JAVA.UTIL.ARRAYS.BINARYSEARCH METHOD

Description
The java.util.Arrays.binarySearchT[la, Tkey, intfromIndex, inttoIndex, Comparator < ?superT > ¢ method
searches a range of the specified array for the specified object using the binary search algorithm.

The range must be sorted into ascending order according to the specified comparator before
making this call. If it is not sorted, the results are undefined.

Declaration

Following is the declaration for java.util.Arrays.binarySearchsuper, index method

public static <T> int binarySearch(T[] a, T key, int fromIndex, int toIndex, Comparator<?
super T> c)

Parameters
e a--Thisisthe array to be searched.
e fromindex -- The index of the first element inclusive to be searched.
¢ tolndex-- The index of the last element exclusive to be searched.
¢ key -- This is the value to be searched for.

e C-- This is the comparator by which the array is ordered. A null value indicates that the
elements natural ordering should be used.

Return Value
This method returns index of the search key, if it is contained in the array within the specified
range; otherwise, —(insertionpoint - 1). The insertion pointis defined as the point at which the key

would be inserted into the array: the index of the first elementin the range greater than the key,
or tolndex if all elements in the range are less than the specified key.

Exception
e ClassCastException -- if the range contains elements that are not mutually comparable
using the specified comparator, or the search key is not comparable to the elements in the
range using this comparator.

¢ lllegalArgumentException -- if fromIndex > tolndex

¢ ArrayindexOutOfBoundsException - if fromindex < 0 or tolndex > a.length
Example

The following example shows the usage of java.util.Arrays.binarySearchsuper, index method.

package com.tutorialspoint;

import java.util.Arrays;
import java.util.Comparator;

public class ArrayDemo {
public static void main(String[] args) {

// initializing unsorted short array
Short shortArr[] = new Short[]{5, 2, 15, 52, 10},


http://www.tutorialspoint.com/java/util/arrays_binarysearch_super_index.htm

// use comparator as null, sorting as natural ordering
Comparator<Short> comp = null;

// sorting array
Arrays.sort(shortArr, comp);

// let us print all the elements available in list
System.out.println("The sorted short array is:");
for (short number : shortArr) {
System.out.println("Number = " + number);

}

// entering the value to be searched
short searchval = 15;

// search between index 1 and 4
int retvVal = Arrays.binarySearch(shortArr, 1, 4, searchval, comp);
System.out.println("The index of element 15 is : " + retval);

// search between index @ and 3, where searchval doesn't exist

retval = Arrays.binarySearch(shortArr, 0, 3, searchval, comp);
System.out.println("The index of element 15 is : " + retval);

}

Let us compile and run the above program, this will produce the following result:

The sorted short array is:

Number = 2

Number = 5

Number = 10

Number = 15

Number = 52

The index of element 15 is : 3
The index of element 15 is : -4

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js




