
http://www.tutorialspoint.com/lua/lua_coroutines.htm Copyright © tutorialspoint.com

LUA - COROUTINESLUA - COROUTINES

Introduction
Coroutines are collaborative in nature, which allows two or more methods to execute in a
controlled manner. With coroutines, at any given time, only one coroutine runs and this running
coroutine only suspends its execution when it explicitly requests to be suspended.

The above definition may look vague. Let us assume we have two methods, one the main program
method and a coroutine. When we call a coroutine using resume function, its starts executing and
when we call yield function, it suspends executing. Again the same coroutine can continue
executing with another resume function call from where it was suspended. This process can
continue till the end of execution of the coroutine.

Functions Available in Coroutines
The following table lists all the available functions for coroutines in Lua and their corresponding
use.

S.N. Method & Purpose

1.
coroutine.create f

Creates a new coroutine with a function f and returns an object of type "thread".

2.
coroutine.resume co[, val1, . . .]

Resumes the coroutine co and passes the parameters if any. It returns the status of
operation and optional other return values.

3.
coroutine.running

Returns the running coroutine or nil if called in the main thread.

4.
coroutine.status co

Returns one of the values from running, normal, suspended or dead based on the state
of the coroutine.

5.
coroutine.wrap f

Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead
of returning the coroutine itself, it returns a function that, when called, resumes the
coroutine.

6.
coroutine.yield . . .

Suspends the running coroutine. The parameter passed to this method acts as additional
return values to the resume function.

http://www.tutorialspoint.com/lua/lua_coroutines.htm

Example
Let's look at an example to understand the concept of coroutines.

co = coroutine.create(function (value1,value2)
 local tempvar3 =10
 print("coroutine section 1", value1, value2, tempvar3)

 local tempvar1 = coroutine.yield(value1+1,value2+1)
 tempvar3 = tempvar3 + value1
 print("coroutine section 2",tempvar1 ,tempvar2, tempvar3)

 local tempvar1, tempvar2= coroutine.yield(value1+value2, value1-value2)
 tempvar3 = tempvar3 + value1
 print("coroutine section 3",tempvar1,tempvar2, tempvar3)
 return value2, "end"

end)

print("main", coroutine.resume(co, 3, 2))
print("main", coroutine.resume(co, 12,14))
print("main", coroutine.resume(co, 5, 6))
print("main", coroutine.resume(co, 10, 20))

When we run the above program, we will get the following output.

coroutine section 1 3 2 10
main true 4 3
coroutine section 2 12 nil 13
main true 5 1
coroutine section 3 5 6 16
main true 2 end
main false cannot resume dead coroutine

What Does the Above Example Do?
As mentioned before, we use the resume function to start the operation and yield function to stop
the operation. Also, you can see that there are multiple return values received by resume function
of coroutine.

First, we create a coroutine and assign it to a variable name co and the coroutine takes in
two variables as its parameters.

When we call the first resume function, the values 3 and 2 are retained in the temporary
variables value1 and value2 till the end of the coroutine.

To make you understand this, we have used a tempvar3, which is 10 initially and it gets
updated to 13 and 16 by the subsequent calls of the coroutines since value1 is retained as 3
throughout the execution of the coroutine.

The first coroutine.yield returns two values 4 and 3 to the resume function, which we get by
updating the input params 3 and 2 in the yield statement. It also receives the true/false
status of coroutine execution.

Another thing about coroutines is how the next params of resume call is taken care of, in the
above example; you can see that the variable the coroutine.yield receives the next call
params which provides a powerful way of doing new operation with the retentionship of
existing param values.

Finally, once all the statements in the coroutines are executed, the subsequent calls will
return in false and "cannot resume dead coroutine" statement as response.

Another Coroutine Example

Let us look at a simple coroutine that returns a number from 1 to 5 with the help of yield function
and resume function. It creates coroutine if not available or else resumes the existing coroutine.

function getNumber()
 local function getNumberHelper()
 co = coroutine.create(function ()
 coroutine.yield(1)
 coroutine.yield(2)
 coroutine.yield(3)
 coroutine.yield(4)
 coroutine.yield(5)
 end)
 return co
 end

 if(numberHelper) then
 status, number = coroutine.resume(numberHelper);

 if coroutine.status(numberHelper) == "dead" then
 numberHelper = getNumberHelper()
 status, number = coroutine.resume(numberHelper);
 end

 return number
 else
 numberHelper = getNumberHelper()
 status, number = coroutine.resume(numberHelper);
 return number
 end

end

for index = 1, 10 do
 print(index, getNumber())
end

When we run the above program, we will get the following output.

1 1
2 2
3 3
4 4
5 5
6 1
7 2
8 3
9 4
10 5

There is often a comparison of coroutines with the threads of multiprogramming languages, but
we need to understand that coroutines have similar features of thread but they execute only one
at a time and never execute concurrently.

We control the program execution sequence to meet the needs with the provision of retaining
certain information temporarily. Using global variables with coroutines provides even more
flexibility to coroutines.
Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

