
http://www.tutorialspoint.com/java/util/observable_deleteobservers.htm Copyright © tutorialspoint.com

JAVA.UTIL.OBSERVABLE.DELETEOBSERVERSJAVA.UTIL.OBSERVABLE.DELETEOBSERVERS METHOD METHOD

Description
The java.util.Observable.deleteObservers method clears the observer list. This object will no
longer have any observers.

Declaration
Following is the declaration for java.util.Observable.deleteObservers method

public void deleteObservers()

Parameters
NA

Return Value
NA

Exception
NA

Example
The following example shows the usage of java.util.Observable.deleteObservers method.

package com.tutorialspoint;

import java.util.Observable;
import java.util.Observer;

class ObservedObject extends Observable {
 private String watchedValue;

 public ObservedObject(String value) {
 watchedValue = value;
 }

 public void setValue(String value) {
 // if value has changed notify observers
 if(!watchedValue.equals(value)) {
 System.out.println("Value changed to new value: "+value);
 watchedValue = value;

 // mark as value changed
 setChanged();
 // trigger notification
 notifyObservers(value);
 }
 }
}
public class ObservableDemo implements Observer {
 public String name;
 public ObservableDemo(String name) {
 this.name = name;
 }

 public static void main(String[] args) {
 // create watched and watcher objects
 ObservedObject watched = new ObservedObject("Original Value");

http://www.tutorialspoint.com/java/util/observable_deleteobservers.htm

 // watcher object listens to object change
 ObservableDemo watcher1 = new ObservableDemo("Watcher1");
 ObservableDemo watcher2 = new ObservableDemo("Watcher2");

 // trigger value change
 watched.setValue("Value before addObserver");
 // add observer to the watched object
 watched.addObserver(watcher1);
 watched.addObserver(watcher2);
 // trigger value change
 watched.setValue("Value after addObserver");
 // delete all observers
 watched.deleteObservers();
 // trigger value change
 watched.setValue("Value after deleteObservers");
 }

 public void update(Observable obj, Object arg) {
 System.out.println(name+" called with Arguments: "+arg);
 }
}

Let us compile and run the above program, this will produce the following result:

Value changed to new value: Value before addObserver
Value changed to new value: Value after addObserver
Watcher2 called with Arguments: Value after addObserver
Watcher1 called with Arguments: Value after addObserver
Value changed to new value: Value after deleteObservers

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

