- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In figure below, $ l \| \mathrm{m} $ and line segments $ \mathrm{AB}, \mathrm{CD} $ and $ \mathrm{EF} $ are concurrent at point $ \mathrm{P} $.
Prove that $ \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} $.
"
Given:
\( l \| \mathrm{m} \) and line segments \( \mathrm{AB}, \mathrm{CD} \) and \( \mathrm{EF} \) are concurrent at point \( \mathrm{P} \).
To do:
We have to prove that \( \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} \).
Solution:
In $\triangle A P C$ and $\triangle B P D$
$\angle A P C=\angle B P D$ (Vertically opposite angles)
$\angle P A C=\angle P B D$ (Alternate angles)
Therefore, by AA similarity,
$\triangle A P C \sim \triangle B P D$
This implies,
$\frac{A P}{P B}=\frac{A C}{B D}=\frac{P C}{P D}$..........(i)
In $\triangle A P E$ and $\triangle B P F$
$\angle A P E=\angle B P F$ (Vertically opposite angles)
$\angle P A E=\angle P B F$ (Alternate angles)
Therefore, by AA similarity,
$\triangle A P E \sim \triangle B P F$
This implies,
$\frac{A P}{P B}=\frac{A E}{B F}=\frac{P E}{P F}$........(ii)
In $\triangle P E C$ and $\triangle P F D$
$\angle E P C=\angle F P D$ (Vertically opposite angles)
$\angle P C E =\angle P D F$ (Alternate angles)
Therefore, by AA similarity,
$\triangle P E C \sim \triangle P F D$
This implies,
$\frac{P E}{P F} =\frac{P C}{P D}=\frac{E C}{F D}$........(iii)
From (i), (ii) and (iii), we get,
$\frac{A P}{P B}=\frac{A C}{B D}=\frac{A E}{B F}=\frac{P E}{P F}=\frac{E C}{F D}$
$\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$
Hence proved.
- Related Articles
- In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
- In Fig. 5.10, if \( \mathrm{AC}=\mathrm{BD} \), then prove that \( \mathrm{AB}=\mathrm{CD} \)."\n
- In figure below, if \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{AC} \) and \( \mathrm{PQ} \) intersect each other at the point \( \mathrm{O} \), prove that \( \mathrm{OA} \cdot \mathrm{CQ}=\mathrm{OC} \cdot \mathrm{AP} \)."
- In figure below, \( \mathrm{BD} \) and \( \mathrm{CE} \) intersect each other at the point \( \mathrm{P} \). Is \( \triangle \mathrm{PBC} \sim \triangle \mathrm{PDE} \) ? Why?"
- \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
- Find \( \mathrm{x} \) if \( \mathrm{AB}\|\mathrm{CD}\| \mathrm{EF} \)."\n
- \( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
- In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
- Choose the correct answer from the given four options:If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{EDF} \) and \( \Delta \mathrm{ABC} \) is not similar to \( \Delta \mathrm{D} \mathrm{EF} \), then which of the following is not true?(A) \( \mathrm{BC} \cdot \mathrm{EF}=\mathrm{A} C \cdot \mathrm{FD} \)(B) \( \mathrm{AB}, \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE} \)(C) \( \mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF} \)(D) \( \mathrm{BC}, \mathrm{DE}=\mathrm{AB}, \mathrm{FD} \)
- In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
- In figure below, \( \mathrm{ABCD} \) is a parallelogram, \( \mathrm{AE} \perp \mathrm{DC} \) and \( \mathrm{CF} \perp \mathrm{AD} \). If \( \mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} \) and \( \mathrm{CF}=10 \mathrm{~cm} \), find \( \mathrm{AD} \)."\n
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{DEF} \) and \( \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} \) and \( \angle \mathrm{R}=\angle \mathrm{E} \), then which of the following is not true?(A) \( \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \)(C) \( \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(D) \( \frac{E F}{R P}=\frac{D E}{Q R} \)
- Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \) intersect each other at \( \mathrm{O} \). Prove that ar \( (\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \).
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
- ABCD is a quadrilateral in which \( P, Q, R \) and \( S \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) (see below figure). AC is a diagonal. Show that :(i) \( \mathrm{SR} \| \mathrm{AC} \) and \( \mathrm{SR}=\frac{1}{2} \mathrm{AC} \)(ii) \( \mathrm{PQ}=\mathrm{SR} \)(iii) \( \mathrm{PQRS} \) is a parallelogram."\n
