- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the given figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that$ \frac{\operatorname{ar}(\triangle \mathbf{A B C})}{\operatorname{ar}(\triangle \mathbf{D B C})}=\frac{\mathbf{A O}}{\mathbf{D O}} $
"
Given:
ABC and DBC are two triangles on the same base BC.
AD intersects BC at O
To do:
We have to show that \( \frac{\operatorname{ar}(\triangle \mathbf{A B C})}{\operatorname{ar}(\triangle \mathbf{D B C})}=\frac{\mathbf{A O}}{\mathbf{D O}} \)
Solution:
Draw $AM \perp BC$ and $DN \perp BC$
In $\triangle AOM$ and $\triangle DON$,
$\angle \mathrm{AOM}=\angle \mathrm{DON}$ (Vertically opposite angles)
$\angle \mathrm{AMO}=\angle \mathrm{DNO}=90^o$
Therefore, by AA similarity,
$\Delta \mathrm{AOM} \sim \Delta \mathrm{DON}$
This implies,
$\frac{\mathrm{AM}}{\mathrm{DN}}=\frac{\mathrm{AO}}{\mathrm{DO}}$ (CPCT)
Therefore,
$\frac{\operatorname{ar} \Delta \mathrm{ABC}}{\operatorname{ar} \Delta \mathrm{DBC}}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{BC} \times \mathrm{DN}}$
$=\frac{\mathrm{AM}}{\mathrm{DN}}$
$\frac{\operatorname{ar} \triangle \mathrm{ABC}}{\operatorname{ar} \triangle \mathrm{DBC}}=\frac{\mathrm{AO}}{\mathrm{DO}}$ (Since $\frac{\mathrm{AM}}{\mathrm{DN}}=\frac{\mathrm{AO}}{\mathrm{DO}}$)
Hence proved.
- Related Articles
- In the given figure, if $LM \| CB$ and $LN \| CD$.Prove that \( \frac{\mathbf{A M}}{\mathbf{A B}}=\frac{\mathbf{A N}}{\mathbf{A D}} \)"
- If \( \sin (\mathbf{A}-\mathbf{B})=\frac{1}{2} \) and \( \cos(\mathbf{A}+\mathbf{B})=\frac{1}{2}, \)\( 0^{\circ}\mathbf{B} \) find \( \mathbf{A} \) and \( \mathbf{B} \).
- In the given figure, $DE \| AC$ and $DF \| AE$.Prove that \( \frac{\mathbf{B F}}{\mathbf{F E}}=\frac{\mathbf{B E}}{\mathbf{E C}} \)"
- If \( \tan (\mathbf{A}+\mathbf{B})=1 \) and \( \tan (\mathbf{A}-\mathbf{B})=\frac{1}{\sqrt3}, 0^{\circ} < A + B < 90^{\circ}, A > B, \) then find the values of \( \mathbf{A} \) and \( \mathbf{B} \).
- In the figure, $ABC$ and $BDC$ are two equilateral triangles such that $D$ is the mid-point of $BC$. $AE$ intersects $BC$ in $F$.Prove that \( \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{ABC}) \)."\n
- In Fig. 9.25, diagonals \( A C \) and \( B D \) of quadrilateral \( A B C D \) intersect at \( O \) such that \( O B=O D \). If \( \mathrm{AB}=\mathrm{CD}, \) then show that:\( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)"\n
- In the figure, $ABC$ and $ABD$ are two triangles on the base $AB$. If line segment $CD$ is bisected by $AB$ at $O$, show that $ar(\triangle ABC) = ar(\triangle ABC)$."\n
- In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
- In the figure, $ABC$ and $BDC$ are two equilateral triangles such that $D$ is the mid-point of $BC$. $AE$ intersects $BC$ in $F$.Prove that \( \operatorname{ar}(\Delta \mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{BAE}) \)."\n
- In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
- In the figure below, \( \Delta A B C \) and \( \Delta D B C \) are on the same base \( B C \). If \( A D \) and \( B C \) intersect at $O$, prove that \( \frac{\text { Area }(\Delta A B C)}{\text { Area }(\Delta D B C)}=\frac{A O}{D O} \)"\n
- \( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
- In the figure, $D$ and $E$ are two points on $BC$ such that $BD = DE = EC$. Show that $ar(\triangle ABD) = ar(\triangle ADE) = ar(\triangle AEC)$."\n
- In a triangle \( \mathrm{ABC}, \mathrm{E} \) is the mid-point of median AD. Show that \( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
- In figure below, $D$ and \( \mathrm{E} \) are two points on \( \mathrm{BC} \) such that \( \mathrm{BD}=\mathrm{DE}=\mathrm{EC} \). Show that \( \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC}) \)."\n
