JSF - FIRST APPLICATION

To create a simple JSF application, we'll use maven-archetype-webapp plugin. In example below,
We'll create a maven based web application projectin C:\JSF folder.

Create Project

Let's open command console, go the C:\ > JSF directory and execute the following mvn
command.

C:\JSF>mvn archetype:create
-DgroupId=com.tutorialspoint.test
-DartifactId=helloworld
-DarchetypeArtifactId=maven-archetype-webapp

Maven will start processing and will create the complete java web application project structure.

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.

[INFO] - -- - mm e m e m e e e e e e oo e e e eeeeeoaoa
[INFO] Building Maven Default Project

[INFO] task-segment: [archetype:create] (aggregator-style)

[INFO] === mmmm e e e e e e e e e e e e e e e memme o e

[INFO] [archetype:create {execution: default-cli}]

[INFO] Defaulting package to group ID: com.tutorialspoint.test

[INFO] artifact org.apache.maven.archetypes:maven-archetype-webapp:
checking for updates from central

[INFO] -----c--cmmcmmcececicciccecccaccccccccccccccecccccanccaaaan-
[INFO] Using following parameters for creating project

from 01ld (1.x) Archetype: maven-archetype-webapp:RELEASE

[INFO] === == m == m e e e o e e e e e e e e e e e memmemeoo
[INFO] Parameter: groupId, Value: com.tutorialspoint.test

[INFO] Parameter: packageName, Value: com.tutorialspoint.test

[INFO] Parameter: package, Value: com.tutorialspoint.test

[INFO] Parameter: artifactId, Value: helloworld

[INFO] Parameter: basedir, Value: C:\JSF

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from 0ld (1.x) Archetype in dir:
C:\JSF\helloworld

[N O B P o R s
[INFO] BUILD SUCCESSFUL

[INFO] -=----cc--ccmcemccamccaccceiccamccaccccccccecccacccaccoaaaaa-
[INFO] Total time: 7 seconds

[INFO] Finished at: Mon Nov 05 16:05:04 IST 2012

[INFO] Final Memory: 12M/84M

[INFO] -------- - e e mmmceeec e e e meccmeccccccecccccccecc—aonn-

Now go to C:/JSF directory. You'll see a java web application project created named helloworld
asspecifiedinartifactld. Maven uses a standard directory layout as shown below:

4 {8 Computer Marme
4 £ Windows () sre
= # J5F || pom.axml

4 4 ﬁejinwnrld

mn

settings
4 5rC
a main
resources
4 |1 webapp
WEB-INF

http://www.tutorialspoint.com/jsf/jsf_first_application.htm

Using above example, we can understand following key concepts

Folder Structure Description
helloworld contains src folder and pom.xml
src/main/wepapp contains WEB-INF folder and index.jsp page

src/main/resources it contains images/properties files
Inaboveexample, weneedtocreatethisstructuremanually.

Add JSF capability to Project

Add the JSF dependencies as shown below.

<dependencies>
<dependency>
<groupId>com.sun.faces</groupId>
<artifactId>jsf-api</artifactId>
<version>2.1.7</version>
</dependency>
<dependency>
<groupId>com.sun.faces</groupId>
<artifactId>jsf-impl</artifactId>
<version>2.1.7</version>
</dependency>

</dependencies>

Complete POM.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.tutorialspoint.test</groupId>
<artifactId>helloworld</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>helloworld Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.sun.faces</groupId>
<artifactId>jsf-api</artifactId>
<version>2.1.7</version>
</dependency>
<dependency>
<groupId>com.sun.faces</groupId>
<artifactId>jsf-impl</artifactId>
<version>2.1.7</version>
</dependency>
</dependencies>
<build>
<finalName>helloworld</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>

<version>2.3.1</version>

<configuration>
<source>1.6</source>
<target>1.6</target>

</configuration>

</plugin>
</plugins>
</build>
</project>

Prepare Eclipse project

Let's open command console, go the C:\ > JSF > helloworld directory and execute the following
mvn command.

C:\JSF\helloworld>mvn eclipse:eclipse -Dwtpversion=2.0

Maven will start processing and will create the eclipse ready project and will add wtp capability.

Downloading: http://repo.maven.apache.org/org/apache/maven/plugins/
maven-compiler-plugin/2.3.1/maven-compiler-plugin-2.3.1.pom

5K downloaded (maven-compiler-plugin-2.3.1.pom)

Downloading: http://repo.maven.apache.org/org/apache/maven/plugins/
maven-compiler-plugin/2.3.1/maven-compiler-plugin-2.3.1.jar

29K downloaded (maven-compiler-plugin-2.3.1.jar)

[INFO] Searching repository for plugin with prefix: 'eclipse'.

[INFO] ---------ccmcemccmccccocaiccaccccccccecccccccccccacccnaa-
[INFO] Building helloworld Maven Webapp

[INFO] task-segment: [eclipse:eclipse]

[INFO] -----c-ccmmcmccccicciccaccccecccacccaccccccccnccaacaaann-

[INFO] Preparing eclipse:eclipse

[INFO] No goals needed for project - skipping

[INFO] [eclipse:eclipse {execution: default-cli}]

[INFO] Adding support for WTP version 2.0.

[INFO] Using Eclipse Workspace: null

[INFO] Adding default classpath container: org.eclipse.jdt.
launching.JRE_CONTAINER

Downloading: http://repo.maven.apache.org/
com/sun/faces/jsf-api/2.1.7/jsf-api-2.1.7.pom

12K downloaded (jsf-api-2.1.7.pom)

Downloading: http://repo.maven.apache.org/
com/sun/faces/jsf-impl/2.1.7/jsf-impl-2.1.7.pom

10K downloaded (jsf-impl-2.1.7.pom)

Downloading: http://repo.maven.apache.org/
com/sun/faces/jsf-api/2.1.7/jsf-api-2.1.7.jar

619K downloaded (jsf-api-2.1.7.jar)

Downloading: http://repo.maven.apache.org/
com/sun/faces/jsf-impl/2.1.7/jsf-impl-2.1.7.]jar

1916K downloaded (jsf-impl-2.1.7.jar)

[INFO] Wrote settings to C:\JSF\helloworld\.settings\
org.eclipse.jdt.core.prefs

[INFO] Wrote Eclipse project for "helloworld" to C:\JSF\helloworld.
[INFO]

[INFO] ------eccmmcmaceccicccccccicccccccccccccccncccacccanaen=-
[INFO] BUILD SUCCESSFUL

[INFO] ------m- - e mmm e e e emecceccccccccccccccceeeoa-
[INFO] Total time: 6 minutes 7 seconds

[INFO] Finished at: Mon Nov 05 16:16:25 IST 2012

[INFO] Final Memory: 10M/89M

[INFO] -----c---cmccmmccmcccciccaccccccccccccaccccccccacccacaaa=-

Import project in Eclipse
¢ Now import projectin eclipse using Import wizard

¢ Go to File > Import... > Existing project into workspace

Select root directory to helloworld

Keep Copy projects into workspace to be checked.

Click Finish button.

Eclipse will import and copy the projectin its workspace C:\ > Projects > Data >
WorkSpace

4 T:‘,J- helloworld
» Ceployment Descriptor: Archetype Created Web Application
7% Java Resources
=), JavaScript Support
Web Resources : src/main/webapp
_"_J-[: porm.xml
4 (= src
4 [main
(= java
[= resources
(=2 webapp

Configure Faces Servlet in web.xml

Locate web.xml in webapp > WEB-INF folder and update it as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_ 5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
>
<welcome-file-list>
<welcome-file>faces/home.xhtml</welcome-file>
</welcome-file-1list>
<l--
FacesServlet is main servlet responsible to handle all request.
It acts as central controller.
This servlet initializes the JSF components before the JSP is displayed.
-->
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>* .faces</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>* .xhtml</url-pattern>
</servlet-mapping>
</web-app>

Create a Managed Bean

Create a package structure under src > main > java as com > tutorialspoint > test . Create

HelloWorld.java class in this package. Update the code of HelloWorld.java as shown below.

package com.tutorialspoint.test;
import javax.faces.bean.ManagedBean;

@ManagedBean(name = "helloWorld", eager = true)
public class HelloWorld {
public HelloWorld() {
System.out.println("Helloworld started!");
}

public String getMessage() {
return "Hello World!";
}

Create a JSF page

Create a page home.xhtml under webapp folder. Update the code of home.xhtml as shown
below.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>JSF Tutorial!</title>
</head>
<body>
#{hellowWorld.message}
</body>
</html>

Build the project
e Select helloworld projectin eclipse
e Use Run As wizard
e Select Run As > Maven package

e Maven will start building the project and will create helloworld.war under C:\ > Projects >
Data > WorkSpace > helloworld > target folder

[INFO] Scanning for projects...

[INFO] -----c---cmmcemccmccoccccaiccccccccoccacccaccccaaaa-
[INFO] Building helloworld Maven Webapp

[INFO]

[INFO] Id: com.tutorialspoint.test:helloworld:war:1.0-SNAPSHOT
[INFO] task-segment: [package]

[INFO] ------m - - e e e eec e meeccmeccecccmccccccccaena-
[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [resources:testResources]

[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]

[INFO] No sources to compile

[INFO] [surefire:test]

[INFO] Surefire report directory:
C:\Projects\Data\WorkSpace\helloworld\target\surefire-reports

There are no tests to run.

Results :
Tests run: 0, Failures: O, Errors: O, Skipped: 0

[INFO] [war :war]

[INFO] Packaging webapp

[INFO] Assembling webapp[helloworld] in
[C:\Projects\Data\WorkSpace\helloworld\target\helloworld]
[INFO] Processing war project

[INFO] Webapp assembled in[150 msecs]

[INFO] Building war:
C:\Projects\Data\WorkSpace\helloworld\target\helloworld.war
[INFO] -----c--cmmccmcccaceccceccccccacccecccaaccaacna-
[INFO] BUILD SUCCESSFUL

= R T T
[INFO] Total time: 3 seconds

[INFO] Finished at: Mon Nov 05 16:34:46 IST 2012

[INFO] Final Memory: 2M/15M

[INFO] -----ccc-mceccmccmccacccccccccccaccccaccaaaaa-

Deploy WAR file
e Stop the tomcat server.
e Copy the helloworld.war file to tomcat installation directory > webapps folder.
e Start the tomcatserver.
e Look inside webapps directory, there should be a folder helloworld got created.
¢ Now helloworld.war is successfully deployed in Tomcat Webserver root.
Run Application

Enter a url in web browser: http://localhost:8080/helloworld/home.jsf to launch the
application

Server name localhost and port 8080 may vary as per your tomcat configuration.

ESEEERC
a Ii'w‘ p:/flocalhost8E O = & X
£ £

l =2 JSE Tutonal! |
dut View Favarites Teols Help

Hello World!

Loading [Mathjax]/jax/output/HTML-CSS/jax.js E

