
http://www.tutorialspoint.com/jsf/jsf_spring_integration.htm Copyright © tutorialspoint.com

JSF - SPRING INTEGRATIONJSF - SPRING INTEGRATION

Spring provides special class DelegatingVariableResolver to integrate JSF and Spring together in
seamless manner.

Following steps are required to integrate Spring Dependency Injection IOC feature in JSF

Step 1. Add DelegatingVariableResolver
Add a variable-resolver entry in faces-config.xml to point to spring class
DelegatingVariableResolver.

<faces-config>
 <application>
 <variable-resolver>
 org.springframework.web.jsf.DelegatingVariableResolver
 </variable-resolver>
 ...
</faces-config>

Step 2. Add Context Listeners
Add ContextLoaderListener and RequestContextListener listener provided by spring
framework in web.xml

<web-app>
 ...
 <!-- Add Support for Spring -->
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 ...
</web-app>

Step 3. Define Dependency
Define beans in applicationContext.xml which will be used as dependency in managed bean

<beans>
 <bean
 >
 <property name="message" value="Hello World!" />
 </bean>
</beans>

Step 4. Add Dependency
DelegatingVariableResolver first delegates value lookups to the default resolver of the JSF and
then to Spring's WebApplicationContext. This allows one to easily inject spring based
dependencies into one's JSF-managed beans.

We've injected messageService as spring based dependency here

<faces-config>
 ...

http://www.tutorialspoint.com/jsf/jsf_spring_integration.htm

 <managed-bean>
 <managed-bean-name>userData</managed-bean-name>
 <managed-bean-class>com.tutorialspoint.test.UserData</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>messageService</property-name>
 <value>#{messageService}</value>
 </managed-property>
 </managed-bean>
</faces-config>

Step 5. Use Dependency

//jsf managed bean
public class UserData {
 //spring managed dependency
 private MessageService messageService;

 public void setMessageService(MessageService messageService) {
 this.messageService = messageService;
 }

 public String getGreetingMessage(){
 return messageService.getGreetingMessage();
 }
}

Example Application
Let us create a test JSF application to test spring integration.

Step Description

1 Create a project with a name helloworld under a package com.tutorialspoint.test as
explained in the JSF - First Application chapter.

2 Modify pom.xml as explained below.

3 Create faces-config.xml in WEB-INF folder as explained below.

4 Modify web.xml as explained below.

5 Create applicationContext.xml in WEB-INF folder as explained below.

6 Create MessageService.java under package com.tutorialspoint.test as explained below.

7 Create MessageServiceImpl.java under package com.tutorialspoint.test as explained
below.

8 Create UserData.java under package com.tutorialspoint.test as explained below.

9 Modify home.xhtml as explained below. Keep rest of the files unchanged.

10 Compile and run the application to make sure business logic is working as per the
requirements.

11 Finally, build the application in the form of war file and deploy it in Apache Tomcat
Webserver.

12 Launch your web application using appropriate URL as explained below in the last step.

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.tutorialspoint.test</groupId>
 <artifactId>helloworld</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>helloworld Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-api</artifactId>
 <version>2.1.7</version>
 </dependency>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-impl</artifactId>
 <version>2.1.7</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>1.2</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>3.1.2.RELEASE</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>3.1.2.RELEASE</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>helloworld</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>copy-resources</id>
 <phase>validate</phase>
 <goals>
 <goal>copy-resources</goal>
 </goals>
 <configuration>
 <outputDirectory>${basedir}/target/helloworld/resources
 </outputDirectory>
 <resources>

 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">
 <application>
 <variable-resolver>
 org.springframework.web.jsf.DelegatingVariableResolver
 </variable-resolver>
 </application>
 <managed-bean>
 <managed-bean-name>userData</managed-bean-name>
 <managed-bean-class>com.tutorialspoint.test.UserData</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>messageService</property-name>
 <value>#{messageService}</value>
 </managed-property>
 </managed-bean>
</faces-config>

web.xml

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >
<web-app>
 <display-name>Archetype Created Web Application</display-name>

 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <!-- Add Support for Spring -->
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>
</web-app>

applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
 "http://www.springframework.org/dtd/spring-beans-2.0.dtd">
<beans>
 <bean
 >
 <property name="message" value="Hello World!" />
 </bean>
</beans>

MessageService.java

package com.tutorialspoint.test;

public interface MessageService {
 String getGreetingMessage();
}

MessageServiceImpl.java

package com.tutorialspoint.test;

public class MessageServiceImpl implements MessageService {

 private String message;

 public String getGreetingMessage() {
 return message;
 }
 public String getMessage() {
 return message;
 }
 public void setMessage(String message) {
 this.message = message;
 }
}

UserData.java

package com.tutorialspoint.test;

import java.io.Serializable;

public class UserData implements Serializable {

 private static final long serialVersionUID = 1L;

 private MessageService messageService;

 public MessageService getMessageService() {
 return messageService;
 }

 public void setMessageService(MessageService messageService) {
 this.messageService = messageService;
 }

 public String getGreetingMessage(){
 return messageService.getGreetingMessage();
 }
}

home.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>JSF Tutorial!</title>
 </h:head>
 <h:body>
 <h2>Spring Integration Example</h2>
 #{userData.greetingMessage}
 </h:body>
</html>

Once you are ready with all the changes done, let us compile and run the application as we did in
JSF - First Application chapter. If everything is fine with your application, this will produce following
result:

Loading [MathJax]/jax/output/HTML-CSS/jax.js

