LISP - NUMBERS

Common Lisp defines several kinds of numbers. The number data type includes various kinds of
numbers supported by LISP.

The number types supported by LISP are:

e Integers
e Ratios
e Floating-point numbers

¢ Complex numbers

The following diagram shows the number hierarchy and various numeric data types available in
LISP:

single-float

double-
float
long-fiot

bignum

fixnum

Various Numeric Types in LISP

The following table describes various number type data available in LISP:

Data type Description

fixnum This data type represents integers which are not too large and mostly in the
range -215 to 215-1 itismachine — dependent

bignum These are very large numbers with size limited by the amount of memory
allocated for LISP, they are not fixnum numbers.

ratio Represents the ratio of two numbers in the numerator/denominator form. The /
function always produce the resultin ratios, when its arguments are integers.

float It represents non-integer numbers. There are four float data types with increasing
precision.

http://www.tutorialspoint.com/lisp/lisp_numbers.htm

complex

Example

It represents complex numbers, which are denoted by #c. The real and
imaginary parts could be both either rational or floating point numbers.

Create a new source code file named main.lisp and type the following code in it.

write (/ 1 2))

terpri)

(
(
(write (+ (/ 1 2) (/ 3 4)))
(

terpri)

(write (+ #c(1 2) #c(3 -4)))

When you execute the code, it returns the following result:

1/2
5/4
#C(4 -2)

Number Functions

The following table describes some commonly used numeric functions:

Function
+I -I >kl /

sin, cos, tan,
acos, asin,
atan

sinh, cosh,
tanh, acosh,
asinh, atanh
exp

expt

sqrt

log

conjugate

abs

gcd

lcm

isqrt

floor, ceiling,

truncate,
round

Description
Respective arithmetic operations

Respective trigonometric functions.

Respective hyperbolic functions.

Exponentiation function. Calculates e*
Exponentiation function, takes base and power both.
It calculates the square root of a number.

Logarithmic function. It one parameter is given, then it calculates its natural
logarithm, otherwise the second parameter is used as base.

It calculates the complex conjugate of a number. In case of a real number, it
returns the number itself.

It returns the absolute value ormagnitude of a number.
It calculates the greatest common divisor of the given numbers
It calculates the least common multiple of the given numbers

It gives the greatest integer less than or equal to the exact square root of a given
natural number.

All these functions take two arguments as a number and returns the quotient;
floor returns the largest integer that is not greater than ratio, ceiling chooses
the smaller integer that is larger than ratio, truncate chooses the integer of the
same sign as ratio with the largest absolute value that s less than absolute value
of ratio, and round chooses an integer that is closest to ratio.

ffloor, Does the same as above, but returns the quotient as a floating point number.
fceiling,

ftruncate,

fround

mod, rem Returns the remainder in a division operation.
float Converts a real number to a floating point number.

rational, Converts a real number to rational number.
rationalize

numerator, Returns the respective parts of a rational number.
denominator

realpart, Returns the real and imaginary part of a complex number.
imagpart

Example
Create a new source code file named main.lisp and type the following code in it.

(write (/ 45 78))
(terpri)

(write (floor 45 78))
(terpri)

(write (/ 3456 75))
(terpri)

(write (floor 3456 75))
(terpri)

(write (ceiling 3456 75))
(terpri)

(write (truncate 3456 75))
(terpri)

(write (round 3456 75))
(terpri)

(write (ffloor 3456 75))
(terpri)

(write (fceiling 3456 75))
(terpri)

(write (ftruncate 3456 75))
(terpri)

(write (fround 3456 75))
(terpri)

(write (mod 3456 75))
(terpri)

(setq c (complex 6 7))
(write c)

(terpri)

(write (complex 5 -9))
(terpri)

(write (realpart c))
(terpri)

(write (imagpart c))

When you execute the code, it returns the following result:

15/26

0
1152/25
46

a7

46

46

46.0
47.0

46.0

46.0

6

#C(6 7)
#C(5 -9)
6

>
| Loading [Mathjax]/jax/output/HTML-CSS/jax.js

