KDB+ ARCHITECTURE

Kdb+ is a high-performance, high-volume database designed from the outset to handle
tremendous volumes of data. It is fully 64-bit, and has built-in multi-core processing and multi-
threading. The same architecture is used for real-time and historical data. The database
incorporates its own powerful query language, q, so analytics can be run directly on the data.

kdb+tick is an architecture which allows the capture, processing, and querying of real-time and
historical data.

Kdb+/ tick Architecture

The following illustration provides a generalized outline of a typical Kdb+/tick architecture,
followed by a brief explanation of the various components and the through-flow of data.

Feed 1 Feed 2 Feed 3

.

Key

——— Data pushed

—p
Guery, result returned

Feed Handler

= I T
Log File Ticker Plant
Saves to log
&5 500N 35
iz J data amves
R Bk .
Publishes to all
subscribers on
a timer loop
/___,__ —
e _
s - . .
Real Time TP I:Iie_"1 - TP Client -
Databass Real Time Chained Ticker-
Subscriber plant 1
\ ] S Publishes to

subscribers on

= :
Sawves to Historical a timer koop

Database at end-of-
aay

T— Chained
Ticker-plant 2

Historica 2 :
Catabase \ / S l— -

_ o KDB+ Process KDB+ Process

e The Data Feeds are a time series data that are mostly provided by the data feed providers
like Reuters, Bloomberg or directly from exchanges.

¢ To getthe relevant data, the data from the data feed is parsed by the feed handler.

e Once the data is parsed by the feed handler, it goes to the ticker-plant.


http://www.tutorialspoint.com/kdbplus/kdbplus_architecture.htm

e To recover data from any failure, the ticker-plant first updates/stores the new data to the log
file and then updates its own tables.

e After updating the internal tables and the log files, the on-time loop data is continuously
sent/published to the real-time database and all the chained subscribers who requested for
data.

e Atthe end of a business day, the log file is deleted, a new one created and the real-time
database is saved onto the historical database. Once all the data is saved onto the historical
database, the real-time database purges its tables.

Components of Kdb+ Tick Architecture

Data Feeds

Data Feeds can be any market or other time series data. Consider data feeds as the raw input to
the feed-handler. Feeds can be directly from the exchange live - streamingdata, from the news/data
providers like Thomson-Reuters, Bloomberg, or any other external agencies.

Feed Handler

A feed handler converts the data stream into a format suitable for writing to kdb+. It is connected
to the data feed and it retrieves and converts the data from the feed-specific formatinto a Kdb+
message which is published to the ticker-plant process. Generally a feed handler is used to
perform the following operations —

e Capture data according to a set of rules.
e Translate /enrich that data from one format to another.

e Catch the most recent values.

Ticker Plant

Ticker Plant is the most important component of KDB+ architecture. It is the ticker plant with which
the real-time database or directly subscribers clients are connected to access the financial data. It
operates in publish and subscribe mechanism. Once you obtain a subscription license, a tick
routinely publication from the publisher tickerplant is defined. It performs the following operations —

e Receives the data from the feed handler.

¢ Immediately after the ticker plant receives the data, it stores a copy as a log file and updates
it once the ticker plant gets any update so that in case of any failure, we should not have any
data loss.

e The clients real - timesubscriber can directly subscribe to the ticker-plant.

e Atthe end of each business day, i.e., once the real-time database receives the last message,
it stores all of today’s data onto the historical database and pushes the same to all the
subscribers who have subscribed for today’s data. Then it resets all its tables. The log file is
also deleted once the data is stored in the historical database or other directly linked
subscriber to real time database rtdb.

¢ As a result, the ticker-plant, the real-time database, and the historical database are
operational on a 24/7 basis.

Since the ticker-plantis a Kdb+ application, its tables can be queried using q like any other Kdb+
database. All ticker-plant clients should only have access to the database as subscribers.

Real-Time Database

A real-time database rdb stores today’s data. It is directly connected to the ticker plant. Typically it
would be stored in memory during market hours aday and written out to the historical database hdb
at the end of day. As the data rdbdata is stored in memory, processing is extremely fast.

As kdb+ recommends to have a RAM size that is four or more times the expected size of data per



day, the query that runs on rdb is very fast and provides superior performance. Since a real-time
database contains only today’s data, the date column parameter is not required.

For example, we can have rdb queries like,

“ibm

select from trade where sym

OR

select from trade where sym “ibm, price > 100

Historical Database

If we have to calculate the estimates of a company, we need to have its historical data available. A
historical database hdb holds data of transactions done in the past. Each new day’s record would be
added to the hdb at the end of day. Large tables in the hdb are either stored splayed
eachcolumnisstoredinitsownfile or they are stored partitioned by temporal data. Also some very large
databases may be further partitioned using par.txt file.

These storage strategies splayed, partitioned, etc. are efficient while searching or accessing the data
from a large table.

A historical database can also be used for internal and external reporting purposes, i.e., for
analytics. For example, suppose we want to get the company trades of IBM for a particular day
from the trade orany table name, we need to write a query as follows —

thisday: 2014.10.12

select from trade where date = thisday, sym = ibm

klnl-.n — \W\la \Alil! wirita all ciich nlllori.ac once we get some over\”ew Of the q Ianguage
Loading [Mathjax]/jax/output/HTML-CSS/jax.js



