
http://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm Copyright © tutorialspoint.com

JAVAMAIL API - CORE CLASSESJAVAMAIL API - CORE CLASSES

The JavaMail API consists of some interfaces and classes used to send, read, and delete e-mail
messages. Though there are many packages in the JavaMail API, will cover the main two packages
that are used in Java Mail API frequently: javax.mail and javax.mail.internet package. These
packages contain all the JavaMail core classes. They are:

Class Description

javax.mail.Session The key class of the API. A multithreaded object
represents the connection factory.

javax.mail.Message An abstract class that models an e-mail message.
Subclasses provide the actual implementations.

javax.mail.Address An abstract class that models the addresses 
fromandtoaddresses in a message. Subclasses provide the
specific implementations.

javax.mail.Authenticator An abstract class used to protect mail resources on the
mail server.

javax.mail.Transport An abstract class that models a message transport
mechanism for sending an e-mail message.

javax.mail.Store An abstract class that models a message store and its
access protocol, for storing and retrieving messages. A
Store is divided into Folders.

javax.mail.Folder An abstract class that represents a folder of mail
messages. It can contain subfolders.

javax.mail.internet.MimeMessage Message is an abstract class, hence must work with a
subclass; in most cases, you’ll use a MimeMessage. A
MimeMessage is an e-mail message that understands
MIME types and headers.

javax.mail.internet.InternetAddress This class represents an Internet email address using the
syntax of RFC822. Typical address syntax is of the form
user@host.domain or Personal Name
<user@host.domain>.

Let us study each of these classes in detail and in the subsequent chapters we shall study
examples using each of these.

Session Class
The Session class is the primary class of the JavaMail API and it is not subclassed. The Session
object acts as the connection factory for the JavaMail API, which handles both configuration setting
and authentication.

Session object can be created in the following ways:

By looking up the administered object stored in the JNDI service

InitialContext ctx = new InitialContext();
Session session = (Session) ctx.lookup("usersMailSession");

usersMailSession is the JNDI name object used as the administered object for the Session
object. usersMailSession can be created and configured with the required parameters as

http://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm
/javamail_api/javamail_api_core_classes.htm#class_session
/javamail_api/javamail_api_core_classes.htm#class_message
/javamail_api/javamail_api_core_classes.htm#class_address
/javamail_api/javamail_api_core_classes.htm#class_authenticator
/javamail_api/javamail_api_core_classes.htm#class_transport
/javamail_api/javamail_api_core_classes.htm#class_store
/javamail_api/javamail_api_core_classes.htm#class_folder


name/value pairs, including information such as the mail server hostname, the user account
sending the mail, and the protocols supported by the Session object.

Another method of creating the Session object is based on the programmatic approach in
which you can use a java.util.Properties object to override some of the default information,
such as the mail server name, username, password, and other information that can be
shared across your entire application.

The constructor for Session class is private. Hence the Session class provides two methods 
listedbelow which get the Session object.

getDefaultInstance: There are two methods to get the session object by using the
getDefaultInstance method. It returns the default session.

public static Session getDefaultInstance(Properties props)
public static Session getDefaultInstance(Properties props,Authenticator auth)

getInstance: There are two methods to get the session object by using the getInstance
method. It returns the new session.

public static Session getInstance(Properties props)
public static Session getInstance(Properties props,Authenticator auth)

Message Class
With Session object created we now move on to creating a message that will be sent. The message
type will be javax.mail.Message.

Message is an abstract class. Hence its subclass javax.mail.internet.MimeMessage class is
mostly used.

To create the message, you need to pass session object in MimeMessage class constructor.
For example:

MimeMessage message=new MimeMessage(session);

Once the message object is created we need to store information in it. Message class
implements the javax.mail.Part interface while javax.mail.internet. MimeMessage
implements javax.mail.internet.MimePart. You can either use message.setContent or
mimeMessage.setText to store the content.

Commonly used methods of MimeMessage class are

Method Description

public void setFromAddressaddress used to set the from header field.

public void addRecipients
Message. RecipientTypetype, Stringaddresses

used to add the given address to the recipient
type.

public void setSubjectStringsubject used to set the subject header field.

public void setTextStringtextmessage used to set the text as the message content
using text/plain MIME type.

Address Class
Now that we have a Session and Message withcontentstoredinit objects, we need to address the letter
by using Address object.

Address is an abstract class. Hence its subclass javax.mail.internet.InternetAddress class is
mostly used.



Address can be created by just passing email address:

Address address = new InternetAddress("manisha@gmail.com"); 

Another way of creating Address is by passing name alogwith the email address:

Address address = new InternetAddress("manisha@gmail.com", Manisha); 

You can also set the To, From, CC, BCC fields as below

message.setFromaddress

message.addRecipienttype, address

Three predefined address types are objects with one of these values:

Message.RecipientType.TO

Message.RecipientType.CC

Message.RecipientType.BCC

Authenticator Class
The class Authenticator represents an object that knows how to obtain authentication for a
network connection. Usually, it will do this by prompting the user for information.

Authenticator is an abstract class. You create a subclass PasswordAuthentication, passing a
username and password to its constructor.

You must register the Authenticator with the Session when you create session object.

Following is an example of Authenticator use:

Properties props = new Properties();
//Override props with any customized data
PasswordAuthentication auth = new PasswordAuthentication("manisha", "pswrd")
Session session = Session.getDefaultInstance(props, auth);

Transport Class
Transport class is used as a message transport mechanism. This class normally uses the SMTP
protocol to send a message.

It is an abstract class.

You can use the default version of the class by just calling the static send method:

Transport.send(message);

The other way to send message is by getting a specific instance from the session for your
protocol, pass along the username and password blankifunnecessary, send the message, and
close the connection:

message.saveChanges(); // implicit with send()
//Get transport for session
Transport transport = session.getTransport("smtp");
//Connect
transport.connect(host, username, password);
//repeat if necessary
transport.sendMessage(message, message.getAllRecipients());
//Done, close the connection
transport.close();

Store Class



An abstract class that models a message store and its access protocol, for storing and retrieving
messages. Subclasses provide actual implementations. Store extends the Service class, which
provides many common methods for naming stores, connecting to stores, and listening to
connection events.

Clients gain access to a Message Store by obtaining a Store object that implements the database
access protocol. Most message stores require the user to be authenticated before they allow
access. The connect method performs that authentication.

Store store = session.getStore("pop3");
store.connect(host, username, password);

Folder Class
Folder is an abstract class that represents a folder for mail messages. Subclasses implement
protocol specific Folders. Folders can contain subfolders as well as messages, thus providing a
hierarchical structure.

After connecting to the Store, you can then get a Folder, which must be opened before you can
read messages from it.

Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);
Message message[] = folder.getMessages();

The getFolderStringname method for a Folder object returns the named subfolder. Close the both the
Store and Folder connection once reading mail is done.

We can see the Store and Folder relation the image below:

As we can see, for each user account, the server has a store which is the storage of user’s
messages. The store is divided into folders, and the “inbox” folder is the primarily folder which
contains e-mail messages. A folder can contain both messages and sub-folders.
Loading [MathJax]/jax/output/HTML-CSS/jax.js


