
http://www.tutorialspoint.com/javaexamples/thread_deadlock.htm Copyright © tutorialspoint.com

JAVA EXAMPLES - SOLVING DEADLOCKJAVA EXAMPLES - SOLVING DEADLOCK

Problem Description:
How to solve deadlock using thread?

Solution:
Following example demonstrates how to solve deadlock using the concept of thread.

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class DeadlockDetectingLock extends ReentrantLock {
 private static List deadlockLocksRegistry
 = new ArrayList();
 private static synchronized void
 registerLock(DeadlockDetectingLock ddl) {
 if (!deadlockLocksRegistry.contains(ddl))
 deadlockLocksRegistry.add(ddl);
 }
 private static synchronized void
 unregisterLock(DeadlockDetectingLock ddl) {
 if (deadlockLocksRegistry.contains(ddl))
 deadlockLocksRegistry.remove(ddl);
 }
 private List hardwaitingThreads = new ArrayList();
 private static synchronized void
 markAsHardwait(List l, Thread t) {
 if (!l.contains(t))
 l.add(t);
}

private static synchronized void
freeIfHardwait(List l, Thread t) {
 if (l.contains(t))
 l.remove(t);
}

private static Iterator getAllLocksOwned(Thread t) {
 DeadlockDetectingLock current;
 ArrayList results = new ArrayList();
 Iterator itr = deadlockLocksRegistry.iterator();
 while (itr.hasNext()) {
 current = (DeadlockDetectingLock) itr.next();
 if (current.getOwner() == t)
 results.add(current);
 }
 return results.iterator();
}

private static Iterator
getAllThreadsHardwaiting(DeadlockDetectingLock l) {
 return l.hardwaitingThreads.iterator();
}

private static synchronized boolean canThreadWaitOnLock
(Thread t,DeadlockDetectingLock l) {
 Iterator locksOwned = getAllLocksOwned(t);
 while (locksOwned.hasNext()) {
 DeadlockDetectingLock current
 = (DeadlockDetectingLock) locksOwned.next();
 if (current == l)
 return false;

http://www.tutorialspoint.com/javaexamples/thread_deadlock.htm

 Iterator waitingThreads
 = getAllThreadsHardwaiting(current);
 while (waitingThreads.hasNext()) {
 Thread otherthread = (Thread) waitingThreads.next();
 if (!canThreadWaitOnLock(otherthread, l)) {
 return false;
 }
 }
 }
 return true;
}

public DeadlockDetectingLock() {
 this(false, false);
}

public DeadlockDetectingLock(boolean fair) {
 this(fair, false);
}

private boolean debugging;

public DeadlockDetectingLock(boolean fair, boolean debug) {
 super(fair);
 debugging = debug;
 registerLock(this);
}

public void lock() {
 if (isHeldByCurrentThread()) {
 if (debugging)
 System.out.println("Already Own Lock");
 super.lock();
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 return;
 }
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());
 if (canThreadWaitOnLock(Thread.currentThread(), this)) {
 if (debugging)
 System.out.println("Waiting For Lock");
 super.lock();
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 if (debugging)
 System.out.println("Got New Lock");
 }
 else {
 throw new DeadlockDetectedException("DEADLOCK");
 }
}

public void lockInterruptibly() throws InterruptedException {
 lock();
}

locks.
public class DeadlockDetectingCondition implements Condition {
 Condition embedded;
 protected DeadlockDetectingCondition(ReentrantLock lock,
 Condition embedded) {
 this.embedded = embedded;
 }

 Public void await() throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());

 embedded.await();
 }
 finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 }

 public void awaitUninterruptibly() {
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());
 embedded.awaitUninterruptibly();
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }

 public long awaitNanos(long nanosTimeout)
 throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());
 return embedded.awaitNanos(nanosTimeout);
 }
 finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 }

 public boolean await(long time, TimeUnit unit)
 throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());
 return embedded.await(time, unit);
 }
 finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 }

 public boolean awaitUntil(Date deadline)
 throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads,
 Thread.currentThread());
 return embedded.awaitUntil(deadline);
 }
 finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 }

 public void signal() {
 embedded.signal();
 }

 public void signalAll() {
 embedded.signalAll();
 }
}

public Condition newCondition() {
 return new DeadlockDetectingCondition(this,
 super.newCondition());
}

private static Lock a = new DeadlockDetectingLock(false, true);
private static Lock b = new DeadlockDetectingLock(false, true);
private static Lock c = new DeadlockDetectingLock(false, true);
private static Condition wa = a.newCondition();
private static Condition wb = b.newCondition();
private static Condition wc = c.newCondition();
private static void delaySeconds(int seconds) {
 try {
 Thread.sleep(seconds * 1000);
 }
 catch (InterruptedException ex) {
 }
}

private static void awaitSeconds(Condition c, int seconds) {
 try {
 c.await(seconds, TimeUnit.SECONDS);
 }
 catch (InterruptedException ex) {
 }
}

private static void testOne() {
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread one grab a");
 a.lock();
 delaySeconds(2);
 System.out.println("thread one grab b");
 b.lock();
 delaySeconds(2);
 a.unlock();
 b.unlock();
 }
 }).start();
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread two grab b");
 b.lock();
 delaySeconds(2);
 System.out.println("thread two grab a");
 a.lock();
 delaySeconds(2);
 a.unlock();
 b.unlock();
 }
 }).start();
}

private static void testTwo() {
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread one grab a");
 a.lock();
 delaySeconds(2) ;
 System.out.println("thread one grab b");
 b.lock();
 delaySeconds(10);
 a.unlock();
 b.unlock();
 }
 }).start();
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread two grab b");
 b.lock();
 delaySeconds(2);
 System.out.println("thread two grab c");
 c.lock();

 delaySeconds(10);
 b.unlock();
 c.unlock();
 }
 }).start();
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread three grab c");
 c.lock();
 delaySeconds(4);
 System.out.println("thread three grab a");
 a.lock();
 delaySeconds(10);
 c.unlock();
 a.unlock();
 }
 }).start();
}

private static void testThree() {
 new Thread(new Runnable() {
 public void run() {
 System.out.println("thread one grab b");
 b.lock();
 System.out.println("thread one grab a");
 a.lock();
 delaySeconds(2);
 System.out.println("thread one waits on b");
 awaitSeconds(wb, 10);
 a.unlock();
 b.unlock();
 }
 }).start();
 new Thread(new Runnable() {
 public void run() {
 delaySeconds(1);
 System.out.println("thread two grab b");
 b.lock();
 System.out.println("thread two grab a");
 a.lock();
 delaySeconds(10);
 b.unlock();
 c.unlock();
 }
 }).start();
}

public static void main(String args[]) {
 int test = 1;
 if (args.length > 0)
 test = Integer.parseInt(args[0]);
 switch (test) {
 case 1:
 testOne();
 break;
 case 2:
 testTwo();
 break;
 case 3:
 testThree();
 break;
 default:
 System.err.println("usage: java
 DeadlockDetectingLock [test#]");
 }
 delaySeconds(60);
 System.out.println("--- End Program ---");
 System.exit(0);
 }

}

class DeadlockDetectedException extends RuntimeException {
 public DeadlockDetectedException(String s) {
 super(s);
 }
}

Result:
The above code sample will produce the following result.

thread one grab a
Waiting For Lock
Got New Lock
thread two grab b
Waiting For Lock
Got New Lock
thread one grab b
Waiting For Lock
thread two grab a
Exception in thread "Thread-1"
DeadlockDetectedException:DEADLOCK
 at DeadlockDetectingLock.
 lock(DealockDetectingLock.java:152)
 at java.lang.Thread.run(Thread.java:595)

