- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the given figure, $DE \| AC$ and $DF \| AE$.
Prove that $ \frac{\mathbf{B F}}{\mathbf{F E}}=\frac{\mathbf{B E}}{\mathbf{E C}} $
"
Given:
$DE \| AC$ and $DF \| AE$.
To do:
We have to prove that \( \frac{\mathbf{B F}}{\mathbf{F E}}=\frac{\mathbf{B E}}{\mathbf{E C}} \)
Solution:
We know that,
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.
In $\triangle ABC, DE \| AC$,
This implies,
$\frac{BD}{AD}=\frac{BE}{EC}$.........(i)
In $\triangle ABE, DF \| AE$,
This implies,
$\frac{BD}{AD}=\frac{BF}{EF}$.........(ii)
From (i) and (ii), we get,
$\frac{BF}{FE}=\frac{BE}{EC}$
Hence proved.
- Related Articles
- In the given figure, if $LM \| CB$ and $LN \| CD$.Prove that \( \frac{\mathbf{A M}}{\mathbf{A B}}=\frac{\mathbf{A N}}{\mathbf{A D}} \)"
- If \( \sin (\mathbf{A}-\mathbf{B})=\frac{1}{2} \) and \( \cos(\mathbf{A}+\mathbf{B})=\frac{1}{2}, \)\( 0^{\circ}\mathbf{B} \) find \( \mathbf{A} \) and \( \mathbf{B} \).
- If \( \tan (\mathbf{A}+\mathbf{B})=1 \) and \( \tan (\mathbf{A}-\mathbf{B})=\frac{1}{\sqrt3}, 0^{\circ} < A + B < 90^{\circ}, A > B, \) then find the values of \( \mathbf{A} \) and \( \mathbf{B} \).
- In the given figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that\( \frac{\operatorname{ar}(\triangle \mathbf{A B C})}{\operatorname{ar}(\triangle \mathbf{D B C})}=\frac{\mathbf{A O}}{\mathbf{D O}} \)"
- Write the property: $( \frac{a}{b}+\frac{c}{d})+\frac{e}{f}=\frac{a}{b}+( \frac{c}{d}+\frac{e}{f})$.
- In the given figure, ABCD is a parallelogram in which \( E \) and \( F \) are points on \( A B \) and CD respectively, such that \( B E=\frac{1}{2} A B \) and \( D F=\frac{1}{2} D C \). Prove that BEDF is a parallelogram."\n
- In $\Delta A B C $ and $\Delta D E F$ , A B=D E, $A B \parallel D E$, $B C=E F$ and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively.Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral BEFC is a parallelogram(iii) $A D \parallel C F$ and AD=CF(iv) quadrilateral ACFD is a parallelogram(v) $AC=DF$(vi) $\Delta ABC \cong \Delta DEF$"\n
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{DEF} \) and \( \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} \) and \( \angle \mathrm{R}=\angle \mathrm{E} \), then which of the following is not true?(A) \( \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \)(C) \( \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(D) \( \frac{E F}{R P}=\frac{D E}{Q R} \)
- $ABC$ is a triangle. $D$ is a point on $AB$ such that $AD = \frac{1}{4}AB$ and $E$ is a point on $AC$ such that $AE = \frac{1}{4}AC$. Prove that $DE =\frac{1}{4}BC$.
- Construct SLR (1) parsing table for the grammar\n1. E → E + T\n2. E → T\n3. T → T * F\n4. T → F\n5.F → (E)\n6.F → id
- In figure below, D is the mid-point of side BC and $AE \perp BC$. If \( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h, \) prove that \( b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2} \)."\n
- In figure below, D is the mid-point of side BC and $AE \perp BC$. If \( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h, \) prove that \( b^{2}=p^{2}+a x+\frac{a^{2}}{4} \)."\n
- In figure below, D is the mid-point of side BC and $AE \perp BC$. If \( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h, \) prove that \( c^{2}=p^{2}-a x+\frac{a^{2}}{4} \)."\n
- $F\ +\ V\ -\ E\ =\ 2$ and if $F\ =\ 20$, $V\ =\ 12$,Then find the value of $E$.
- In a $Δ\ ABC$, $D$ and $E$ are points on the sides $AB$ and $AC$ respectively such that $DE\ ||\ BC$. If $\frac{AD}{DB}\ =\ \frac{3}{4}$ and $AC\ =\ 15\ cm$, find $AE$. "\n

Advertisements