JAVA EXAMPLES - SOLVING DEADLOCK

Problem Description:

How to solve deadlock using thread?

Solution:

Following example demonstrates how to solve deadlock using the concept of thread.

import java.util.”*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class DeadlockDetectingLock extends ReentrantLock {
private static List deadlockLocksRegistry
= new ArraylList();
private static synchronized void
registerLock(DeadlockDetectinglLock ddl) {
if ('deadlockLocksRegistry.contains(ddl))
deadlockLocksRegistry.add(ddl);
}
private static synchronized void
unregisterLock(DeadlockDetectinglLock ddl) {
if (deadlockLocksRegistry.contains(ddl))
deadlockLocksRegistry.remove(ddl);
}
private List hardwaitingThreads = new ArraylList();
private static synchronized void
mar kAsHardwait(List 1, Thread t) {
if (!1l.contains(t))
l.add(t);
}

private static synchronized void
freeIfHardwait(List 1, Thread t) {
if (l.contains(t))
l.remove(t);

}

private static Iterator getAllLocksOwned(Thread t) {

DeadlockDetectingLock current;

ArraylList results = new ArraylList();

Iterator itr = deadlockLocksRegistry.iterator();

while (itr.hasNext()) {
current = (DeadlockDetectinglLock) itr.next();
if (current.getOwner () == t)
results.add(current);

}

return results.iterator();

}

private static Iterator

getAllThreadsHardwaiting(DeadlockDetectingLock 1) {
return 1.hardwaitingThreads.iterator();

}

private static synchronized boolean canThreadWaitOnLock
(Thread t,DeadlockDetectinglLock 1) {
Iterator locksOwned = getAllLocksOwned(t);
while (locksOwned.hasNext()) {
DeadlockDetectingLock current
= (DeadlockbDetectingLock) locksOwned.next();
if (current == 1)
return false;

http://www.tutorialspoint.com/javaexamples/thread_deadlock.htm

Iterator waitingThreads
= getAllThreadsHardwaiting(current);
while (waitingThreads.hasNext()) {
Thread otherthread = (Thread) waitingThreads.next();
if (!'canThreadwWaitOnLock(otherthread, 1)) {
return false;
}

}
}
return true;

}

public DeadlockDetectingLock() {
this(false, false);
}

public DeadlockDetectingLock(boolean fair) {
this(fair, false);

}

private boolean debugging;

public DeadlockDetectingLock(boolean fair, boolean debug) {
super (fair);
debugging = debug;
registerLock(this);

}

public void lock() {

if (isHeldByCurrentThread()) {
if (debugging)
System.out.println("Already Own Lock");
super.lock();
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());
return;

}

mar kAsHardwait(hardwaitingThreads,

Thread.currentThread());

if (canThreadwWaitOnLock(Thread.currentThread(), this)) {
if (debugging)
System.out.println("waiting For Lock");
super .lock();
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());
if (debugging)
System.out.println("Got New Lock");

}
else {

throw new DeadlockDetectedException('"DEADLOCK");
}

}

public void lockInterruptibly() throws InterruptedException {
lock();
}

locks.
public class DeadlockDetectingCondition implements Condition {
Condition embedded;
protected DeadlockDetectingCondition(ReentrantLock lock,
Condition embedded) {
this.embedded = embedded;
}

Public void await() throws InterruptedException {
try {
mar kAsHardwait(hardwaitingThreads,
Thread.currentThread());

embedded.await();

}

finally {
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());

}

}

public void awaitUninterruptibly() {
mar kAsHardwait(hardwaitingThreads,
Thread.currentThread());
embedded.awaitUninterruptibly();
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());

}

public long awaitNanos(long nanosTimeout)
throws InterruptedException {
try {
mar kAsHardwait(hardwaitingThreads,
Thread.currentThread());
return embedded.awaitNanos(nhanosTimeout);

}

finally {
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());

}

}

public boolean await(long time, TimeUnit unit)
throws InterruptedException {
try {
mar kAsHardwait(hardwaitingThreads,
Thread.currentThread());
return embedded.await(time, unit);

}

finally {
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());

}

}

public boolean awaitUntil(Date deadline)
throws InterruptedException {
try {
mar kAsHardwait(hardwaitingThreads,
Thread.currentThread());
return embedded.awaitUntil(deadline);

}

finally {
freeIfHardwait(hardwaitingThreads,
Thread.currentThread());

}

}

public void signal() {
embedded.signal();
¥

public void signalAll() {
embedded.signalAll();
}

}

public Condition newCondition() {
return new DeadlockDetectingCondition(this,
super .newCondition());

private static Lock a new DeadlockDetectingLock(false, true);
private static Lock b new DeadlockDetectingLock(false, true);
private static Lock c new DeadlockDetectingLock(false, true);
private static Condition wa = a.newCondition();
private static Condition wb = b.newCondition();
private static Condition wc = c.newCondition();
private static void delaySeconds(int seconds) {

try {

Thread.sleep(seconds * 1000);
}

catch (InterruptedException ex) {

}

}

private static void awaitSeconds(Condition c¢, int seconds) {

try {
c.await(seconds, TimeUnit.SECONDS);
}

catch (InterruptedException ex) {

}
3

private static void testOne() {
new Thread(new Runnable() {

public void run() {
System.out.println("thread one grab a");
a.lock();
delaySeconds(2);
System.out.println("thread one grab b");
b.lock();
delaySeconds(2);
a.unlock();
b.unlock();

}
}).start();
new Thread(new Runnable() {
public void run() {
System.out.println("thread two grab b");
b.lock();
delaySeconds(2);
System.out.println("thread two grab a");
a.lock();
delaySeconds(2);
a.unlock();
b.unlock();

}
}).start();

private static void testTwo() {
new Thread(new Runnable() {

public void run() {
System.out.println("thread one grab a");
a.lock();
delaySeconds(2) ;
System.out.println("thread one grab b");
b.lock();
delaySeconds(10);
a.unlock();
b.unlock();

}
}).start();
new Thread(new Runnable() {
public void run() {
System.out.println("thread two grab b");
b.lock();
delaySeconds(2);
System.out.println("thread two grab c");
c.lock();

}

private static void testThree() {

delaySeconds(10);
b.unlock();
c.unlock();

}

}).start();

new Thread(new Runnable() {
public void run() {

System.out.println("thread three grab c");

c.lock();
delaySeconds(4);

System.out.println("thread three grab a");

a.lock();
delaySeconds(10);
c.unlock();
a.unlock();

}
}).start();

new Thread(new Runnable() {
public void run() {

System.out.println("thread

b.lock();

System.out.println("thread

a.lock();
delaySeconds(2);

System.out.println("thread
awaitSeconds(wb, 10);

a.unlock();
b.unlock();

}
}).start();
new Thread(new Runnable() {
public void run() {
delaySeconds(1);

System.out.println("thread

b.lock();

System.out.println("thread

a.lock();
delaySeconds(10);
b.unlock();
c.unlock();

}
}).start();

one grab b");

one grab a");

one waits on b");

two grab b");

two grab a");

public static void main(String args[]) {

int test = 1;
if (args.length > 0)

test = Integer.parselnt(args[0]);

switch (test) {
case 1:
testOne();
break;
case 2:
testTwo();
break;
case 3:
testThree();
break;
default:

System.err.println("usage: java
DeadlockDetectingLock [test# 1");

¥
delaySeconds(60);

System.out.println("--- End Program ---");

System.exit(0);
}

}

class DeadlockDetectedException extends RuntimeException {
public DeadlockDetectedException(String s) {
super(s);

Result:
The above code sample will produce the following result.

thread one grab a

Waiting For Lock

Got New Lock

thread two grab b

Waiting For Lock

Got New Lock

thread one grab b

Waiting For Lock

thread two grab a

Exception in thread "Thread-1"

DeadlockDetectedException:DEADLOCK
at DeadlockDetectingLock.

lock(DealockDetectinglLock.java:152)

at java.lang.Thread.run(Thread.java:595)

