- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In given figure, find $tan\ P - cot\ R$.
"
Given:
$PQ = 12\ cm, PR = 13\ cm$.
To do:
We have to find $tan\ P - cot\ R$.
Solution:
We know that,
In a right-angled triangle $PQR$ with a right angle at $B$,
By Pythagoras theorem,
$PR^2=PQ^2+QR^2$
By trigonometric ratios definitions,
$tan\ P=\frac{Opposite}{Adjacent}=\frac{QR}{PQ}$
$cot\ R=\frac{Adjacent}{Opposite}=\frac{QR}{PQ}$
Here,
$PR^2=PQ^2+QR^2$
$\Rightarrow (13)^2=(12)^2+QR^2$
$\Rightarrow QR^2=169-144$
$\Rightarrow QR=\sqrt{25}=5$
Therefore,
$tan\ P=\frac{QR}{PQ}=\frac{5}{12}$
$cot\ R=\frac{QR}{PQ}=\frac{5}{12}$
Therefore,
$tan\ P - cot\ R = \frac{5}{12} - \frac{5}{12}$
$=0$
Advertisements