JAVA.LANG.SECURITYMANAGER.CHECKWRITE METHOD

Description

The java.lang.SecurityManager.checkWriteFileDescriptorfd method throws a SecurityException if
the calling thread is not allowed to write to the specified file descriptor. This method calls
checkPermission with the RuntimePermission " writeFileDescriptor " permission.

If you override this method, then you should make a call to super.checkWrite at the point the
overridden method would normally throw an exception.

Declaration

Following is the declaration for java.lang.SecurityManager.checkWrite method

public void checkWrite(FileDescriptor fd)

Parameters

o fd -- the system-dependent file descriptor.
Return Value

This method does not return a value.

Exception

e SecurityException -- if the calling thread does not have permission to access the specified
file descriptor.

¢ NullPointerException -- if the file descriptor argument is null.

Example

Our examples require that the permissions for each command is blocked. A new policy file was set
that allows only the creating and setting of our Security Manager. The file is in C:/java.policy and
contains the following text:

grant {

permission java.lang.RuntimePermission "setSecurityManager";
permission java.lang.RuntimePermission '"createSecurityManager";
permission java.lang.RuntimePermission "usePolicy";

¥
The following example shows the usage of lang.SecurityManager.checkWrite method.

package com.tutorialspoint;

import java.io.FileDescriptor;

public class SecurityManagerDemo extends SecurityManager {
public static void main(String[] args) {

// set the policy file as the system securuty policy
System.setProperty("java.security.policy", "file:/C:/java.policy");

// create a security manager
SecurityManagerDemo sm = new SecurityManagerDemo();

// set the system security manager


http://www.tutorialspoint.com/java/lang/securitymanager_checkwrite.htm

System.setSecurityManager (sm);

// perform the check
FileDescriptor fd=new FileDescriptor();
sm.checkWrite(fd);

// print a message if we passed the check

System.out.println("Allowed!");
}

Let us compile and run the above program, this will produce the following result:

Exception in thread "main" java.security.AccessControlException: access denied
(iava.lanao RuntimePermission writeFileDescriptor)

| Loading [Mathjax]/jax/output/HTML-CSS/jax.js




