JAVA.LANG.THREADGROUP.ENUMERATE METHOD

Description

The java.lang.ThreadGroup.enumerateThreadGroupl]list, booleanrecurse method copies into the
specified array references to every active subgroup in this thread group. If the recurse flag is true,
references to all active subgroups of the subgroups and so forth are also included.

Declaration

Following is the declaration for java.lang.ThreadGroup.enumerate method

public int enumerate(ThreadGroup[] 1list, boolean recurse)

Parameters
¢ list -- This is an array into which to place the list of thread groups.

e recurse -- This is a flag indicating whether to recursively enumerate all included thread
groups.

Return Value

This method returns the number of thread groups put into the array.

Exception

e SecurityException -- if the current thread does not have permission to enumerate this
thread group.

Example

The following example shows the usage of java.lang.ThreadGroup.enumerate method.

package com.tutorialspoint;
import java.lang.”*;

public class ThreadGroupDemo implements Runnable
{
public static void main(String[] args) {
ThreadGroupDemo tg = new ThreadGroupDemo();

tg.func();

}

public void func() {
try {

// create a parent ThreadGroup
ThreadGroup pGroup = new ThreadGroup("Parent ThreadGroup");

// create a child ThreadGroup for parent ThreadGroup
ThreadGroup cGroup = new ThreadGroup(pGroup, "Child ThreadGroup");

// create a thread

Thread t1 = new Thread(pGroup, this);
System.out.println("Starting " + tl.getName() + "...");
tl.start();

// create another thread

Thread t2 = new Thread(cGroup, this);
System.out.println("Starting " + t2.getName() + "...");
t2.start();


http://www.tutorialspoint.com/java/lang/threadgroup_enumerate_threadgroup_boolean.htm

/* returns the number of thread groups put into the array with
flag as true */
ThreadGroup[] grpList = new ThreadGroup[pGroup.activeGroupCount()];
int count = pGroup.enumerate(grplList, true);
for (int i = 0; i < count; i++) {

System.out.println("ThreadGroup" + grpList[i].getName() +

" found");

}

// block until the other threads finish
tl.join();
t2.join();

catch (InterruptedException ex) {
System.out.println(ex.toString());
}

}

// implements run()
public void run() {

for(int 1 = 0; i > 1000; i++) {
i+t
}

System.out.println(Thread.currentThread().getName() +
" finished executing.");

Let us compile and run the above program, this will produce the following result:

Starting Thread-o...

Starting Thread-1...

ThreadGroup Child ThreadGroup found
Thread-0 finished executing.
Thread-1 finished executina

Loading [Mathjax]/jax/output/HTML-CSS/jax.js |




