JAVA DIP - KIRSCH OPERATOR

http://www.tutorialspoint.com/java dip/applying kirsch operator.htm

Copyright © tutorialspoint.com

Kirsch compass masks are yet another type of derivative mask which are used for edge detection. This operator is also known as direction mask. In this operator we take one mask and rotate it in all the eight compass directions to get edges of the eight directions.

We are going to use **OpenCV** function **filter2D** to apply Kirsch operator to images. It can be found under **Imgproc** package. Its syntax is given below:

```
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT );
```

The function arguments are described below:

Sr No	Argument
	Argument
1	src
	It is source image.
2	4-2
	dst
	It is destination image.
3	
J	ddepth
	It is the depth of dst. A negative value suchas – 1 indicates that the depth is the same as the source.
4	
	kernel
	It is the kernel to be scanned through the image.
_	
5	anchor
	It is the position of the anchor relative to its kernel. The location Point -1 , -1 indicates the center by default.
6	
U	delta
	It is a value to be added to each pixel during the convolution. By default it is 0.
7	
,	BORDER_DEFAULT
	We let this value by default.

Apart from the filter2D method, there are other methods provided by the Imgproc class. They are described briefly:

Sr.No. **Methods** 1 cvtColorMatsrc, Matdst, intcode, intdstCn It converts an image from one color space to another. 2 dilateMatsrc, Matdst, Matkernel It dilates an image by using a specific structuring element. 3 equalizeHistMatsrc, Matdst It equalizes the histogram of a grayscale image. 4 filter2DMatsrc, Matdst, intddepth, Matkernel, Pointanchor, doubledelta It convolves an image with the kernel. 5 GaussianBlurMatsrc, Matdst, Sizeksize, doublesigmaX It blurs an image using a Gaussian filter. 6 integral Matsrc, Matsum It calculates the integral of an image.

Example

The following example demonstrates the use of Imgproc class to apply Kirsch operator to an image of Grayscale.

```
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;
public class convolution {
   public static void main( String[] args ) {
      try {
         int kernelSize = 9;
         System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
         Mat source = Highgui.imread("grayscale.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
         Mat destination = new Mat(source.rows(), source.cols(), source.type());
         Mat kernel = new Mat(kernelSize, kernelSize, CvType.CV_32F){
                put(0,0,-3);
                put(0,1,-3);
                put(0, 2, -3);
                put(1,0-3);
                put(1, 1, 0);
```

```
put(1,2,-3);

put(2,0,5);
put(2,1,5);
put(2,2,5);
};

Imgproc.filter2D(source, destination, -1, kernel);
Highgui.imwrite("output.jpg", destination);

} catch (Exception e) {
    System.out.println("Error: " + e.getMessage());
}
```

Output

When you execute the given code, the following output is seen:

Original Image

This original image is convolved with the Kirsch operator of East edges, which as given below:

Kirsch East

```
-3 -3 -3
```

-3 0 -3

5 5 5

Convolved Image*KirschEast*

This original image is convolved with the Kirsch operator of South West edges, which as given below:	
Kirsch South West	
5 5 -3	
5 0 -3	
-3 -3 -3	
Convolved Image KirschSouthWest	
Loading [MathJax]/jax/output/HTML-CSS/jax.js	