http://www.tutorialspoint.com/lua/lua_iterators.htm

function square(iteratorMaxCount, currentNumber)

if currentNumber<iteratorMaxCount
then

currentNumber = currentNumber+1

return currentNumber, currentNumber*currentNumber
end

end

function squares(iteratorMaxCount)
return square, iteratorMaxCount, 0
end

for i,n in squares(3)
do

print(i, n)
end

When we run the above program, we will get the following output.

W N R
© bR

Stateful Iterators

The previous example of iteration using function does not retain the state. Each time the function
is called, it returns the next element of the collection based on a second variable sent to the
function. To hold the state of the current element, closures are used. Closure retain variables
values across functions calls. To create a new closure, we create two functions including the
closure itself and a factory, the function that creates the closure.

Let us now see an example of creating our own iterator in which we will be using closures.

array = {"Lua", "Tutorial"}
function elementIterator (collection)

local index = 0
local count = #collection

-- The closure function is returned

return function ()
index = index + 1

if index <= count

then
-- return the current element of the iterator
return collection[index]

end

end
end
for element in elementIterator (array)
do

print(element)
end

When we run the above program, we will get the following output.

Lua
Tutorial



In the above example, we can see that elementlterator has another method inside that uses the
local external variables index and count to return each of the element in the collection by
incrementing the index each time the function is called.

We can create our own function iterators using closure as shown above and it can return multiple
elements for each of the time we iterate through the collection.



