LISP - ERROR HANDLING

In Common LISP terminology, exceptions are called conditions.

In fact, conditions are more general than exceptions in traditional programming languages,
because a condition represents any occurrence, error, or not, which might affect various levels of
function call stack.

Condition handling mechanism in LISP, handles such situations in such a way that conditions are
used to signal warning saybyprintinganwarning while the upper level code on the call stack can
continue its work.

The condition handling system in LISP has three parts:
¢ Signalling a condition
¢ Handling the condition
e Restart the process

Handling a Condition

Let us take up an example of handling a condition arising out of divide by zero condition, to
explain the concepts here.

You need to take the following steps for handling a condition:

o Define the Condition - "A condition is an object whose class indicates the general nature of
the condition and whose instance data carries information about the details of the particular
circumstances that lead to the condition being signalled".

The define-condition macro is used for defining a condition, which has the following syntax:

(define-condition condition-name (error)
((text :initarg :text :reader text))

)

New condition objects are created with MAKE-CONDITION macro, which initializes the slots of
the new condition based on the :initargs argument.

In our example, the following code defines the condition:

(define-condition on-division-by-zero (error)
((message :initarg :message :reader message))
)

e Writing the Handlers - a condition handler is a code that are used for handling the
condition signalled thereon. It is generally written in one of the higher level functions that call
the erroring function. When a condition is signalled, the signalling mechanism searches for
an appropriate handler based on the condition's class.

Each handler consists of:

o Type specifier, that indicates the type of condition it can handle

o A function that takes a single argument, the condition

When a condition is signalled, the signalling mechanism finds the most recently established
handler that is compatible with the condition type and calls its function.

The macro handler-case establishes a condition handler. The basic form of a handler-case:

(handler-case expression error-clause*)


http://www.tutorialspoint.com/lisp/lisp_error_handling.htm

Where, each error clause is of the form:

condition-type ([var]) code)

Restarting Phase

This is the code that actually recovers your program from errors, and condition handlers can
then handle a condition by invoking an appropriate restart. The restart code is generally
place in middle-level or low-level functions and the condition handlers are placed into the
upper levels of the application.

The handler-bind macro allows you to provide a restart function, and allows you to continue
at the lower level functions without unwinding the function call stack. In other words, the flow
of control will still be in the lower level function.

The basic form of handler-bind is as follows:
(handler-bind (binding*) form™*)

Where each binding is a list of the following:

o a condition type

o a handler function of one argument

The invoke-restart macro finds and invokes the most recently bound restart function with
the specified name as argument.

You can have multiple restarts.

Example

In this example, we demonstrate the above concepts by writing a function named division-function,
which will create an error condition if the divisor argument is zero. We have three anonymous
functions that provide three ways to come out of it - by returning a value 1, by sending a divisor 2
and recalculating, or by returning 1.

Create a new source code file named main.lisp and type the following code in it.

(define-condition on-division-by-zero (error)

)

((message :initarg :message :reader message))

(defun handle-infinity ()

)

(restart-case
(let ((result 0))
(setf result (division-function 10 0))
(format t "Value: ~a~%" result)

)

(just-continue () nil)

(defun division-function (valuel value2)

(restart-case
(if (/= value2 0)
(/ valuel value2)
(error 'on-division-by-zero :message '"denominator is zero")

)

(return-zero () 0)
(return-value (r) r)
(recalc-using (d) (division-function valuel d))



(defun high-level-code ()
(handler-bind

(
(on-division-by-zero
#'(lambda (c)
(format t "error signaled: ~a~%" (message c))
(invoke-restart 'return-zero)
)
)
(handle-infinity)
)
)
)
(handler-bind
(
(on-division-by-zero
#'(lambda (c)
(format t "error signaled: ~a~%" (message c))
(invoke-restart 'return-value 1)
)
)
)
(handle-infinity)
)
(handler-bind
(
(on-division-by-zero
#'(lambda (c)
(format t "error signaled: ~a~%" (message c))
(invoke-restart 'recalc-using 2)
)
)
(handle-infinity)
)
(handler-bind
(
(on-division-by-zero
#'(lambda (c)
(format t "error signaled: ~a~%'" (message c))
(invoke-restart 'just-continue)
)
)
)
(handle-infinity)
)

(format t "Done."))

When you execute the code, it returns the following result:

error signaled: denominator is zero

Value: 1

error signaled: denominator is zero
Value: 5

error signaled: denominator is zero
Done.

Apart from the 'Condition System’, as discussed above, Common LISP also provides various
functions that may be called for signalling an error. Handling of an error, when signalled, is
however, implementation-dependent.

Error Signalling Functions in LISP

The following table provides commonly used functions signalling warnings, breaks, non-fatal and



fatal errors.

The user program specifies an error message astring. The functions process this message and
may/may not display it to the user.

The error messages should be constructed by applying the format function, should not contain a
newline character at either the beginning or end, and need not indicate error, as the LISP system
will take care of these according to its preferred style.

SL Functions and Descriptions

No.

1
error format-string &#38;rest args
It signals a fatal error. It is impossible to continue from this kind of error; thus error will
never return to its caller.

2
cerror continue-format-string error-format-string &#38;rest args
It signals an error and enters the debugger. However, it allows the program to be
continued from the debugger after resolving the error.

3
warn format-string &#38;rest args
it prints an error message but normally doesn't go into the debugger

4
break &#38;optional format-string &#38;rest args
It prints the message and goes directly into the debugger, without allowing any possibility
of interception by programmed error-handling facilities

Example

In this example, the factorial function calculates factorial of a number; however, if the argument is
negative, it raises an error condition.

Create a new source code file named main.lisp and type the following code in it.

(defun factorial (x)
(cond ((or (not (typep x 'integer)) (minusp X))

)

(error "~S is a negative number." x))
((zerop x) 1)
(t (* x (factorial (- x 1))))

(write(factorial 5))
(terpri)
(write(factorial -1))

When you execute the code, it returns the following result:

120

* % %

- -1 dc a noanativa numhar

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js



