
http://www.tutorialspoint.com/lisp/lisp_quick_guide.htm Copyright © tutorialspoint.com

LISP - QUICK GUIDELISP - QUICK GUIDE

LISP - OVERVIEWLISP - OVERVIEW
John McCarthy invented LISP in 1958, shortly after the development of FORTRAN. It was first
implement by Steve Russell on an IBM 704 computer.

It is particularly suitable for Artificial Intelligence programs, as it processes symbolic information
effectively.

Common Lisp originated, during the 1980s and 1990s, in an attempt to unify the work of several
implementation groups, which were successors to Maclisp like ZetaLisp and NIL
NewImplementationofLisp etc.

It serves as a common language, which can be easily extended for specific implementation.

Programs written in Common LISP do not depend on machine-specific characteristics, such as
word length etc.

Features of Common LISP
It is machine-independent

It uses iterative design methodology, and easy extensibility.

It allows updating the programs dynamically.

It provides high level debugging.

It provides advanced object-oriented programming.

It provides convenient macro system.

It provides wide-ranging data types like, objects, structures, lists, vectors, adjustable arrays,
hash-tables, and symbols.

It is expression-based.

It provides an object-oriented condition system.

It provides complete I/O library.

It provides extensive control structures.

Applications Built in LISP
Large successful applications built in Lisp.

Emacs
G2
AutoCad
Igor Engraver
Yahoo Store

LISP - ENVIRONMENTLISP - ENVIRONMENT
CLISP is the GNU Common LISP multi-architechtural compiler used for setting up LISP in Windows.
The windows version emulates a unix environment using MingW under windows. The installer takes
care of this and automatically adds clisp to the windows PATH variable.

http://www.tutorialspoint.com/lisp/lisp_quick_guide.htm

You can get the latest CLISP for Windows from here -
http://sourceforge.net/projects/clisp/files/latest/download

It creates a shortcut in the Start Menu by default, for the line-by-line interpreter.

How to use CLISP
During installation, clisp is automatically added to your PATH variable if you select the option
RECOMMENDED This means that you can simply open a new Command Prompt window and type
“clisp” to bring up the compiler.

To run a *.lisp or *.lsp file, simply use -

clisp hello.lisp

LISP - PROGRAM STRUCTURELISP - PROGRAM STRUCTURE
LISP expressions are called symbolic expressions or s-expressions. The s-expressions are
composed of three valid objects, atoms, lists and strings.

Any s-expression is a valid program.

LISP programs run either on an interpreter or as compiled code.

The interpreter checks the source code in a repeated loop, which is also called the read-evaluate-
print loop REPL. It reads the program code, evaluates it, and prints the values returned by the
program.

A Simple Program
Let us write an s-expression to find the sum of three numbers 7, 9 and 11. To do this, we can type
at the interpreter prompt.

(+7911)

http://sourceforge.net/projects/clisp/files/latest/download

LISP returns the result:

27

If you would like to run the same program as a compiled code, then create a LISP source code file
named myprog.lisp and type the following code in it.

(write (+ 7 9 11))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

27

LISP Uses Prefix Notation
You might have noted that LISP uses prefix notation.

In the above program the + symbol works as the function name for the process of summation of
the numbers.

In prefix notation, operators are written before their operands. For example, the expression,

a * (b + c) / d

will be written as:

(/ (* a (+ b c)) d)

Let us take another example, let us write code for converting Fahrenheit temp of 60o F to the
centigrade scale:

The mathematical expression for this conversion will be:

(60 * 9 / 5) + 32

Create a source code file named main.lisp and type the following code in it.

(write(+ (* (/ 9 5) 60) 32))

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is:

140

Evaluation of LISP Programs
Evaluation of LISP programs has two parts:

Translation of program text into Lisp objects by a reader program

Implementation of the semantics of the language in terms of these objects by an evaluator
program

The evaluation process takes the following steps:

The reader translates the strings of characters to LISP objects or s-expressions.

The evaluator defines syntax of Lisp forms that are built from s-expressions. This second
level of evaluation defines a syntax that determines which s-expressions are LISP forms.

The evaluator works as a function that takes a valid LISP form as an argument and returns a
value. This is the reason why we put the LISP expression in parenthesis, because we are
sending the entire expression/form to the evaluator as arguments.

The 'Hello World' Program
Learning a new programming language doesn't really take off until you learn how to greet the
entire world in that language, right!

So, please create new source code file named main.lisp and type the following code in it.

(write-line "Hello World")

(write-line "I am at 'Tutorials Point'! Learning LISP")

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

Hello World

I am at 'Tutorials Point'! Learning LISP

LISP - BASIC SYNTAXLISP - BASIC SYNTAX
Basic Building Blocks in LISP
LISP programs are made up of three basic building blocks:

atom
list
string

An atom is a number or string of contiguous characters. It includes numbers and special
characters.

Following are examples of some valid atoms:

hello-from-tutorials-point
name
123008907
hello
Block#221
abc123

A list is a sequence of atoms and/or other lists enclosed in parentheses.

Following are examples of some valid lists:

(i am a list)
(a (a b c) d e fgh)
(father tom (susan bill joe))
(sun mon tue wed thur fri sat)
()

A string is a group of characters enclosed in double quotation marks.

Following are examples of some valid strings:

" I am a string"
"a ba c d efg #$%^&!"
"Please enter the following details :"
"Hello from 'Tutorials Point'! "

Adding Comments
The semicolon symbol ; is used for indicating a comment line.

For Example,

(write-line "Hello World") ; greet the world

; tell them your whereabouts

(write-line "I am at 'Tutorials Point'! Learning LISP")

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

Hello World

I am at 'Tutorials Point'! Learning LISP

Some Notable Points before Moving to Next
Following are some of the important points to note:

The basic numeric operations in LISP are +, -, *, and /

LISP represents a function call fx as fx, for example cos45 is written as cos 45

LISP expressions are case-insensitive, cos 45 or COS 45 are same.

LISP tries to evaluate everything, including the arguments of a function. Only three types of
elements are constants and always return their own value

Numbers

The letter t, that stands for logical true.

The value nil, that stands for logical false, as well as an empty list.

Little More about LISP Forms
In the previous chapter, we mentioned that the evaluation process of LISP code takes the following
steps.

The reader translates the strings of characters to LISP objects or s-expressions.

The evaluator defines syntax of Lisp forms that are built from s-expressions. This second
level of evaluation defines a syntax that determines which s-expressions are LISP forms.

Now, a LISP forms could be.

An Atom
An empty or non-list
Any list that has a symbol as its first element

The evaluator works as a function that takes a valid LISP form as an argument and returns a value.
This is the reason why we put the LISP expression in parenthesis, because we are sending the
entire expression/form to the evaluator as arguments.

Naming Conventions in LISP
Name or symbols can consist of any number of alphanumeric characters other than whitespace,
open and closing parentheses, double and single quotes, backslash, comma, colon, semicolon and
vertical bar. To use these characters in a name, you need to use escape character (\).

A name can have digits but not entirely made of digits, because then it would be read as a

number. Similarly a name can have periods, but can't be made entirely of periods.

Use of Single Quotation Mark
LISP evaluates everything including the function arguments and list members.

At times, we need to take atoms or lists literally and don't want them evaluated or treated as
function calls.

To do this, we need to precede the atom or the list with a single quotation mark.

The following example demonstrates this.

Create a file named main.lisp and type the following code into it.

(write-line "single quote used, it inhibits evaluation")
(write '(* 2 3))
(write-line " ")
(write-line "single quote not used, so expression evaluated")
(write (* 2 3))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

single quote used, it inhibits evaluation
(* 2 3)
single quote not used, so expression evaluated
6

LISP - DATA TYPESLISP - DATA TYPES
In LISP, variables are not typed, but data objects are.

LISP data types can be categorized as.

Scalar types - for example, number types, characters, symbols etc.

Data structures - for example, lists, vectors, bit-vectors, and strings.

Any variable can take any LISP object as its value, unless you have declared it explicitly.

Although, it is not necessary to specify a data type for a LISP variable, however, it helps in certain
loop expansions, in method declarations and some other situations that we will discuss in later
chapters.

The data types are arranged into a hierarchy. A data type is a set of LISP objects and many objects
may belong to one such set.

The typep predicate is used for finding whether an object belongs to a specific type.

The type-of function returns the data type of a given object.

Type Specifiers in LISP
Type specifiers are system-defined symbols for data types.

array fixnum package simple-string

atom float pathname simple-vector

bignum function random-state single-float

bit hash-table ratio standard-char

bit-vector integer rational stream

character keyword readtable string

[common] list sequence [string-char]

compiled-function long-float short-float symbol

complex nill signed-byte t

cons null simple-array unsigned-byte

double-float number simple-bit-vector vector

Apart from these system-defined types, you can create your own data types. When a structure type
is defined using defstruct function, the name of the structure type becomes a valid type symbol.

Example 1
Create new source code file named main.lisp and type the following code in it.

(setq x 10)
(setq y 34.567)
(setq ch nil)
(setq n 123.78)
(setq bg 11.0e+4)
(setq r 124/2)
(print x)
(print y)
(print n)
(print ch)
(print bg)
(print r)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

10
34.567
123.78
NIL
110000.0
62

Example 2
Next let's check the types of the variables used in the previous example. Create new source code
file named main. lisp and type the following code in it.

(setq x 10)
(setq y 34.567)
(setq ch nil)
(setq n 123.78)
(setq bg 11.0e+4)
(setq r 124/2)
(print (type-of x))
(print (type-of y))
(print (type-of n))
(print (type-of ch))
(print (type-of bg))
(print (type-of r))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

(INTEGER 0 281474976710655)

SINGLE-FLOAT
SINGLE-FLOAT
NULL
SINGLE-FLOAT
(INTEGER 0 281474976710655)

LISP - MACROSLISP - MACROS
Macros allow you to extend the syntax of standard LISP.

Technically, a macro is a function that takes an s-expression as arguments and returns a LISP
form, which is then evaluated.

Defining a Macro
In LISP, a named macro is defined using another macro named defmacro. Syntax for defining a
macro is:

(defmacro macro-name (parameter-list))
"Optional documentation string."
body-form

The macro definition consists of the name of the macro, a parameter list, an optional
documentation string, and a body of Lisp expressions that defines the job to be performed by the
macro.

Example
Let us write a simple macro named setTo10, which will take a number and set its value to 10.

Create new source code file named main.lisp and type the following code in it.

(defmacro setTo10(num)
(setq num 10)(print num))
(setq x 25)
(print x)
(setTo10 x)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

25
10

LISP - VARIABLESLISP - VARIABLES
In LISP, each variable is represented by a symbol. The variable's name is the name of the symbol
and it is stored in the storage cell of the symbol.

Global Variables
Global variables have permanent values throughout the LISP system and remain in effect until a
new value is specified.

Global variables are generally declared using the defvar construct.

For example

(defvar x 234)
(write x)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is

234

Since there is no type declaration for variables in LISP, you directly specify a value for a symbol
with the setq construct.

For Example

->(setq x 10)

The above expression assigns the value 10 to the variable x. You can refer to the variable using
the symbol itself as an expression.

The symbol-value function allows you to extract the value stored at the symbol storage place.

For Example
Create new source code file named main.lisp and type the following code in it.

(setq x 10)
(setq y 20)
(format t "x = ~2d y = ~2d ~%" x y)
(setq x 100)
(setq y 200)
(format t "x = ~2d y = ~2d" x y)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = 10 y = 20
x = 100 y = 200

Local Variables
Local variables are defined within a given procedure. The parameters named as arguments within
a function definition are also local variables. Local variables are accessible only within the
respective function.

Like the global variables, local variables can also be created using the setq construct.

There are two other constructs - let and prog for creating local variables.

The let construct has the following syntax.

(let ((var1 val1) (var2 val2).. (varn valn)))

Where var1, var2, ..varn are variable names and val1, val2, .. valn are the initial values assigned to
the respective variables.

When let is executed, each variable is assigned the respective value and lastly the s-expression is
evaluated. The value of the last expression evaluated is returned.

If you don't include an initial value for a variable, it is assigned to nil.

Example
Create new source code file named main.lisp and type the following code in it.

(let ((x 'a) (y 'b)(z 'c))
(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = A y = B z = C

The prog construct also has the list of local variables as its first argument, which is followed by the
body of the prog, and any number of s-expressions.

The prog function executes the list of s-expressions in sequence and returns nil unless it
encounters a function call named return. Then the argument of the return function is evaluated
and returned.

Example
Create new source code file named main.lisp and type the following code in it.

(prog ((x '(a b c))(y '(1 2 3))(z '(p q 10)))
(format t "x = ~a y = ~a z = ~a" x y z))

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

x = (A B C) y = (1 2 3) z = (P Q 10)

LISP - CONSTANTSLISP - CONSTANTS
In LISP, constants are variables that never change their values during program execution.
Constants are declared using the defconstant construct.

Example
The following example shows declaring a global constant PI and later using this value inside a
function named area-circle that calculates the area of a circle.

The defun construct is used for defining a function, we will look into it in the Functions chapter.

Create a new source code file named main.lisp and type the following code in it.

(defconstant PI 3.141592)
(defun area-circle(rad)
 (terpri)
 (format t "Radius: ~5f" rad)
 (format t "~%Area: ~10f" (* PI rad rad)))
(area-circle 10)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is.

Radius: 10.0
Area: 314.1592

LISP - OPERATORSLISP - OPERATORS
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. LISP allows numerous operations on data, supported by various functions, macros
and other constructs.

The operations allowed on data could be categorized as:

Arithmetic Operations
Comparison Operations
Logical Operations
Bitwise Operations

Arithmetic Operations

The following table shows all the arithmetic operators supported by LISP. Assume variable A holds
10 and variable B holds 20 then:

Show Examples

Operator Description Example

+ Adds two operands +AB will give 30

- Subtracts second operand from the first −AB will give -10

* Multiplies both operands ∗ AB will give 200

/ Divides numerator by de-numerator /BA will give 2

mod,rem Modulus Operator and remainder of after an integer
division

modBAwill give 0

incf Increments operator increases integer value by the
second argument specified

incfA3 will give 13

decf Decrements operator decreases integer value by the
second argument specified

decfA4 will give 9

Comparison Operations
Following table shows all the relational operators supported by LISP that compares between
numbers. However unlike relational operators in other languages, LISP comparison operators may
take more than two operands and they work on numbers only.

Assume variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

= Checks if the values of the operands are all equal or not,
if yes then condition becomes true.

= AB is not true.

/= Checks if the values of the operands are all different or
not, if values are not equal then condition becomes
true.

/ = AB is true.

> Checks if the values of the operands are monotonically
decreasing.

> AB is not true.

< Checks if the values of the operands are monotonically
increasing.

< AB is true.

>= Checks if the value of any left operand is greater than or
equal to the value of next right operand, if yes then
condition becomes true.

>= AB is not true.

<= Checks if the value of any left operand is less than or
equal to the value of its right operand, if yes then
condition becomes true.

<= AB is true.

max It compares two or more arguments and returns the
maximum value.

maxAB returns 20

min It compares two or more arguments and returns the
minimum value.

minAB returns 20

/lisp/lisp_arithmetic_operators.htm
/lisp/lisp_comparison_operators.htm

Logical Operations on Boolean Values
Common LISP provides three logical operators: and, or, and not that operates on Boolean values.
Assume A has value nil and B has value 5, then:

Show Examples

Operator Description Example

and It takes any number of arguments. The arguments
are evaluated left to right. If all arguments
evaluate to non-nil, then the value of the last
argument is returned. Otherwise nil is returned.

andAB will return NIL.

or It takes any number of arguments. The arguments
are evaluated left to right until one evaluates to
non-nil, in such case the argument value is
returned, otherwise it returns nil.

orAB will return 5.

not It takes one argument and returns t if the
argument evaluates to nil.

notA will return T.

Bitwise Operations on Numbers
Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for bitwise and, or,
and xor operations are as follows:

Show Examples

p q p and q p or q p xor q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:
A = 0011 1100
B = 0000 1101

A and B = 0000 1100
A or B = 0011 1101
A xor B = 0011 0001
not A = 1100 0011

The Bitwise operators supported by LISP are listed in the following table. Assume variable A holds
60 and variable B holds 13, then:

Operator Description Example

logand This returns the bit-wise logical AND of its
arguments. If no argument is given, then the result
is -1, which is an identity for this operation.

logandab) will give 12

logior This returns the bit-wise logical INCLUSIVE OR of its
arguments. If no argument is given, then the result

logiorab will give 61

/lisp/lisp_logical_operators.htm
/lisp/lisp_bitwise_operators.htm

is zero, which is an identity for this operation.

logxor This returns the bit-wise logical EXCLUSIVE OR of its
arguments. If no argument is given, then the result
is zero, which is an identity for this operation.

logxorab will give 49

lognor This returns the bit-wise NOT of its arguments. If no
argument is given, then the result is -1, which is an
identity for this operation.

lognorab will give -62,

logeqv This returns the bit-wise logical EQUIVALENCE
alsoknownasexclusivenor of its arguments. If no argument
is given, then the result is -1, which is an identity for
this operation.

logeqvab will give -50

LISP - DECISION MAKINGLISP - DECISION MAKING
Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

LISP provides following types of decision making constructs. Click the following links to check their
detail.

Construct Description

cond
This construct is used for used for checking multiple test-action clauses. It can be
compared to the nested if statements in other programming languages.

if
The if construct has various forms. In simplest form it is followed by a test clause, a
test action and some other consequent actions. If the test clause evaluates to true,
then the test action is executed otherwise, the consequent clause is evaluated.

In simplest form it is followed by a test clause, and a test action. If the test clause

/lisp/lisp_cond_construct.htm
/lisp/lisp_if_construct.htm

when
In simplest form it is followed by a test clause, and a test action. If the test clause
evaluates to true, then the test action is executed otherwise, the consequent
clause is evaluated.

case
This construct implements multiple test-action clauses like the cond construct.
However, it evaluates a key form and allows multiple action clauses based on the
evaluation of that key form.

LISP - LOOPSLISP - LOOPS
There may be a situation, when you need to execute a block of code numbers of times. A loop
statement allows us to execute a statement or group of statements multiple times and following is
the general form of a loop statement in most of the programming languages.

LISP provides the following types of constructs to handle looping requirements. Click the following
links to check their detail.

Construct Description

loop
The loop construct is the simplest form of iteration provided by LISP. In its simplest
form, it allows you to execute some statements repeatedly until it finds a return
statement.

loop for
The loop for construct allows you to implement a for-loop like iteration as most
common in other languages.

do
The do construct is also used for performing iteration using LISP. It provides a
structured form of iteration.

dotimes
The dotimes construct allows looping for some fixed number of iterations.

dolist
The dolist construct allows iteration through each element of a list.

Gracefully Exiting From a Block

/lisp/lisp_when_construct.htm
/lisp/lisp_case_construct.htm
/lisp/lisp_loop_construct.htm
/lisp/lisp_loop_for.htm
/lisp/lisp_do.htm
/lisp/lisp_do_times.htm
/lisp/lisp_do_list.htm

The block and return-from allows you to exit gracefully from any nested blocks in case of any
error.

The block function allows you to create a named block with a body composed of zero or more
statements. Syntax is:

(block block-name(
...
...
))

The return-from function takes a block name and an optional thedefaultisnil return value.

The following example demonstrates this:

Example
Create a new source code file named main.lisp and type the following code in it:

(defun demo-function (flag)
 (print 'entering-outer-block)
 (block outer-block
 (print 'entering-inner-block)
 (print (block inner-block
 (if flag
 (return-from outer-block 3)
 (return-from inner-block 5)
)
 (print 'This-wil--not-be-printed))
)
 (print 'left-inner-block)
 (print 'leaving-outer-block)
 t)
)
(demo-function t)
(terpri)
(demo-function nil)

When you click the Execute button, or type Ctrl+E, LISP executes it immediately and the result
returned is:

ENTERING-OUTER-BLOCK
ENTERING-INNER-BLOCK

ENTERING-OUTER-BLOCK
ENTERING-INNER-BLOCK
5
LEFT-INNER-BLOCK
LEAVING-OUTER-BLOCK

LISP - FUNCTIONSLISP - FUNCTIONS
A function is a group of statements that together perform a task.

You can divide up your code into separate functions. How you divide up your code among different
functions is up to you, but logically the division usually is so each function performs a specific task.

Defining Functions in LISP
The macro named defun is used for defining functions. The defun macro needs three arguments:

Name of the function
Parameters of the function
Body of the function

Syntax for defun is:

(defun name (parameter-list) "Optional documentation string." body)

Let us illustrate the concept with simple examples.

Example 1
Let's write a function named averagenum that will print the average of four numbers. We will send
these numbers as parameters.

Create a new source code file named main.lisp and type the following code in it.

(defun averagenum (n1 n2 n3 n4)
 (/ (+ n1 n2 n3 n4) 4)
)
(write(averagenum 10 20 30 40))

When you execute the code, it returns the following result:

25

Example 2
Let's define and call a function that would calculate the area of a circle when the radius of the
circle is given as an argument.

Create a new source code file named main.lisp and type the following code in it.

(defun area-circle(rad)
 "Calculates area of a circle with given radius"
 (terpri)
 (format t "Radius: ~5f" rad)
 (format t "~%Area: ~10f" (* 3.141592 rad rad))
)
(area-circle 10)

When you execute the code, it returns the following result:

Area: 314.1592

Please note that:

You can provide an empty list as parameters, which means the function takes no arguments,
the list is empty, written as .

LISP also allows optional, multiple, and keyword arguments.

The documentation string describes the purpose of the function. It is associated with the
name of the function and can be obtained using the documentation function.

The body of the function may consist of any number of Lisp expressions.

The value of the last expression in the body is returned as the value of the function.

You can also return a value from the function using the return-from special operator.

Let us discuss the above concepts in brief. Click following links to find details:

Optional Parameters

Rest Parameters

Keyword Parameters

/lisp/lisp_optional_parameters.htm
/lisp/lisp_rest_parameters.htm
/lisp/lisp_keyword_parameters.htm

Returning Values from a Function

Lambda Functions

Mapping Functions

LISP - PREDICATESLISP - PREDICATES
Predicates are functions that test their arguments for some specific conditions and returns nil if the
condition is false, or some non-nil value is the condition is true.

The following table shows some of the most commonly used predicates:

Predicate Description

atom It takes one argument and returns t if the argument is an atom or nil if otherwise.

equal It takes two arguments and returns t if they are structurally equal or nil otherwise

eq It takes two arguments and returns t if they are same identical objects, sharing the
same memory location or nil otherwise

eql It takes two arguments and returns t if the arguments are eq, or if they are
numbers of the same type with the same value, or if they are character objects
that represent the same character, or nil otherwise

evenp It takes one numeric argument and returns t if the argument is even number or nil
if otherwise.

oddp It takes one numeric argument and returns t if the argument is odd number or nil
if otherwise.

zerop It takes one numeric argument and returns t if the argument is zero or nil if
otherwise.

null It takes one argument and returns t if the argument evaluates to nil, otherwise it
returns nil.

listp It takes one argument and returns t if the argument evaluates to a list otherwise it
returns nil.

greaterp It takes one or more argument and returns t if either there is a single argument or
the arguments are successively larger from left to right, or nil if otherwise.

lessp It takes one or more argument and returns t if either there is a single argument or
the arguments are successively smaller from left to right, or nil if otherwise..

numberp It takes one argument and returns t if the argument is a number or nil if otherwise.

symbolp It takes one argument and returns t if the argument is a symbol otherwise it
returns nil.

integerp It takes one argument and returns t if the argument is an integer otherwise it
returns nil.

rationalp It takes one argument and returns t if the argument is rational number, either a
ratio or a number, otherwise it returns nil.

floatp It takes one argument and returns t if the argument is a floating point number
otherwise it returns nil.

realp It takes one argument and returns t if the argument is a real number otherwise it
returns nil.

complexp It takes one argument and returns t if the argument is a complex number
otherwise it returns nil.

/lisp/lisp_returning_values_functions.htm
/lisp/lisp_lambda_functions.htm
/lisp/lisp_mapping_functions.htm

characterp It takes one argument and returns t if the argument is a character otherwise it
returns nil.

stringp It takes one argument and returns t if the argument is a string object otherwise it
returns nil.

arrayp It takes one argument and returns t if the argument is an array object otherwise it
returns nil.

packagep It takes one argument and returns t if the argument is a package otherwise it
returns nil.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (atom 'abcd))
(terpri)
(write (equal 'a 'b))
(terpri)
(write (evenp 10))
(terpri)
(write (evenp 7))
(terpri)
(write (oddp 7))
(terpri)
(write (zerop 0.0000000001))
(terpri)
(write (eq 3 3.0))
(terpri)
(write (equal 3 3.0))
(terpri)
(write (null nil))

When you execute the code, it returns the following result:

T
NIL
T
NIL
T
NIL
NIL
NIL
T

Example 2
Create a new source code file named main.lisp and type the following code in it.

(defun factorial (num)
 (cond ((zerop num) 1)
 (t (* num (factorial (- num 1))))
)
)
(setq n 6)
(format t "~% Factorial ~d is: ~d" n (factorial n))

When you execute the code, it returns the following result:

Factorial 6 is: 720

LISP - NUMBERSLISP - NUMBERS

Common Lisp defines several kinds of numbers. The number data type includes various kinds of
numbers supported by LISP.

The number types supported by LISP are:

Integers
Ratios
Floating-point numbers
Complex numbers

The following diagram shows the number hierarchy and various numeric data types available in
LISP:

Various Numeric Types in LISP
The following table describes various number type data available in LISP:

Data type Description

fixnum This data type represents integers which are not too large and mostly in the
range -215 to 215-1 itismachine − dependent

bignum These are very large numbers with size limited by the amount of memory
allocated for LISP, they are not fixnum numbers.

ratio Represents the ratio of two numbers in the numerator/denominator form. The /
function always produce the result in ratios, when its arguments are integers.

float It represents non-integer numbers. There are four float data types with increasing
precision.

complex It represents complex numbers, which are denoted by #c. The real and
imaginary parts could be both either rational or floating point numbers.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (/ 1 2))
(terpri)
(write (+ (/ 1 2) (/ 3 4)))
(terpri)
(write (+ #c(1 2) #c(3 -4)))

When you execute the code, it returns the following result:

1/2
5/4
#C(4 -2)

Number Functions
The following table describes some commonly used numeric functions:

Function Description

+, -, *, / Respective arithmetic operations

sin, cos, tan,
acos, asin,
atan

Respective trigonometric functions.

sinh, cosh,
tanh, acosh,
asinh, atanh

Respective hyperbolic functions.

exp Exponentiation function. Calculates ex

expt Exponentiation function, takes base and power both.

sqrt It calculates the square root of a number.

log Logarithmic function. It one parameter is given, then it calculates its natural
logarithm, otherwise the second parameter is used as base.

conjugate It calculates the complex conjugate of a number. In case of a real number, it
returns the number itself.

abs It returns the absolute value ormagnitude of a number.

gcd It calculates the greatest common divisor of the given numbers

lcm It calculates the least common multiple of the given numbers

isqrt It gives the greatest integer less than or equal to the exact square root of a given
natural number.

floor, ceiling,
truncate,
round

All these functions take two arguments as a number and returns the quotient;
floor returns the largest integer that is not greater than ratio, ceiling chooses
the smaller integer that is larger than ratio, truncate chooses the integer of the
same sign as ratio with the largest absolute value that is less than absolute value
of ratio, and round chooses an integer that is closest to ratio.

ffloor,
fceiling,
ftruncate,
fround

Does the same as above, but returns the quotient as a floating point number.

mod, rem Returns the remainder in a division operation.

float Converts a real number to a floating point number.

rational,
rationalize

Converts a real number to rational number.

numerator,
denominator

Returns the respective parts of a rational number.

realpart,
imagpart

Returns the real and imaginary part of a complex number.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (/ 45 78))
(terpri)
(write (floor 45 78))
(terpri)
(write (/ 3456 75))
(terpri)
(write (floor 3456 75))
(terpri)
(write (ceiling 3456 75))
(terpri)
(write (truncate 3456 75))
(terpri)
(write (round 3456 75))
(terpri)
(write (ffloor 3456 75))
(terpri)
(write (fceiling 3456 75))
(terpri)
(write (ftruncate 3456 75))
(terpri)
(write (fround 3456 75))
(terpri)
(write (mod 3456 75))
(terpri)
(setq c (complex 6 7))
(write c)
(terpri)
(write (complex 5 -9))
(terpri)
(write (realpart c))
(terpri)
(write (imagpart c))

When you execute the code, it returns the following result:

15/26
0
1152/25
46
47
46
46
46.0
47.0
46.0
46.0
6
#C(6 7)
#C(5 -9)
6

7

LISP - CHARACTERSLISP - CHARACTERS
In LISP, characters are represented as data objects of type character.

You can denote a character object preceding #\ before the character itself. For example, #\a
means the character a.

Space and other special characters can be denoted by preceding #\ before the name of the
character. For example, #\SPACE represents the space character.

The following example demonstrates this:

Example
Create a new source code file named main.lisp and type the following code in it.

(write 'a)
(terpri)
(write #\a)
(terpri)
(write-char #\a)
(terpri)
(write-char 'a)

When you execute the code, it returns the following result:

A
#\a
a
*** - WRITE-CHAR: argument A is not a character

Special Characters
Common LISP allows using the following special characters in your code. They are called the semi-
standard characters.

#\Backspace
#\Tab
#\Linefeed
#\Page
#\Return
#\Rubout

Character Comparison Functions
Numeric comparison functions and operators, like, < and > do not work on characters. Common
LISP provides other two sets of functions for comparing characters in your code.

One set is case-sensitive and the other case-insensitive.

The following table provides the functions:

Case
Sensitive
Functions

Case-insensitive
Functions

Description

char= char-equal Checks if the values of the operands are all equal or not,
if yes then condition becomes true.

char/= char-not-equal Checks if the values of the operands are all different or
not, if values are not equal then condition becomes true.

char< char-lessp Checks if the values of the operands are monotonically
decreasing.

char> char-greaterp Checks if the values of the operands are monotonically
increasing.

char<= char-not-greaterp Checks if the value of any left operand is greater than or
equal to the value of next right operand, if yes then
condition becomes true.

char>= char-not-lessp Checks if the value of any left operand is less than or
equal to the value of its right operand, if yes then
condition becomes true.

Example
Create a new source code file named main.lisp and type the following code in it.

; case-sensitive comparison
(write (char= #\a #\b))
(terpri)
(write (char= #\a #\a))
(terpri)
(write (char= #\a #\A))
(terpri)
;case-insensitive comparision
(write (char-equal #\a #\A))
(terpri)
(write (char-equal #\a #\b))
(terpri)
(write (char-lessp #\a #\b #\c))
(terpri)
(write (char-greaterp #\a #\b #\c))

When you execute the code, it returns the following result:

NIL
T
NIL
T
NIL
T
NIL

LISP - ARRAYSLISP - ARRAYS
LISP allows you to define single or multiple-dimension arrays using the make-array function. An
array can store any LISP object as its elements.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

The number of dimensions of an array is called its rank.

In LISP, an array element is specified by a sequence of non-negative integer indices. The length of
the sequence must equal the rank of the array. Indexing starts from zero.

For example, to create an array with 10- cells, named my-array, we can write:

(setf my-array (make-array '(10)))

The aref function allows accessing the contents of the cells. It takes two arguments, the name of
the array and the index value.

For example, to access the content of the tenth cell, we write:

(aref my-array 9)

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (setf my-array (make-array '(10))))
(terpri)
(setf (aref my-array 0) 25)
(setf (aref my-array 1) 23)
(setf (aref my-array 2) 45)
(setf (aref my-array 3) 10)
(setf (aref my-array 4) 20)
(setf (aref my-array 5) 17)
(setf (aref my-array 6) 25)
(setf (aref my-array 7) 19)
(setf (aref my-array 8) 67)
(setf (aref my-array 9) 30)
(write my-array)

When you execute the code, it returns the following result:

#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
#(25 23 45 10 20 17 25 19 67 30)

Example 2
Let us create a 3-by-3 array.

Create a new source code file named main.lisp and type the following code in it.

(setf x (make-array '(3 3)
 :initial-contents '((0 1 2) (3 4 5) (6 7 8)))
)
(write x)

When you execute the code, it returns the following result:

#2A((0 1 2) (3 4 5) (6 7 8))

Example 3
Create a new source code file named main.lisp and type the following code in it.

(setq a (make-array '(4 3)))
(dotimes (i 4)
 (dotimes (j 3)
 (setf (aref a i j) (list i 'x j '= (* i j)))
)
)
(dotimes (i 4)
 (dotimes (j 3)

 (print (aref a i j))
)
)

When you execute the code, it returns the following result:

(0 X 0 = 0)
(0 X 1 = 0)
(0 X 2 = 0)
(1 X 0 = 0)
(1 X 1 = 1)
(1 X 2 = 2)
(2 X 0 = 0)
(2 X 1 = 2)
(2 X 2 = 4)
(3 X 0 = 0)
(3 X 1 = 3)
(3 X 2 = 6)

Complete Syntax for the make-array Function
The make-array function takes many other arguments. Let us look at the complete syntax of this
function:

make-array dimensions :element-type :initial-element :initial-contents :adjustable
:fill-pointer :displaced-to :displaced-index-offset

Apart from the dimensions argument, all other arguments are keywords. The following table
provides brief description of the arguments.

Argument Description

dimensions It gives the dimensions of the array. It is a number for one-
dimensional array, and a list for multi-dimensional array.

:element-type It is the type specifier, default value is T, i.e. any type

:initial-element Initial elements value. It will make an array with all the elements
initialized to a particular value.

:initial-content Initial content as object.

:adjustable It helps in creating a resizeable oradjustable vector whose
underlying memory can be resized. The argument is a Boolean
value indicating whether the array is adjustable or not, default
value being NIL.

:fill-pointer It keeps track of the number of elements actually stored in a
resizeable vector.

:displaced-to It helps in creating a displaced array or shared array that shares
its contents with the specified array. Both the arrays should have
same element type. The :displaced-to option may not be used
with the :initial-element or :initial-contents option. This argument
defaults to nil.

:displaced-index-offset It gives the index-offset of the created shared array.

Example 4
Create a new source code file named main.lisp and type the following code in it.

(setq myarray (make-array '(3 2 3)

 :initial-contents
 '(((a b c) (1 2 3))
 ((d e f) (4 5 6))
 ((g h i) (7 8 9))
))
)
(setq array2 (make-array 4 :displaced-to myarray :displaced-index-offset 2))
(write myarray)
(terpri)
(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))
#(C 1 2 3)

If the displaced array is two dimensional:

(setq myarray (make-array '(3 2 3)
 :initial-contents
 '(((a b c) (1 2 3))
 ((d e f) (4 5 6))
 ((g h i) (7 8 9))
))
)
(setq array2 (make-array '(3 2) :displaced-to myarray :displaced-index-offset 2))
(write myarray)
(terpri)
(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))
#2A((C 1) (2 3) (D E))

Let's change the displaced index offset to 5:

(setq myarray (make-array '(3 2 3)
 :initial-contents
 '(((a b c) (1 2 3))
 ((d e f) (4 5 6))
 ((g h i) (7 8 9))
))
)
(setq array2 (make-array '(3 2) :displaced-to myarray :displaced-index-offset 5))
(write myarray)
(terpri)
(write array2)

When you execute the code, it returns the following result:

#3A(((A B C) (1 2 3)) ((D E F) (4 5 6)) ((G H I) (7 8 9)))
#2A((3 D) (E F) (4 5))

Example 5
Create a new source code file named main.lisp and type the following code in it.

;a one dimensional array with 5 elements,
;initail value 5
(write (make-array 5 :initial-element 5))
(terpri)
;two dimensional array, with initial element a
(write (make-array '(2 3) :initial-element 'a))

(terpri)
;an array of capacity 14, but fill pointer 5, is 5
(write(length (make-array 14 :fill-pointer 5)))
(terpri)
;however its length is 14
(write (array-dimensions (make-array 14 :fill-pointer 5)))
(terpri)
; a bit array with all initial elements set to 1
(write(make-array 10 :element-type 'bit :initial-element 1))
(terpri)
; a character array with all initial elements set to a
; is a string actually
(write(make-array 10 :element-type 'character :initial-element #\a))
(terpri)
; a two dimensional array with initial values a
(setq myarray (make-array '(2 2) :initial-element 'a :adjustable t))
(write myarray)
(terpri)
;readjusting the array
(adjust-array myarray '(1 3) :initial-element 'b)
(write myarray)

When you execute the code, it returns the following result:

#(5 5 5 5 5)
#2A((A A A) (A A A))
5
(14)
#*1111111111
"aaaaaaaaaa"
#2A((A A) (A A))
#2A((A A B))

LISP - STRINGSLISP - STRINGS
Strings in Common Lisp are vectors, i.e., one-dimensional array of characters.

String literals are enclosed in double quotes. Any character supported by the character set can be
enclosed within double quotes to make a string, except the double quote character " and the
escape character (\). However, you can include these by escaping them with a backslash (\).

Example
Create a new source code file named main.lisp and type the following code in it.

(write-line "Hello World")
(write-line "Welcome to Tutorials Point")
;escaping the double quote character
(write-line "Welcome to \"Tutorials Point\"")

When you execute the code, it returns the following result:

Hello World
Welcome to Tutorials Point
Welcome to "Tutorials Point"

String Comparison Functions
Numeric comparison functions and operators, like, < and > do not work on strings. Common LISP
provides other two sets of functions for comparing strings in your code. One set is case-sensitive
and the other case-insensitive.

The following table provides the functions:

Case Case-insensitive Description

Sensitive
Functions

Functions

string= string-equal Checks if the values of the operands are all equal or
not, if yes then condition becomes true.

string/= string-not-equal Checks if the values of the operands are all different
or not, if values are not equal then condition
becomes true.

string< string-lessp Checks if the values of the operands are
monotonically decreasing.

string> string-greaterp Checks if the values of the operands are
monotonically increasing.

string<= string-not-greaterp Checks if the value of any left operand is greater
than or equal to the value of next right operand, if
yes then condition becomes true.

string>= string-not-lessp Checks if the value of any left operand is less than
or equal to the value of its right operand, if yes then
condition becomes true.

Example
Create a new source code file named main.lisp and type the following code in it.

; case-sensitive comparison
(write (string= "this is test" "This is test"))
(terpri)
(write (string> "this is test" "This is test"))
(terpri)
(write (string< "this is test" "This is test"))
(terpri)
;case-insensitive comparision
(write (string-equal "this is test" "This is test"))
(terpri)
(write (string-greaterp "this is test" "This is test"))
(terpri)
(write (string-lessp "this is test" "This is test"))
(terpri)
;checking non-equal
(write (string/= "this is test" "this is Test"))
(terpri)
(write (string-not-equal "this is test" "This is test"))
(terpri)
(write (string/= "lisp" "lisping"))
(terpri)
(write (string/= "decent" "decency"))

When you execute the code, it returns the following result:

NIL
0
NIL
T
NIL
NIL
8
NIL
4
5

Case Controlling Functions

The following table describes the case controlling functions:

Function Description

string-upcase Converts the string to upper case

string-
downcase

Converts the string to lower case

string-capitalize Capitalizes each word in the string

Example
Create a new source code file named main.lisp and type the following code in it.

(write-line (string-upcase "a big hello from tutorials point"))
(write-line (string-capitalize "a big hello from tutorials point"))

When you execute the code, it returns the following result:

A BIG HELLO FROM TUTORIALS POINT
A Big Hello From Tutorials Point

Trimming Strings
The following table describes the string trimming functions:

Function Description

string-trim It takes a string of characters as first argument and a string as the second
argument and returns a substring where all characters that are in the first
argument are removed off the argument string.

String-left-trim It takes a string of characters as first argument and a string as the second
argument and returns a substring where all characters that are in the first
argument are removed off the beginning of the argument string.

String-right-trim It takes a string characters as first argument and a string as the second
argument and returns a substring where all characters that are in the first
argument are removed off the end of the argument string

Example
Create a new source code file named main.lisp and type the following code in it.

(write-line (string-trim " " " a big hello from tutorials point "))
(write-line (string-left-trim " " " a big hello from tutorials point "))
(write-line (string-right-trim " " " a big hello from tutorials point "))
(write-line (string-trim " a" " a big hello from tutorials point "))

When you execute the code, it returns the following result:

a big hello from tutorials point
a big hello from tutorials point
 a big hello from tutorials point
big hello from tutorials point

Other String Functions

Strings in LISP are arrays and thus also sequences. We will cover these data types in coming
tutorials. All functions that are applicable to arrays and sequences also apply to strings. However,
we will demonstrate some commonly used functions using various examples.

Calculating Length
The length function calculates the length of a string.

Extracting Sub-string
The subseq function returns a sub-string as a string is also a sequence starting at a particular
index and continuing to a particular ending index or the end of the string.

Accessing a Character in a String
The char function allows accessing individual characters of a string.

Example

Create a new source code file named main.lisp and type the following code in it.

(write (length "Hello World"))
(terpri)
(write-line (subseq "Hello World" 6))
(write (char "Hello World" 6))

When you execute the code, it returns the following result:

11
World
#\W

Sorting and Merging of Strings
The sort function allows sorting a string. It takes a sequence vector or string and a two-argument
predicate and returns a sorted version of the sequence.

The merge function takes two sequences and a predicate and returns a sequence produced by
merging the two sequences, according to the predicate.

Example

Create a new source code file named main.lisp and type the following code in it.

;sorting the strings
(write (sort (vector "Amal" "Akbar" "Anthony") #'string<))
(terpri)
;merging the strings
(write (merge 'vector (vector "Rishi" "Zara" "Priyanka") (vector "Anju" "Anuj" "Avni")
#'string<))

When you execute the code, it returns the following result:

#("Akbar" "Amal" "Anthony")
#("Anju" "Anuj" "Avni" "Rishi" "Zara" "Priyanka")

Reversing a String
The reverse function reverses a string.

For example, Create a new source code file named main.lisp and type the following code in it.

(write-line (reverse "Are we not drawn onward, we few, drawn onward to new era"))

When you execute the code, it returns the following result:

are wen ot drawno nward ,wef ew ,drawno nward ton ew erA

Concatenating Strings
The concatenate function concatenates two strings. This is generic sequence function and you
must provide the result type as the first argument.

For example, Create a new source code file named main.lisp and type the following code in it.

(write-line (concatenate 'string "Are we not drawn onward, " "we few, drawn onward to new
era"))

When you execute the code, it returns the following result:

Are we not drawn onward, we few, drawn onward to new era

LISP - SEQUENCESLISP - SEQUENCES
Sequence is an abstract data type in LISP. Vectors and lists are the two concrete subtypes of this
data type. All the functionalities defined on sequence data type are actually applied on all vectors
and list types.

In this section, we will discuss most commonly used functions on sequences.

Before starting on various ways of manipulating sequences i.e., vectors and lists, let us have a look
at the list of all available functions.

Creating a Sequence
The function make-sequence allows you to create a sequence of any type. The syntax for this
function is:

make-sequence sqtype sqsize &key :initial-element

It creates a sequence of type sqtype and of length sqsize.

You may optionally specify some value using the :initial-element argument, then each of the
elements will be initialized to this value.

For example, Create a new source code file named main.lisp and type the following code in it.

(write (make-sequence '(vector float)
 10
 :initial-element 1.0))

When you execute the code, it returns the following result:

#(1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0)

Generic Functions on Sequences

Function Description

elt It allows access to individual elements through an integer index.

length It returns the length of a sequence.

subseq It returns a sub-sequence by extracting the subsequence starting at a particular

index and continuing to a particular ending index or the end of the sequence.

copy-seq It returns a sequence that contains the same elements as its argument.

fill It is used to set multiple elements of a sequence to a single value.

replace It takes two sequences and the first argument sequence is destructively modified
by copying successive elements into it from the second argument sequence.

count It takes an item and a sequence and returns the number of times the item
appears in the sequence.

reverse It returns a sequence contains the same elements of the argument but in reverse
order.

nreverse It returns the same sequence containing the same elements as sequence but in
reverse order.

concatenate It creates a new sequence containing the concatenation of any number of
sequences.

position It takes an item and a sequence and returns the index of the item in the
sequence or nil.

find It takes an item and a sequence. It finds the item in the sequence and returns it, if
not found then it returns nil.

sort It takes a sequence and a two-argument predicate and returns a sorted version
of the sequence.

merge It takes two sequences and a predicate and returns a sequence produced by
merging the two sequences, according to the predicate.

map It takes an n-argument function and n sequences and returns a new sequence
containing the result of applying the function to subsequent elements of the
sequences.

some It takes a predicate as an argument and iterates over the argument sequence,
and returns the first non-NIL value returned by the predicate or returns false if
the predicate is never satisfied.

every It takes a predicate as an argument and iterate over the argument sequence, it
terminates, returning false, as soon as the predicate fails. If the predicate is
always satisfied, it returns true.

notany It takes a predicate as an argument and iterate over the argument sequence,
and returns false as soon as the predicate is satisfied or true if it never is.

notevery It takes a predicate as an argument and iterate over the argument sequence,
and returns true as soon as the predicate fails or false if the predicate is always
satisfied.

reduce It maps over a single sequence, applying a two-argument function first to the first
two elements of the sequence and then to the value returned by the function and
subsequent elements of the sequence.

search It searches a sequence to locate one or more elements satisfying some test.

remove It takes an item and a sequence and returns the sequence with instances of item
removed.

delete This also takes an item and a sequence and returns a sequence of the same kind
as the argument sequence that has the same elements except the item.

substitute It takes a new item, an existing item, and a sequence and returns a sequence
with instances of the existing item replaced with the new item.

nsubstitute It takes a new item, an existing item, and a sequence and returns the same

sequence with instances of the existing item replaced with the new item.

mismatch It takes two sequences and returns the index of the first pair of mismatched
elements.

Standard Sequence Function Keyword Arguments

Argument Meaning Default Value

:test It is a two-argument function used to compare item or value
extracted by :key function to element.

EQL

:key One-argument function to extract key value from actual
sequence element. NIL means use element as is.

NIL

:start Starting index inclusive of subsequence. 0

:end Ending index exclusive of subsequence. NIL indicates end of
sequence.

NIL

:from-end If true, the sequence will be traversed in reverse order, from
end to start.

NIL

:count Number indicating the number of elements to remove or
substitute or NIL to indicate all REMOVE and SUBSTITUTE only.

NIL

We have just discussed various functions and keywords that are used as arguments in these
functions working on sequences. In the next sections, we will see how to use these functions using
examples.

Finding Length and Element
The length function returns the length of a sequence, and the elt function allows you to access
individual elements using an integer index.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq x (vector 'a 'b 'c 'd 'e))
(write (length x))
(terpri)
(write (elt x 3))

When you execute the code, it returns the following result:

5
D

Modifying Sequences
Some sequence functions allows iterating through the sequence and perform some operations
like, searching, removing, counting or filtering specific elements without writing explicit loops.

The following example demonstrates this:

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (count 7 '(1 5 6 7 8 9 2 7 3 4 5)))

(terpri)
(write (remove 5 '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (delete 5 '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (substitute 10 7 '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (find 7 '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (position 5 '(1 5 6 7 8 9 2 7 3 4 5)))

When you execute the code, it returns the following result:

2
(1 6 7 8 9 2 7 3 4)
(1 6 7 8 9 2 7 3 4)
(1 5 6 10 8 9 2 10 3 4 5)
7
1

Example 2
Create a new source code file named main.lisp and type the following code in it.

(write (delete-if #'oddp '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (delete-if #'evenp '(1 5 6 7 8 9 2 7 3 4 5)))
(terpri)
(write (remove-if #'evenp '(1 5 6 7 8 9 2 7 3 4 5) :count 1 :from-end t))
(terpri)
(setq x (vector 'a 'b 'c 'd 'e 'f 'g))
(fill x 'p :start 1 :end 4)
(write x)

When you execute the code, it returns the following result:

(6 8 2 4)
(1 5 7 9 7 3 5)
(1 5 6 7 8 9 2 7 3 5)
#(A P P P E F G)

Sorting and Merging Sequences
The sorting functions take a sequence and a two-argument predicate and return a sorted version
of the sequence.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (sort '(2 4 7 3 9 1 5 4 6 3 8) #'<))
(terpri)
(write (sort '(2 4 7 3 9 1 5 4 6 3 8) #'>))
(terpri)

When you execute the code, it returns the following result:

(1 2 3 3 4 4 5 6 7 8 9)
(9 8 7 6 5 4 4 3 3 2 1)

Example 2
Create a new source code file named main.lisp and type the following code in it.

(write (merge 'vector #(1 3 5) #(2 4 6) #'<))
(terpri)
(write (merge 'list #(1 3 5) #(2 4 6) #'<))
(terpri)

When you execute the code, it returns the following result:

#(1 2 3 4 5 6)
(1 2 3 4 5 6)

Sequence Predicates
The functions every, some, notany, and notevery are called the sequence predicates.

These functions iterate over sequences and test the Boolean predicate.

All these functions takes a predicate as the first argument and the remaining arguments are
sequences.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (every #'evenp #(2 4 6 8 10)))
(terpri)
(write (some #'evenp #(2 4 6 8 10 13 14)))
(terpri)
(write (every #'evenp #(2 4 6 8 10 13 14)))
(terpri)
(write (notany #'evenp #(2 4 6 8 10)))
(terpri)
(write (notevery #'evenp #(2 4 6 8 10 13 14)))
(terpri)

When you execute the code, it returns the following result:

T
T
NIL
NIL
T

Mapping Sequences
We have already discussed the mapping functions. Similarly the map function allows you to apply
a function on to subsequent elements of one or more sequences.

The map function takes a n-argument function and n sequences and returns a new sequence after
applying the function to subsequent elements of the sequences.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (map 'vector #'* #(2 3 4 5) #(3 5 4 8)))

When you execute the code, it returns the following result:

#(6 15 16 40)

LISP - LISTSLISP - LISTS

Lists had been the most important and the primary composite data structure in traditional LISP.
Present day's Common LISP provides other data structures like, vector, hash table, classes or
structures.

Lists are single linked lists. In LISP, lists are constructed as a chain of a simple record structure
named cons linked together.

The cons Record Structure
A cons is a record structure containing two components called the car and the cdr.

Cons cells or cons are objects are pairs of values that are created using the function cons.

The cons function takes two arguments and returns a new cons cell containing the two values.
These values can be references to any kind of object.

If the second value is not nil, or another cons cell, then the values are printed as a dotted pair
enclosed by parentheses.

The two values in a cons cell are called the car and the cdr. The car function is used to access the
first value and the cdr function is used to access the second value.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (cons 1 2))
(terpri)
(write (cons 'a 'b))
(terpri)
(write (cons 1 nil))
(terpri)
(write (cons 1 (cons 2 nil)))
(terpri)
(write (cons 1 (cons 2 (cons 3 nil))))
(terpri)
(write (cons 'a (cons 'b (cons 'c nil))))
(terpri)
(write (car (cons 'a (cons 'b (cons 'c nil)))))
(terpri)
(write (cdr (cons 'a (cons 'b (cons 'c nil)))))

When you execute the code, it returns the following result:

(1 . 2)
(A . B)
(1)
(1 2)
(1 2 3)
(A B C)
A
(B C)

The above example shows how the cons structures could be used to create a single linked list, e.g.,
the list A B C consists of three cons cells linked together by their cdrs.

Diagrammatically, it could be expressed as:

Lists in LISP
Although cons cells can be used to create lists, however, constructing a list out of nested cons
function calls can't be the best solution. The list function is rather used for creating lists in LISP.

The list function can take any number of arguments and as it is a function, it evaluates its
arguments.

The first and rest functions give the first element and the rest part of a list. The following
examples demonstrate the concepts.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (list 1 2))
(terpri)
(write (list 'a 'b))
(terpri)
(write (list 1 nil))
(terpri)
(write (list 1 2 3))
(terpri)
(write (list 'a 'b 'c))
(terpri)
(write (list 3 4 'a (car '(b . c)) (* 4 -2)))
(terpri)
(write (list (list 'a 'b) (list 'c 'd 'e)))

When you execute the code, it returns the following result:

(1 2)
(A B)
(1 NIL)
(1 2 3)
(A B C)
(3 4 A B -8)
((A B) (C D E))

Example 2
Create a new source code file named main.lisp and type the following code in it.

(defun my-library (title author rating availability)
 (list :title title :author author :rating rating :availabilty availability)
)
(write (getf (my-library "Hunger Game" "Collins" 9 t) :title))

When you execute the code, it returns the following result:

"Hunger Game"

List Manipulating Functions
The following table provides some commonly used list manipulating functions.

Function Description

car It takes a list as argument, and returns its first element.

cdr It takes a list as argument, and returns a list without the first element.

cons It takes two arguments, an element and a list and returns a list with the element
inserted at the first place.

list It takes any number of arguments and returns a list with the arguments as member
elements of the list.

append It merges two or more list into one.

last It takes a list and returns a list containing the last element.

member It takes two arguments of which the second must be a list, if the first argument is a
member of the second argument, and then it returns the remainder of the list
beginning with the first argument.

reverse It takes a list and returns a list with the top elements in reverse order.

Please note that all sequence functions are applicable to lists.

Example 3
Create a new source code file named main.lisp and type the following code in it.

(write (car '(a b c d e f)))
(terpri)
(write (cdr '(a b c d e f)))
(terpri)
(write (cons 'a '(b c)))
(terpri)
(write (list 'a '(b c) '(e f)))
(terpri)
(write (append '(b c) '(e f) '(p q) '() '(g)))
(terpri)
(write (last '(a b c d (e f))))
(terpri)
(write (reverse '(a b c d (e f))))

When you execute the code, it returns the following result:

A
(B C D E F)
(A B C)
(A (B C) (E F))
(B C E F P Q G)
((E F))
((E F) D C B A)

Concatenation of car and cdr Functions
The car and cdr functions and their combination allows extracting any particular element/
member of a list.

However, sequences of car and cdr functions could be abbreviated by concatenating the letter a
for car and d for cdr within the letters c and r.

For example we can write cadadr to abbreviate the sequence of function calls - car cdr car cdr.

Thus, cadadr '(a (c d e f g)) will return d

Example 4
Create a new source code file named main.lisp and type the following code in it.

(write (cadadr '(a (c d) (e f g))))
(terpri)
(write (caar (list (list 'a 'b) 'c)))
(terpri)
(write (cadr (list (list 1 2) (list 3 4))))
(terpri)

When you execute the code, it returns the following result:

D
A

(3 4)

LISP - SYMBOLSLISP - SYMBOLS
In LISP, a symbol is a name that represents data objects and interestingly it is also a data object.

What makes symbols special is that they have a component called the property list, or plist.

Property Lists
LISP allows you to assign properties to symbols. For example, let us have a 'person' object. We
would like this 'person' object to have properties like name, sex, height, weight, address,
profession etc. A property is like an attribute name.

A property list is implemented as a list with an even number possibly zero of elements. Each pair of
elements in the list constitutes an entry; the first item is the indicator, and the second is the
value.

When a symbol is created, its property list is initially empty. Properties are created by using get
within a setf form.

For example, the following statements allow us to assign properties title, author and publisher, and
respective values, to an object named symbol 'book'.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(write (setf (get 'books'title) '(Gone with the Wind)))
(terpri)
(write (setf (get 'books 'author) '(Margaret Michel)))
(terpri)
(write (setf (get 'books 'publisher) '(Warner Books)))

When you execute the code, it returns the following result:

(GONE WITH THE WIND)
(MARGARET MICHEL)
(WARNER BOOKS)

Various property list functions allow you to assign properties as well as retrieve, replace or remove
the properties of a symbol.

The get function returns the property list of symbol for a given indicator. It has the following
syntax:

get symbol indicator &optional default

The get function looks for the property list of the given symbol for the specified indicator, if found
then it returns the corresponding value; otherwise default is returned or nil, if a default value is not
specified.

Example 2
Create a new source code file named main.lisp and type the following code in it.

(setf (get 'books 'title) '(Gone with the Wind))
(setf (get 'books 'author) '(Margaret Micheal))
(setf (get 'books 'publisher) '(Warner Books))
(write (get 'books 'title))
(terpri)
(write (get 'books 'author))
(terpri)
(write (get 'books 'publisher))

When you execute the code, it returns the following result:

(GONE WITH THE WIND)
(MARGARET MICHEAL)
(WARNER BOOKS)

The symbol-plist function allows you to see all the properties of a symbol.

Example 3
Create a new source code file named main.lisp and type the following code in it.

(setf (get 'annie 'age) 43)
(setf (get 'annie 'job) 'accountant)
(setf (get 'annie 'sex) 'female)
(setf (get 'annie 'children) 3)
(terpri)
(write (symbol-plist 'annie))

When you execute the code, it returns the following result:

(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT AGE 43)

The remprop function removes the specified property from a symbol.

Example 4
Create a new source code file named main.lisp and type the following code in it.

(setf (get 'annie 'age) 43)
(setf (get 'annie 'job) 'accountant)
(setf (get 'annie 'sex) 'female)
(setf (get 'annie 'children) 3)
(terpri)
(write (symbol-plist 'annie))
(remprop 'annie 'age)
(terpri)
(write (symbol-plist 'annie))

When you execute the code, it returns the following result:

(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT AGE 43)
(CHILDREN 3 SEX FEMALE JOB ACCOUNTANT)

LISP - VECTORSLISP - VECTORS
Vectors are one-dimensional arrays, therefore a subtype of array. Vectors and lists are collectively
called sequences. Therefore all sequence generic functions and array functions we have discussed
so far, work on vectors.

Creating Vectors
The vector function allows you to make fixed-size vectors with specific values. It takes any number
of arguments and returns a vector containing those arguments.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(setf v1 (vector 1 2 3 4 5))
(setf v2 #(a b c d e))
(setf v3 (vector 'p 'q 'r 's 't))
(write v1)

(terpri)
(write v2)
(terpri)
(write v3)

When you execute the code, it returns the following result:

#(1 2 3 4 5)
#(A B C D E)
#(P Q R S T)

Please note that LISP uses the #... syntax as the literal notation for vectors. You can use this #...
syntax to create and include literal vectors in your code.

However, these are literal vectors, so modifying them is not defined in LISP. Therefore, for
programming, you should always use the vector function, or the more general function make-
array to create vectors you plan to modify.

The make-array function is the more generic way to create a vector. You can access the vector
elements using the aref function.

Example 2
Create a new source code file named main.lisp and type the following code in it.

(setq a (make-array 5 :initial-element 0))
(setq b (make-array 5 :initial-element 2))
(dotimes (i 5)
 (setf (aref a i) i))
(write a)
(terpri)
(write b)
(terpri)

When you execute the code, it returns the following result:

#(0 1 2 3 4)
#(2 2 2 2 2)

Fill Pointer
The make-array function allows you to create a resizable vector.

The fill-pointer argument of the function keeps track of the number of elements actually stored
in the vector. It's the index of the next position to be filled when you add an element to the vector.

The vector-push function allows you to add an element to the end of a resizable vector. It
increases the fill-pointer by 1.

The vector-pop function returns the most recently pushed item and decrements the fill pointer by
1.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq a (make-array 5 :fill-pointer 0))
(write a)
(vector-push 'a a)
(vector-push 'b a)
(vector-push 'c a)
(terpri)
(write a)
(terpri)
(vector-push 'd a)

(vector-push 'e a)
;this will not be entered as the vector limit is 5
(vector-push 'f a)
(write a)
(terpri)
(vector-pop a)
(vector-pop a)
(vector-pop a)
(write a)

When you execute the code, it returns the following result:

#()
#(A B C)
#(A B C D E)
#(A B)

Vectors being sequences, all sequence functions are applicable for vectors. Please consult the
sequences chapter, for vector functions.

LISP - SETLISP - SET
Common Lisp does not provide a set data type. However, it provides number of functions that
allows set operations to be performed on a list.

You can add, remove, and search for items in a list, based on various criteria. You can also
perform various set operations like: union, intersection, and set difference.

Implementing Sets in LISP
Sets, like lists are generally implemented in terms of cons cells. However, for this very reason, the
set operations get less and less efficient the bigger the sets get.

The adjoin function allows you to build up a set. It takes an item and a list representing a set and
returns a list representing the set containing the item and all the items in the original set.

The adjoin function first looks for the item in the given list, if it is found, then it returns the original
list; otherwise it creates a new cons cell with its car as the item and cdr pointing to the original list
and returns this new list.

The adjoin function also takes :key and :test keyword arguments. These arguments are used for
checking whether the item is present in the original list.

Since, the adjoin function does not modify the original list, to make a change in the list itself, you
must either assign the value returned by adjoin to the original list or, you may use the macro
pushnew to add an item to the set.

Example
Create a new source code file named main.lisp and type the following code in it.

; creating myset as an empty list
(defparameter *myset* ())
(adjoin 1 *myset*)
(adjoin 2 *myset*)
; adjoin didn't change the original set
;so it remains same
(write *myset*)
(terpri)
(setf *myset* (adjoin 1 *myset*))
(setf *myset* (adjoin 2 *myset*))
;now the original set is changed
(write *myset*)
(terpri)
;adding an existing value

(pushnew 2 *myset*)
;no duplicate allowed
(write *myset*)
(terpri)
;pushing a new value
(pushnew 3 *myset*)
(write *myset*)
(terpri)

When you execute the code, it returns the following result:

NIL
(2 1)
(2 1)
(3 2 1)

Checking Membership
The member group of functions allows you to check whether an element is member of a set or not.

The following are the syntaxes of these functions:

member item list &key :test :test-not :key
member-if predicate list &key :key
member-if-not predicate list &key :key

These functions search the given list for a given item that satisfies the test. If no such item is found,
then the functions returns nil. Otherwise, the tail of the list with the element as the first element is
returned.

The search is conducted at the top level only.

These functions could be used as predicates.

Example
Create a new source code file named main.lisp and type the following code in it.

(write (member 'zara '(ayan abdul zara riyan nuha)))
(terpri)
(write (member-if #'evenp '(3 7 2 5/3 'a)))
(terpri)
(write (member-if-not #'numberp '(3 7 2 5/3 'a 'b 'c)))

When you execute the code, it returns the following result:

(ZARA RIYAN NUHA)
(2 5/3 'A)
('A 'B 'C)

Set Union
The union group of functions allows you to perform set union on two lists provided as arguments to
these functions on the basis of a test.

The following are the syntaxes of these functions:

union list1 list2 &key :test :test-not :key
nunion list1 list2 &key :test :test-not :key

The union function takes two lists and returns a new list containing all the elements present in
either of the lists. If there are duplications, then only one copy of the member is retained in the
returned list.

The nunion function performs the same operation but may destroy the argument lists.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq set1 (union '(a b c) '(c d e)))
(setq set2 (union '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch)
)

(setq set3 (union '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)))
)
(write set1)
(terpri)
(write set2)
(terpri)
(write set3)

When you execute the code, it returns the following result:

(A B C D E)
(#(F H) #(5 6 7) #(A B) #(G H))
(#(A B) #(5 6 7) #(F H) #(5 6 7) #(A B) #(G H))

Please Note
The union function does not work as expected without :test-not #'mismatch arguments for a list
of three vectors. This is because, the lists are made of cons cells and although the values look
same to us apparently, the cdr part of cells does not match, so they are not exactly same to LISP
interpreter/compiler. This is the reason; implementing big sets are not advised using lists. It works
fine for small sets though.

Set Intersection
The intersection group of functions allows you to perform intersection on two lists provided as
arguments to these functions on the basis of a test.

The following are the syntaxes of these functions:

intersection list1 list2 &key :test :test-not :key
nintersection list1 list2 &key :test :test-not :key

These functions take two lists and return a new list containing all the elements present in both
argument lists. If either list has duplicate entries, the redundant entries may or may not appear in
the result.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq set1 (intersection '(a b c) '(c d e)))
(setq set2 (intersection '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch)
)

(setq set3 (intersection '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)))
)
(write set1)
(terpri)
(write set2)
(terpri)

(write set3)

When you execute the code, it returns the following result:

(C)
(#(A B) #(5 6 7))
NIL

The nintersection function is the destructive version of intersection, i.e., it may destroy the original
lists.

Set Difference
The set-difference group of functions allows you to perform set difference on two lists provided as
arguments to these functions on the basis of a test.

The following are the syntaxes of these functions:

set-difference list1 list2 &key :test :test-not :key
nset-difference list1 list2 &key :test :test-not :key

The set-difference function returns a list of elements of the first list that do not appear in the
second list.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq set1 (set-difference '(a b c) '(c d e)))
(setq set2 (set-difference '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)) :test-not #'mismatch)
)
(setq set3 (set-difference '(#(a b) #(5 6 7) #(f h))
 '(#(5 6 7) #(a b) #(g h)))
)
(write set1)
(terpri)
(write set2)
(terpri)
(write set3)

When you execute the code, it returns the following result:

(A B)
(#(F H))
(#(A B) #(5 6 7) #(F H))

LISP - TREELISP - TREE
You can build tree data structures from cons cells, as lists of lists.

To implement tree structures, you will have to design functionalities that would traverse through
the cons cells, in specific order, for example, pre-order, in-order, and post-order for binary trees.

Tree as List of Lists
Let us consider a tree structure made up of cons cell that form the following list of lists:

(1 2 3 4 5 6).

Diagrammatically, it could be expressed as:

Tree Functions in LISP
Although mostly you will need to write your own tree-functionalities according to your specific
need, LISP provides some tree functions that you can use.

Apart from all the list functions, the following functions work especially on tree structures:

Function Description

copy-tree x
&
optional
vecp

It returns a copy of the tree of cons cells x. It recursively copies both the car and
the cdr directions. If x is not a cons cell, the function simply returns x unchanged.
If the optional vecp argument is true, this function copies vectors recursively as
well as cons cells.

tree-equal x
y & key
:test :test-not
:key

It compares two trees of cons cells. If x and y are both cons cells, their cars and
cdrs are compared recursively. If neither x nor y is a cons cell, they are
compared by eql, or according to the specified test. The :key function, if
specified, is applied to the elements of both trees.

subst new
old tree
& key
:test :test-not
:key

It substitutes occurrences of given old item with new item, in tree, which is a tree
of cons cells.

nsubst new
old tree
& key
:test :test-not
:key

It works same as subst, but it destroys the original tree.

sublis alist
tree &
key :test
:test-not :key

It works like subst, except that it takes an association list alist of old-new pairs.
Each element of the tree after applying the :key function, if any, is compared
with the cars of alist; if it matches, it is replaced by the corresponding cdr.

nsublis alist
tree &
key :test
:test-not :key

It works same as sublis, but a destructive version.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(setq lst (list '(1 2) '(3 4) '(5 6)))
(setq mylst (copy-list lst))
(setq tr (copy-tree lst))
(write lst)
(terpri)
(write mylst)
(terpri)

(write tr)

When you execute the code, it returns the following result:

((1 2) (3 4) (5 6))
((1 2) (3 4) (5 6))
((1 2) (3 4) (5 6))

Example 2
Create a new source code file named main.lisp and type the following code in it.

(setq tr '((1 2 (3 4 5) ((7 8) (7 8 9)))))
(write tr)
(setq trs (subst 7 1 tr))
(terpri)
(write trs)

When you execute the code, it returns the following result:

((1 2 (3 4 5) ((7 8) (7 8 9))))
((7 2 (3 4 5) ((7 8) (7 8 9))))

Building Your Own Tree
Let us try to build our own tree, using the list functions available in LISP.

First let us create a new node that contains some data

(defun make-tree (item)
 "it creates a new node with item."
 (cons (cons item nil) nil)
)

Next let us add a child node into the tree - it will take two tree nodes and add the second tree as
the child of the first.

(defun add-child (tree child)
 (setf (car tree) (append (car tree) child))
 tree)

This function will return the first child a given tree - it will take a tree node and return the first child
of that node, or nil, if this node does not have any child node.

(defun first-child (tree)
 (if (null tree)
 nil
 (cdr (car tree))
)
)

This function will return the next sibling of a given node - it takes a tree node as argument, and
returns a reference to the next sibling node, or nil, if the node does not have any.

(defun next-sibling (tree)
 (cdr tree)
)

Lastly we need a function to return the information in a node:

(defun data (tree)
 (car (car tree))

)

Example
This example uses the above functionalities:

Create a new source code file named main.lisp and type the following code in it.

(defun make-tree (item)
 "it creates a new node with item."
 (cons (cons item nil) nil)
)
 (defun first-child (tree)
 (if (null tree)
 nil
 (cdr (car tree))
)
)

(defun next-sibling (tree)
 (cdr tree)
)
(defun data (tree)
 (car (car tree))
)
(defun add-child (tree child)
 (setf (car tree) (append (car tree) child))
 tree
)

(setq tr '((1 2 (3 4 5) ((7 8) (7 8 9)))))
(setq mytree (make-tree 10))
(write (data mytree))
(terpri)
(write (first-child tr))
(terpri)
(setq newtree (add-child tr mytree))
(terpri)
(write newtree)

When you execute the code, it returns the following result:

10
(2 (3 4 5) ((7 8) (7 8 9)))

((1 2 (3 4 5) ((7 8) (7 8 9)) (10)))

LISP - HASH TABLELISP - HASH TABLE
The hash table data structure represents a collection of key-and-value pairs that are organized
based on the hash code of the key. It uses the key to access the elements in the collection.

A hash table is used when you need to access elements by using a key, and you can identify a
useful key value. Each item in the hash table has a key/value pair. The key is used to access the
items in the collection.

Creating Hash Table in LISP
In Common LISP, hash table is a general-purpose collection. You can use arbitrary objects as a key
or indexes.

When you store a value in a hash table, you make a key-value pair, and store it under that key.
Later you can retrieve the value from the hash table using the same key. Each key maps to a
single value, although you can store a new value in a key.

Hash tables, in LISP, could be categorised into three types, based on the way the keys could be

compared - eq, eql or equal. If the hash table is hashed on LISP objects then the keys are
compared with eq or eql. If the hash table hash on tree structure, then it would be compared using
equal.

The make-hash-table function is used for creating a hash table. Syntax for this function is:

make-hash-table &key :test :size :rehash-size :rehash-threshold

Where:

The key argument provides the key.

The :test argument determines how keys are compared - it should have one of three values
#'eq, #'eql, or #'equal, or one of the three symbols eq, eql, or equal. If not specified, eql is
assumed.

The :size argument sets the initial size of the hash table. This should be an integer greater
than zero.

The :rehash-size argument specifies how much to increase the size of the hash table when
it becomes full. This can be an integer greater than zero, which is the number of entries to
add, or it can be a floating-point number greater than 1, which is the ratio of the new size to
the old size. The default value for this argument is implementation-dependent.

The :rehash-threshold argument specifies how full the hash table can get before it must
grow. This can be an integer greater than zero and less than the :rehash-size in which case it
will be scaled whenever the table is grown, or it can be a floating-point number between zero
and 1. The default value for this argument is implementation-dependent.

You can also call the make-hash-table function with no arguments.

Retrieving Items from and Adding Items into the Hash Table
The gethash function retrieves an item from the hash table by searching for its key. If it does not
find the key, then it returns nil.

It has the following syntax:

gethash key hash-table &optional default

where:

key: is the associated key

hash-table: is the hash-table to be searched

default: is the value to be returned, if the entry is not found, which is nil, if not specified.

The gethash function actually returns two values, the second being a predicate value that is true if
an entry was found, and false if no entry was found.

For adding an item to the hash table, you can use the setf function along with the gethash
function.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq empList (make-hash-table))
(setf (gethash '001 empList) '(Charlie Brown))
(setf (gethash '002 empList) '(Freddie Seal))
(write (gethash '001 empList))
(terpri)
(write (gethash '002 empList))

When you execute the code, it returns the following result:

(CHARLIE BROWN)
(FREDDIE SEAL)

Removing an Entry
The remhash function removes any entry for a specific key in hash-table. This is a predicate that
is true if there was an entry or false if there was not.

The syntax for this function is:

remhash key hash-table

Example
Create a new source code file named main.lisp and type the following code in it.

(setq empList (make-hash-table))
(setf (gethash '001 empList) '(Charlie Brown))
(setf (gethash '002 empList) '(Freddie Seal))
(setf (gethash '003 empList) '(Mark Mongoose))
(write (gethash '001 empList))
(terpri)
(write (gethash '002 empList))
(terpri)
(write (gethash '003 empList))
(remhash '003 empList)
(terpri)
(write (gethash '003 empList))

When you execute the code, it returns the following result:

(CHARLIE BROWN)
(FREDDIE SEAL)
(MARK MONGOOSE)
NIL

The maphash Function
The maphash function allows you to apply a specified function on each key-value pair on a hash
table.

It takes two arguments - the function and a hash table and invokes the function once for each
key/value pair in the hash table.

Example
Create a new source code file named main.lisp and type the following code in it.

(setq empList (make-hash-table))
(setf (gethash '001 empList) '(Charlie Brown))
(setf (gethash '002 empList) '(Freddie Seal))
(setf (gethash '003 empList) '(Mark Mongoose))
(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) empList)

When you execute the code, it returns the following result:

3 => (MARK MONGOOSE)
2 => (FREDDIE SEAL)
1 => (CHARLIE BROWN)

LISP - INPUT & OUTPUTLISP - INPUT & OUTPUT

Common LISP provides numerous input-output functions. We have already used the format
function, and print function for output. In this section, we will look into some of the most commonly
used input-output functions provided in LISP.

Input Functions
The following table provides the most commonly used input functions of LISP:

SL
No.

Functions and Descriptions

1
read & optional input-stream eof-error-p eof-value recursive-p

It reads in the printed representation of a Lisp object from input-stream, builds a
corresponding Lisp object, and returns the object.

2
read-preserving-whitespace & optional in-stream eof-error-p eof-value recursive-p

It is used in some specialized situations where it is desirable to determine precisely what
character terminated the extended token.

3
read-line & optional input-stream eof-error-p eof-value recursive-p

It reads in a line of text terminated by a newline.

4
read-char & optional input-stream eof-error-p eof-value recursive-p

It takes one character from input-stream and returns it as a character object.

5
unread-char character & optional input-stream

It puts the character most recently read from the input-stream, onto the front of input-
stream.

6
peek-char & optional peek-type input-stream eof-error-p eof-value recursive-p

It returns the next character to be read from input-stream, without actually removing it
from the input stream.

7
listen & optional input-stream

The predicate listen is true if there is a character immediately available from input-
stream, and is false if not.

8
read-char-no-hang & optional input-stream eof-error-p eof-value recursive-p

It is similar to read-char, but if it does not get a character, it does not wait for a character,
but returns nil immediately.

9
clear-input & optional input-stream

It clears any buffered input associated with input-stream.

10
read-from-string string & optional eof-error-p eof-value & key :start :end
:preserve-whitespace

It takes the characters of the string successively and builds a LISP object and returns the
object. It also returns the index of the first character in the string not read, or the length of
the string or, length +1, as the case may be.

11
parse-integer string & key :start :end :radix :junk-allowed

It examines the substring of string delimited by :start and :end default to the beginning
and end of the string. It skips over whitespace characters and then attempts to parse an
integer.

12
read-byte binary-input-stream & optional eof-error-p eof-value

It reads one byte from the binary-input-stream and returns it in the form of an integer.

Reading Input from Keyboard
The read function is used for taking input from the keyboard. It may not take any argument.

For example, consider the code snippet:

(write (+ 15.0 (read)))

Assume the user enters 10.2 from the STDIN Input, it returns,

25.2

The read function reads characters from an input stream and interprets them by parsing as
representations of Lisp objects.

Example
Create a new source code file named main.lisp and type the following code in it:

; the function AreaOfCircle
; calculates area of a circle
; when the radius is input from keyboard

(defun AreaOfCircle()
(terpri)
(princ "Enter Radius: ")
(setq radius (read))
(setq area (* 3.1416 radius radius))
(princ "Area: ")
(write area))
(AreaOfCircle)

When you execute the code, it returns the following result:

Enter Radius: 5 (STDIN Input)
Area: 78.53999

Example

Create a new source code file named main.lisp and type the following code in it.

(with-input-from-string (stream "Welcome to Tutorials Point!")
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (peek-char nil stream nil 'the-end))
 (values)
)

When you execute the code, it returns the following result:

#\W
#\e
#\l
#\c
#\o
#\m
#\e
#\Space
#\t
#\o
#\Space

The Output Functions
All output functions in LISP take an optional argument called output-stream, where the output is
sent. If not mentioned or nil, output-stream defaults to the value of the variable *standard-output*.

The following table provides the most commonly used output functions of LISP:

SL
No.

Functions and Descriptions

1
write object & key :stream :escape :radix :base :circle :pretty :level :length :case
:gensym :array

write object & key :stream :escape :radix :base :circle :pretty :level :length :case
:gensym :array :readably :right-margin :miser-width :lines :pprint-dispatch

Both write the object to the output stream specified by :stream, which defaults to the
value of *standard-output*. Other values default to the corresponding global variables set
for printing.

2
prin1 object & optional output-stream

print object & optional output-stream

pprint object & optional output-stream

princ object & optional output-stream

All these functions outputs the printed representation of object to output-stream.
However, the following differences are there:

prin1 returns the object as its value.

print prints the object with a preceding newline and followed by a space. It returns
object.

pprint is just like print except that the trailing space is omitted.

princ is just like prin1 except that the output has no escape character

3
write-to-string object & key :escape :radix :base :circle :pretty :level :length :case
:gensym :array

write-to-string object & key :escape :radix :base :circle :pretty :level :length :case
:gensym :array :readably :right-margin :miser-width :lines :pprint-dispatch

prin1-to-string object

princ-to-string object

The object is effectively printed and the output characters are made into a string, which is
returned.

4
write-char character & optional output-stream

It outputs the character to output-stream, and returns character.

5
write-string string & optional output-stream & key :start :end

It writes the characters of the specified substring of string to the output-stream.

6
write-line string & optional output-stream & key :start :end

It works the same way as write-string, but outputs a newline afterwards.

7
terpri & optional output-stream

It outputs a newline to output-stream.

8
fresh-line & optional output-stream

it outputs a newline only if the stream is not already at the start of a line.

9
finish-output & optional output-stream

force-output & optional output-stream

clear-output & optional output-stream

The function finish-output attempts to ensure that all output sent to output-stream
has reached its destination, and only then returns nil.

The function force-output initiates the emptying of any internal buffers but returns
nil without waiting for completion or acknowledgment.

The function clear-output attempts to abort any outstanding output operation in
progress in order to allow as little output as possible to continue to the destination.

10
write-byte integer binary-output-stream

It writes one byte, the value of the integer.

Example
Create a new source code file named main.lisp and type the following code in it.

; this program inputs a numbers and doubles it
(defun DoubleNumber()
(terpri)
(princ "Enter Number : ")
(setq n1 (read))
(setq doubled (* 2.0 n1))
(princ "The Number: ")
(write n1)
(terpri)
(princ "The Number Doubled: ")
(write doubled)
)
(DoubleNumber)

When you execute the code, it returns the following result:

Enter Number : 3456.78 (STDIN Input)
The Number: 3456.78
The Number Doubled: 6913.56

Formatted Output
The function format is used for producing nicely formatted text. It has the following syntax:

format destination control-string &rest arguments

where,

destination is standard output
control-string holds the characters to be output and the printing directive.

A format directive consists of a tilde ~, optional prefix parameters separated by commas,
optional colon : and at-sign @ modifiers, and a single character indicating what kind of directive
this is.

The prefix parameters are generally integers, notated as optionally signed decimal numbers.

The following table provides brief description of the commonly used directives:

Directive Description

~A Is followed by ASCII arguments

~S Is followed by S-expressions

~D For decimal arguments

~B For binary arguments

~O For octal arguments

~X For hexadecimal arguments

~C For character arguments

~F For Fixed-format floating-point arguments.

~E Exponential floating-point arguments

~$ Dollar and floating point arguments.

~% A new line is printed

~* Next argument is ignored

~? Indirection. The next argument must be a string, and the one after it a list.

Example
Let us rewrite the program calculating a circle's area:

Create a new source code file named main.lisp and type the following code in it.

(defun AreaOfCircle()
 (terpri)
 (princ "Enter Radius: ")
 (setq radius (read))
 (setq area (* 3.1416 radius radius))
 (format t "Radius: = ~F~% Area = ~F" radius area)
)
(AreaOfCircle)

When you execute the code, it returns the following result:

Enter Radius: 10.234 (STDIN Input)
Radius: = 10.234
Area = 329.03473

LISP - FILE I/OLISP - FILE I/O
We have discussed about how standard input and output is handled by common LISP. All these
functions work for reading from and writing into text and binary files too. Only difference is in this
case the stream we use is not standard input or output, but a stream created for the specific
purpose of writing into or reading from files.

In this chapter we will see how LISP can create, open, close text or binary files for their data
storage.

A file represents a sequence of bytes, does not matter if it is a text file or binary file. This chapter
will take you through important functions/macros for the file management.

Opening Files
You can use the open function to create a new file or to open an existing file. It is the most basic
function for opening a file. However, the with-open-file is usually more convenient and more
commonly used, as we will see later in this section.

When a file is opened, a stream object is constructed to represent it in the LISP environment. All
operations on the stream are basically equivalent to operations on the file.

Syntax for the open function is:

open filename &key :direction :element-type :if-exists :if-does-not-exist
:external-format

where,

The filename argument is the name of the file to be opened or created.

The keyword arguments specify the type of stream and error handling ways.

The :direction keyword specifies whether the stream should handle input, output, or both, it
takes the following values:

:input - for input streams default value
:output - for output streams
:io - for bidirectional streams
:probe - for just checking a files existence; the stream is opened and then closed.

The :element-type specifies the type of the unit of transaction for the stream.

The :if-exists argument specifies the action to be taken if the :direction is :output or :io and
a file of the specified name already exists. If the direction is :input or :probe, this argument is
ignored. It takes the following values:

:error - it signals an error.

:new-version - it creates a new file with the same name but larger version number.

:rename - it renames the existing file.
:rename-and-delete - it renames the existing file and then deletes it.
:append - it appends to the existing file.
:supersede - it supersedes the existing file.
nil - it does not create a file or even a stream just returns nil to indicate failure.

The :if-does-not-exist argument specifies the action to be taken if a file of the specified
name does not already exist. It takes the following values:

:error - it signals an error.
:create - it creates an empty file with the specified name and then uses it.
nil - it does not create a file or even a stream, but instead simply returns nil to indicate
failure.

The :external-format argument specifies an implementation-recognized scheme for
representing characters in files.

For example, you can open a file named myfile.txt stored in the /tmp folder as:

(open "/tmp/myfile.txt")

Writing to and Reading from Files
The with-open-file allows reading or writing into a file, using the stream variable associated with
the read/write transaction. Once the job is done, it automatically closes the file. It is extremely
convenient to use.

It has the following syntax:

with-open-file (stream filename {options}*)
 {declaration}* {form}*

filename is the name of the file to be opened; it may be a string, a pathname, or a stream.

The options are same as the keyword arguments to the function open.

Example 1
Create a new source code file named main.lisp and type the following code in it.

(with-open-file (stream "/tmp/myfile.txt" :direction :output)
 (format stream "Welcome to Tutorials Point!")
 (terpri stream)
 (format stream "This is a tutorials database")
 (terpri stream)
 (format stream "Submit your Tutorials, White Papers and Articles into our Tutorials
Directory.")
)

Please note that all input-output functions discussed in the previous chapter, such as, terpri and
format are working for writing into the file we created here.

When you execute the code, it does not return anything; however, our data is written into the file.
The :direction :output keywords allows us do this.

However, we can read from this file using the read-line function.

Example 2
Create a new source code file named main.lisp and type the following code in it.

(let ((in (open "/tmp/myfile.txt" :if-does-not-exist nil)))
 (when in
 (loop for line = (read-line in nil)
 while line do (format t "~a~%" line))
 (close in)
)
)

When you execute the code, it returns the following result:

Welcome to Tutorials Point!
This is a tutorials database
Submit your Tutorials, White Papers and Articles into our Tutorials Directory.

Closing File
The close function closes a stream.

LISP - STRUCTURESLISP - STRUCTURES
Structures are one of the user-defined data type, which allows you to combine data items of
different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books in a
library. You might want to track the following attributes about each book:

Title
Author
Subject
Book ID

Defining a Structure
The defstruct macro in LISP allows you to define an abstract record structure. The defstruct
statement defines a new data type, with more than one member for your program.

To discuss the format of the defstruct macro, let us write the definition of the Book structure. We

could define the book structure as:

(defstruct book
 title
 author
 subject
 book-id
)

Please note
The above declaration creates a book structure with four named components. So every
book created will be an object of this structure.

It defines four functions named book-title, book-author, book-subject and book-book-id,
which will take one argument, a book structure, and will return the fields title, author, subject
and book-id of the book object. These functions are called the access functions.

The symbol book becomes a data type and you can check it using the typep predicate.

There will also be an implicit function named book-p, which is a predicate and will be true if
its argument is a book and is false otherwise.

Another implicit function named make-book will be created, which is a constructor, which,
when invoked, will create a data structure with four components, suitable for use with the
access functions.

The #S syntax refers to a structure, and you can use it to read or print instances of a book.

An implicit function named copy-book of one argument is also defined that. It takes a book
object and creates another book object, which is a copy of the first one. This function is
called the copier function.

You can use setf to alter the components of a book, for example

(setf (book-book-id book3) 100)

Example
Create a new source code file named main.lisp and type the following code in it.

(defstruct book
 title
 author
 subject
 book-id
)
(setq book1 (make-book :title "C Programming"
 :author "Nuha Ali"
 :subject "C-Programming Tutorial"
 :book-id "478")
)
(setq book2 (make-book :title "Telecom Billing"
 :author "Zara Ali"
 :subject "C-Programming Tutorial"
 :book-id "501")
)
(write book1)
(terpri)
(write book2)
(setq book3(copy-book book1))
(setf (book-book-id book3) 100)
(terpri)
(write book3)

When you execute the code, it returns the following result:

#S(BOOK :TITLE "C Programming" :AUTHOR "Nuha Ali" :SUBJECT "C-Programming Tutorial"
:BOOK-ID "478")
#S(BOOK :TITLE "Telecom Billing" :AUTHOR "Zara Ali" :SUBJECT "C-Programming Tutorial"
:BOOK-ID "501")
#S(BOOK :TITLE "C Programming" :AUTHOR "Nuha Ali" :SUBJECT "C-Programming Tutorial"
:BOOK-ID 100)

LISP - PACKAGESLISP - PACKAGES
In general term of programming languages, a package is designed for providing a way to keep
one set of names separate from another. The symbols declared in one package will not conflict
with the same symbols declared in another. This way packages reduce the naming conflicts
between independent code modules.

The LISP reader maintains a table of all the symbols it has found. When it finds a new character
sequence, it creates a new symbol and stores in the symbol table. This table is called a package.

The current package is referred by the special variable *package*.

There are two predefined packages in LISP:

common-lisp - it contains symbols for all the functions and variables defined.

common-lisp-user - it uses the common-lisp package and all other packages with editing
and debugging tools; it is called cl-user in short

Package Functions in LISP
The following table provides most commonly used functions used for creating, using and
manipulating packages:

SL
No

Functions and Descriptions

1
make-package package-name &key :nicknames :use

It creates and returns a new package with the specified package name.

2
in-package package-name &key :nicknames :use

Makes the package current.

3
in-package name

This macro causes *package* to be set to the package named name, which must be a
symbol or string.

4
find-package name

It searches for a package. The package with that name or nickname is returned; if no such
package exists, find-package returns nil

5
rename-package package new-name &optional new-nicknames

it renames a package.

6
list-all-packages

This function returns a list of all packages that currently exist in the Lisp system.

7
delete-package package

it deletes a package

Creating a LISP Package
The defpackage function is used for creating an user defined package. It has the following syntax:

(defpackage :package-name
 (:use :common-lisp ...)
 (:export :symbol1 :symbol2 ...)
)

Where,

package-name is the name of the package.

The :use keyword specifies the packages that this package needs, i.e., packages that define
functions used by code in this package.

The :export keyword specifies the symbols that are external in this package.

The make-package function is also used for creating a package. The syntax for this function is:

make-package package-name &key :nicknames :use

the arguments and keywords has same meaning as before.

Using a Package
Once you have created a package, you can use the code in this package, by making it the current
package. The in-package macro makes a package current in the environment.

Example
Create a new source code file named main.lisp and type the following code in it.

(make-package :tom)
(make-package :dick)
(make-package :harry)
(in-package tom)
(defun hello ()
 (write-line "Hello! This is Tom's Tutorials Point")
)
(hello)
(in-package dick)
(defun hello ()
 (write-line "Hello! This is Dick's Tutorials Point")
)
(hello)
(in-package harry)
(defun hello ()
 (write-line "Hello! This is Harry's Tutorials Point")
)
(hello)
(in-package tom)
(hello)

(in-package dick)
(hello)
(in-package harry)
(hello)

When you execute the code, it returns the following result:

Hello! This is Tom's Tutorials Point
Hello! This is Dick's Tutorials Point
Hello! This is Harry's Tutorials Point

Deleting a Package
The delete-package macro allows you to delete a package. The following example demonstrates
this:

Example
Create a new source code file named main.lisp and type the following code in it.

(make-package :tom)
(make-package :dick)
(make-package :harry)
(in-package tom)
(defun hello ()
 (write-line "Hello! This is Tom's Tutorials Point")
)
(in-package dick)
(defun hello ()
 (write-line "Hello! This is Dick's Tutorials Point")
)
(in-package harry)
(defun hello ()
 (write-line "Hello! This is Harry's Tutorials Point")
)
(in-package tom)
(hello)
(in-package dick)
(hello)
(in-package harry)
(hello)
(delete-package tom)
(in-package tom)
(hello)

When you execute the code, it returns the following result:

Hello! This is Tom's Tutorials Point
Hello! This is Dick's Tutorials Point
Hello! This is Harry's Tutorials Point
*** - EVAL: variable TOM has no value

LISP - ERROR HANDLINGLISP - ERROR HANDLING
In Common LISP terminology, exceptions are called conditions.

In fact, conditions are more general than exceptions in traditional programming languages,
because a condition represents any occurrence, error, or not, which might affect various levels of
function call stack.

Condition handling mechanism in LISP, handles such situations in such a way that conditions are
used to signal warning say by printing an warning while the upper level code on the call stack can
continue its work.

The condition handling system in LISP has three parts:

Signalling a condition
Handling the condition
Restart the process

Handling a Condition
Let us take up an example of handling a condition arising out of divide by zero condition, to
explain the concepts here.

You need to take the following steps for handling a condition:

Define the Condition - "A condition is an object whose class indicates the general nature of
the condition and whose instance data carries information about the details of the particular
circumstances that lead to the condition being signalled".

The define-condition macro is used for defining a condition, which has the following syntax:

(define-condition condition-name (error)
 ((text :initarg :text :reader text))
)

New condition objects are created with MAKE-CONDITION macro, which initializes the slots of
the new condition based on the :initargs argument.

In our example, the following code defines the condition:

(define-condition on-division-by-zero (error)
 ((message :initarg :message :reader message))
)

Writing the Handlers - a condition handler is a code that are used for handling the
condition signalled thereon. It is generally written in one of the higher level functions that call
the erroring function. When a condition is signalled, the signalling mechanism searches for
an appropriate handler based on the condition's class.

Each handler consists of:

Type specifier, that indicates the type of condition it can handle
A function that takes a single argument, the condition

When a condition is signalled, the signalling mechanism finds the most recently established
handler that is compatible with the condition type and calls its function.

The macro handler-case establishes a condition handler. The basic form of a handler-case:

(handler-case expression error-clause*)

Where, each error clause is of the form:

condition-type ([var]) code)

Restarting Phase

This is the code that actually recovers your program from errors, and condition handlers can
then handle a condition by invoking an appropriate restart. The restart code is generally
place in middle-level or low-level functions and the condition handlers are placed into the
upper levels of the application.

The handler-bind macro allows you to provide a restart function, and allows you to continue
at the lower level functions without unwinding the function call stack. In other words, the flow
of control will still be in the lower level function.

The basic form of handler-bind is as follows:

(handler-bind (binding*) form*)

Where each binding is a list of the following:

a condition type
a handler function of one argument

The invoke-restart macro finds and invokes the most recently bound restart function with
the specified name as argument.

You can have multiple restarts.

Example
In this example, we demonstrate the above concepts by writing a function named division-function,
which will create an error condition if the divisor argument is zero. We have three anonymous
functions that provide three ways to come out of it - by returning a value 1, by sending a divisor 2
and recalculating, or by returning 1.

Create a new source code file named main.lisp and type the following code in it.

(define-condition on-division-by-zero (error)
 ((message :initarg :message :reader message))
)

(defun handle-infinity ()
 (restart-case
 (let ((result 0))
 (setf result (division-function 10 0))
 (format t "Value: ~a~%" result)
)
 (just-continue () nil)
)
)

(defun division-function (value1 value2)
 (restart-case
 (if (/= value2 0)
 (/ value1 value2)
 (error 'on-division-by-zero :message "denominator is zero")
)

 (return-zero () 0)
 (return-value (r) r)
 (recalc-using (d) (division-function value1 d))
)
)

(defun high-level-code ()
 (handler-bind
 (
 (on-division-by-zero
 #'(lambda (c)
 (format t "error signaled: ~a~%" (message c))
 (invoke-restart 'return-zero)
)
)
 (handle-infinity)
)
)
)

(handler-bind
 (
 (on-division-by-zero
 #'(lambda (c)

 (format t "error signaled: ~a~%" (message c))
 (invoke-restart 'return-value 1)
)
)
)
 (handle-infinity)
)

(handler-bind
 (
 (on-division-by-zero
 #'(lambda (c)
 (format t "error signaled: ~a~%" (message c))
 (invoke-restart 'recalc-using 2)
)
)
)
 (handle-infinity)
)

(handler-bind
 (
 (on-division-by-zero
 #'(lambda (c)
 (format t "error signaled: ~a~%" (message c))
 (invoke-restart 'just-continue)
)
)
)
 (handle-infinity)
)

(format t "Done."))

When you execute the code, it returns the following result:

error signaled: denominator is zero
Value: 1
error signaled: denominator is zero
Value: 5
error signaled: denominator is zero
Done.

Apart from the 'Condition System', as discussed above, Common LISP also provides various
functions that may be called for signalling an error. Handling of an error, when signalled, is
however, implementation-dependent.

Error Signalling Functions in LISP
The following table provides commonly used functions signalling warnings, breaks, non-fatal and
fatal errors.

The user program specifies an error message a string. The functions process this message and
may/may not display it to the user.

The error messages should be constructed by applying the format function, should not contain a
newline character at either the beginning or end, and need not indicate error, as the LISP system
will take care of these according to its preferred style.

SL
No.

Functions and Descriptions

1
error format-string &rest args

It signals a fatal error. It is impossible to continue from this kind of error; thus error will

never return to its caller.

2
cerror continue-format-string error-format-string &rest args

It signals an error and enters the debugger. However, it allows the program to be
continued from the debugger after resolving the error.

3
warn format-string &rest args

it prints an error message but normally doesn't go into the debugger

4
break &optional format-string &rest args

It prints the message and goes directly into the debugger, without allowing any possibility
of interception by programmed error-handling facilities

Example
In this example, the factorial function calculates factorial of a number; however, if the argument is
negative, it raises an error condition.

Create a new source code file named main.lisp and type the following code in it.

(defun factorial (x)
 (cond ((or (not (typep x 'integer)) (minusp x))
 (error "~S is a negative number." x))
 ((zerop x) 1)
 (t (* x (factorial (- x 1))))
)
)

(write(factorial 5))
(terpri)
(write(factorial -1))

When you execute the code, it returns the following result:

120
*** - -1 is a negative number.

LISP - CLOSLISP - CLOS
Common LISP predated the advance of object-oriented programming by couple of decades.
However, it object-orientation was incorporated into it at a later stage.

Defining Classes
The defclass macro allows creating user-defined classes. It establishes a class as a data type. It
has the following syntax:

(defclass class-name (superclass-name*)
 (slot-description*)
 class-option*))

The slots are variables that store data, or fields.

A slot-description has the form slot-name slot-option*, where each option is a keyword followed by
a name, expression and other options. Most commonly used slot options are:

:accessor function-name

:initform expression

:initarg symbol

For example, let us define a Box class, with three slots length, breadth, and height.

(defclass Box ()
 (length
 breadth
 height)
)

Providing Access and Read/Write Control to a Slot
Unless the slots have values that can be accessed, read or written to, classes are pretty useless.

You can specify accessors for each slot when you define a class. For example, take our Box class:

(defclass Box ()
 ((length :accessor length)
 (breadth :accessor breadth)
 (height :accessor height)
)
)

You can also specify separate accessor names for reading and writing a slot.

(defclass Box ()
 ((length :reader get-length :writer set-length)
 (breadth :reader get-breadth :writer set-breadth)
 (height :reader get-height :writer set-height)
)
)

Creating Instance of a Class
The generic function make-instance creates and returns a new instance of a class.

It has the following syntax:

(make-instance class {initarg value}*)

Example
Let us create a Box class, with three slots, length, breadth and height. We will use three slot
accessors to set the values in these fields.

Create a new source code file named main.lisp and type the following code in it.

(defclass box ()
 ((length :accessor box-length)
 (breadth :accessor box-breadth)
 (height :accessor box-height)
)
)
(setf item (make-instance 'box))
(setf (box-length item) 10)
(setf (box-breadth item) 10)
(setf (box-height item) 5)
(format t "Length of the Box is ~d~%" (box-length item))
(format t "Breadth of the Box is ~d~%" (box-breadth item))
(format t "Height of the Box is ~d~%" (box-height item))

When you execute the code, it returns the following result:

Length of the Box is 10
Breadth of the Box is 10
Height of the Box is 5

Defining a Class Method
The defmethod macro allows you to define a method inside the class. The following example
extends our Box class to include a method named volume.

Create a new source code file named main.lisp and type the following code in it.

(defclass box ()
 ((length :accessor box-length)
 (breadth :accessor box-breadth)
 (height :accessor box-height)
 (volume :reader volume)
)
)

; method calculating volume

(defmethod volume ((object box))
 (* (box-length object) (box-breadth object)(box-height object))
)

 ;setting the values

(setf item (make-instance 'box))
(setf (box-length item) 10)
(setf (box-breadth item) 10)
(setf (box-height item) 5)

; displaying values

(format t "Length of the Box is ~d~%" (box-length item))
(format t "Breadth of the Box is ~d~%" (box-breadth item))
(format t "Height of the Box is ~d~%" (box-height item))
(format t "Volume of the Box is ~d~%" (volume item))

When you execute the code, it returns the following result:

Length of the Box is 10
Breadth of the Box is 10
Height of the Box is 5
Volume of the Box is 500

Inheritance
LISP allows you to define an object in terms of another object. This is called inheritance. You can
create a derived class by adding features that are new or different. The derived class inherits the
functionalities of the parent class.

The following example explains this:

Example
Create a new source code file named main.lisp and type the following code in it.

(defclass box ()
 ((length :accessor box-length)
 (breadth :accessor box-breadth)
 (height :accessor box-height)
 (volume :reader volume)

)
)
; method calculating volume
(defmethod volume ((object box))
 (* (box-length object) (box-breadth object)(box-height object))
)

;wooden-box class inherits the box class
(defclass wooden-box (box)
((price :accessor box-price)))

 ;setting the values
(setf item (make-instance 'wooden-box))
(setf (box-length item) 10)
(setf (box-breadth item) 10)
(setf (box-height item) 5)
(setf (box-price item) 1000)

; displaying values

(format t "Length of the Wooden Box is ~d~%" (box-length item))
(format t "Breadth of the Wooden Box is ~d~%" (box-breadth item))
(format t "Height of the Wooden Box is ~d~%" (box-height item))
(format t "Volume of the Wooden Box is ~d~%" (volume item))
(format t "Price of the Wooden Box is ~d~%" (box-price item))

When you execute the code, it returns the following result:

Length of the Wooden Box is 10
Breadth of the Wooden Box is 10
Height of the Wooden Box is 5
Volume of the Wooden Box is 500
Price of the Wooden Box is 1000

Processing math: 52%

