JMETER - REGULAR EXPRESSIONS

Regular expressions are used to search and manipulate text, based on patterns. JMeter interprets
forms of regular expressions or patterns being used throughout a JMeter test plan, by including the
pattern matching software Apache Jakarta ORO.

With the use of regular expressions, we can certainly save a lot of time and achieve greater
flexibility as we create or enhance a Test Plan. Regular expressions provide a simple method to
get information from pages when it is impossible or very hard to predict an outcome.

A standard usage example of using expressions is to get a session ID from the server
response. If the server returns a unique session key we can easily get it using
expressions in our load script.

To use regular expressions in your test plan, you need to use the Regular Expression Extractor of
JMeter. You can place regular expressions in any componentin a Test Plan.

It is worth stressing the difference between contains and matches, as used on the Response
Assertion test element —

e contains means that the regular expression matched at least some part of the target, so
'alphabet' "contains" 'ph.b.' because the regular expression matches the substring 'phabe’.

e matches means that the regular expression matched the whole target. Hence the 'alphabet’
is "matched" by 'al.*t'.

Suppose you want to match the following portion of a web-page —

name="file" value="readme.txt"

And you want to extract readme.txt. A suitable regular expression would be —

name="file" value="(.+?)">

The special characters above are —
e (and) — these enclose the portion of the match string to be returned
e . — match any character
e + — one or more times

e ? — stop when first match succeeds

Create JMeter Test Plan

Let us understand the use of Regular expressions in the Regular Expression Extractor—a Post-
Processor Element by writing a test plan. This element extracts text from the current page using a
Regular Expression to identify the text pattern that a desired element conforms with.

First we write an HTML page which a list of people and their email IDs. We deploy it to our tomcat
server. The contents of html index. html are as follows —

<html>
<head>
</head>
<body>

<table style="border: 1px solid #000000;">

http://www.tutorialspoint.com/jmeter/jmeter_regular_expressions.htm
http://attic.apache.org/projects/jakarta-oro.html

<th style="border: 1px solid #000000;">ID</th>
<th style="border: 1px solid #000000;">name</th>
<th style="border: 1px solid #000000;">Email</th>

<tr>
<td
<td
<td

</tr>

<tr>
<td
<td
<td
</tr>
</table>
</body>

</html1l>

On deploying it on the tomcat server, this page would look like as shown in the following

screenshot —

>3</td>
>Manisha</td>
>manisha@domain.com</td>

>4</td>
>joe</td>
>joe@domain.com</td>

In our test plan, we will select the person in the first row of the person table seen in the person list
page above. To capture the ID of this person, let us first determine the pattern where we will find

the person in the second row.

As can be seen in the following snapshot, the ID of the second person is surrounded by <td > and
</td >, and itis the second row of data having this pattern. We can use this to match the exact
pattern that we want to extract information from. As we want to extract two pieces of information
from this page, the person ID and the person name, the fields are defined as follows —

T

50 bndaleal B et bl B an al

| i

vk d-."gl.mlldlul.l.,"ll.|

— Email_ 1

ot s imerenindes. bt - Mol Flrefe

by
b Ayl e Tad w0000

= e heider, Tpa -mMnl-lh-I'l n-: |h-:|h syla=tbarden: g gt id S0 o Aot tpla=handar Tg salnd
1 1T sl bostvers 1 g 1~ e e '1r'|.|r 155t Bl SO0 oyt Toead S

<t -l "Ll

Lirm 2 Tod 113

Start JMeter, add a Thread group Test Plan > Add> ThreadsUsers> Thread Group.

Next add a sampler HTTP Request, select the test plan, right click Add > Sampler > HTTP

Request and enter the details as shown below —

e Name — Manage

e Server Name or IP — |ocalhost

¢ Port Number — 8080

¢ Protocol — We will keep this blank, which means we want HTTP as the protocol.
e Path — jmeter/index.html

Elia_ G Smarch Bun DRtiooy sk

= et - 0 TR o (R R SRR N Y 5 - CRET AR TR R | L& 00l
P : | HTTP Request
v e |
| Mami: arage
whir Earwunicn Saracio | [Eememiend e
| | ek Senver Timeaits [milEy
L R0 W 0 B G ST el NRaTseR] BT | Comdepdr

HTTH Bequest

impdama ki = Protoosd Ihrplk Mutthod: (GET w Comsnl sncadbsg
Patis b abaraes i
Wl Rt ically w0 oy Rodiects 2 Use Keipaie Rig EiiRlp e Pttt a T BOST HE T -0

Paramaten | Peal Hody

Send Parameters Winh 1he Regesat:
P wvaljs Encoe

Dwbaal ez #dd rom (lipboard 1 Up Drrwen

fand Filse With the Aegueat:

Fila Pal Paramady
Add
| Praey @ ensss
B P HaAS o 1P " Poart MaTvber linernamn
L

Cpcienal Tasks

Retrivvn all Embedded Resnunoes from HTML Files P fir] f PGt 2% MAGNIDEr S resp
Embodded URLS SUsT match Sauroe 1P address

£}]

Next, add a Regular Expression Extractor. Select the HTTP Request Sampler Manage, right click Add

> Post Processor > Regular Expression Extractor.

[ER_ GOE Swanh [on Deiloos ek
N R TE = e e e 0 (B % T W e R 14 0
f .'Er-l‘_n:-i'- oo : Reguiar Expression Extractar
¥ arace | Mami R i Eepaenaian Eatracis
/& Bagubir Bprosnar Lricto | Commmnte:
] ik Paaiia 7 Apply ta:
N waiidier Haln spnpht and sl-aamples w Hals sample saly © Subasmgles onky L Beter Wariabln

| Aesponse Foeld to deeck

K Haidy Body lunrscaped Bady as d Docusent Hatadars Lt Huspaimer Coda Haspaiies Mawiag
| Refermncn Bame: o
| ‘Regolar Baprs prion: T P T o L ThC R b Bt] e e .1
| wemplate TS
ML R, D0 far Mandoml
| Drelau® Vidas:

The following table provides a description of the fields used in the above screenshot —

Field Description

Reference Name The name of the variable in which the extracted test will be stored
refname.

Regular Expression The pattern against which the text to be extracted will be matched. The

text groups that will extracted are enclosed by the characters "'and". We
use '.+7?' to indicate a single instance of the text enclosed by the
<td..>..</td> tags. In our example the expression is — <td >+?
</td>\s*

Template Each group of extracted text placed as a member of the variable
Person, following the order of each group of pattern enclosed by "'and".
Each group is stored as refname_g#, where refname is the string you
entered as the reference name, and # is the group number. 1 to refers
to group 1, 2 to refers to group 2, etc. 0 refers to whatever the entire
expression matches. In this example, the ID we extract is maintained in
Person_g1l, while the Name value is stored in Person_g2.

Match No. Since we plan to extract only the second occurrence of this pattern,
matching the second volunteer, we use value 2. Value 0 would make a
random matching, while a negative value needs to be used with the
ForEach Controller.

Default If the item is not found, this will be the default value. This is an optional
field. You may leave it blank.

Add a listener to capture the result of this Test Plan. Right-click the Thread Group and select Add >
Listener > View Results Tree option to add the listener.

Save the test plan as reg_express_testjmx and run the test. The output would be a success as
shown in the following screenshot —

Bl % Snmicth BUR. Difiny lel
e ﬁ_iﬂ.." Bl R R a8 %o ol omiy bR

| Wiew Results Trea

rlsnems LR 1 LogTivplay Onby: Crrarh SHosANTN Cenfigure

esull | Faquest | Respreme dala

=

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

