
http://www.tutorialspoint.com/java/lang/securitymanager_checkaccess_threadgroup.htm
Copyright © tutorialspoint.com

JAVA.LANG.SECURITYMANAGER.CHECKACCESSJAVA.LANG.SECURITYMANAGER.CHECKACCESS METHOD METHOD

Description
The java.lang.SecurityManager.checkAccessThreadGroupg method throws a SecurityException if
the calling thread is not allowed to modify the thread group argument. This method is invoked for
the current security manager when a new child thread or child thread group is created, and by the
setDaemon, setMaxPriority, stop, suspend, resume, and destroy methods of class ThreadGroup.

If the thread group argument is the system thread group hasanullparent then this method calls
checkPermission with the RuntimePermission " modifyThreadGroup " permission. If the thread group
argument is not the system thread group, this method just returns silently. Applications that want a
stricter policy should override this method. If this method is overridden, the method that overrides
it should additionally check to see if the calling thread has the RuntimePermission
" modifyThreadGroup " permission, and if so, return silently. This is to ensure that code granted that
permission suchastheJDKitself is allowed to manipulate any thread.

If this method is overridden, then super.checkAccess should be called by the first statement in the
overridden method, or the equivalent security check should be placed in the overridden method.

Declaration
Following is the declaration for java.lang.SecurityManager.checkAccess method

public void checkAccess(ThreadGroup g)

Parameters
gt -- the thread to be checked.

Return Value
This method does not return a value.

Exception
SecurityException -- if the calling thread does not have permission to modify the thread
group.

NullPointerException -- if the thread group argument is null.

Example
Our examples require that the permissions for each command is blocked. A new policy file was set
that allows only the creating and setting of our Security Manager. The file is in C:/java.policy and
contains the following text:

grant {
 permission java.lang.RuntimePermission "setSecurityManager";
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "usePolicy";
};

The following example shows the usage of lang.SecurityManager.checkAccess method.

package com.tutorialspoint;

public class SecurityManagerDemo extends SecurityManager {

 // check access needs to overriden

http://www.tutorialspoint.com/java/lang/securitymanager_checkaccess_threadgroup.htm

 @Override
 public void checkAccess(ThreadGroup a) {
 throw new SecurityException("Not allowed.");
 }

 public static void main(String[] args) {

 // set the policy file as the system securuty policy
 System.setProperty("java.security.policy", "file:/C:/java.policy");

 // create a security manager
 SecurityManagerDemo sm = new SecurityManagerDemo();

 // set the system security manager
 System.setSecurityManager(sm);

 // check if accepting access for thread group is enabled
 sm.checkAccess(new ThreadGroup("example"));

 // print a message if we passed the check
 System.out.println("Allowed!");
 }
}

Let us compile and run the above program, this will produce the following result:

Exception in thread "main" java.lang.SecurityException: Not allowed.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

