
http://www.tutorialspoint.com/lisp/lisp_variables.htm Copyright © tutorialspoint.com

LISP - VARIABLESLISP - VARIABLES

In LISP, each variable is represented by a symbol. The variable's name is the name of the symbol
and it is stored in the storage cell of the symbol.

Global Variables
Global variables have permanent values throughout the LISP system and remain in effect until a
new value is specified.

Global variables are generally declared using the defvar construct.

For example

(defvar x 234)
(write x)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is

234

Since there is no type declaration for variables in LISP, you directly specify a value for a symbol
with the setq construct.

For Example

->(setq x 10)

The above expression assigns the value 10 to the variable x. You can refer to the variable using
the symbol itself as an expression.

The symbol-value function allows you to extract the value stored at the symbol storage place.

For Example
Create new source code file named main.lisp and type the following code in it.

(setq x 10)
(setq y 20)
(format t "x = ~2d y = ~2d ~%" x y)

(setq x 100)
(setq y 200)
(format t "x = ~2d y = ~2d" x y)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = 10 y = 20
x = 100 y = 200

Local Variables
Local variables are defined within a given procedure. The parameters named as arguments within
a function definition are also local variables. Local variables are accessible only within the
respective function.

Like the global variables, local variables can also be created using the setq construct.

http://www.tutorialspoint.com/lisp/lisp_variables.htm

There are two other constructs - let and prog for creating local variables.

The let construct has the following syntax.

(let ((var1 val1) (var2 val2).. (varn valn)))

Where var1, var2, ..varn are variable names and val1, val2, .. valn are the initial values assigned to
the respective variables.

When let is executed, each variable is assigned the respective value and lastly the s-expression is
evaluated. The value of the last expression evaluated is returned.

If you don't include an initial value for a variable, it is assigned to nil.

Example
Create new source code file named main.lisp and type the following code in it.

(let ((x 'a) (y 'b)(z 'c))
(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = A y = B z = C

The prog construct also has the list of local variables as its first argument, which is followed by the
body of the prog, and any number of s-expressions.

The prog function executes the list of s-expressions in sequence and returns nil unless it
encounters a function call named return. Then the argument of the return function is evaluated
and returned.

Example
Create new source code file named main.lisp and type the following code in it.

(prog ((x '(a b c))(y '(1 2 3))(z '(p q 10)))
(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = (A B C) y = (1 2 3) z = (P Q 10)

