# In Fig. 7.48, sides $\mathrm{AB}$ and $\mathrm{AC}$ of $\triangle \mathrm{ABC}$ are extended to points $\mathrm{P}$ and $\mathrm{Q}$ respectively. Also, $\angle \mathrm{PBC}\mathrm{AB}$."

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

Given:
Sides $AB$ and $AC$ of $\triangle ABC$ are extended to points $P$ and $Q$ respectively. Also, $\angle PBC<\angle QCB$.

To do:

We have to show that $AC>AB$.

Solution:

We know that,

The sum of the measures of the angles in linear pairs is always $180^o$

This implies,

$\angle ABC+\angle PBC=180^o$

This implies,

$\angle ABC=180^o-\angle PBC$

In a similar way, we get,

$\angle ACB+\angle QCB=180^o$

This implies,

$\angle ABC=180^o-\angle QCB$

Given,

$\angle PBC<\angle QCB$,

This implies,

$\angle ABC>\angle ACB$

We know that,

The side opposite the larger angle is always larger,

Hence, $AC>AB$.

Updated on 10-Oct-2022 13:41:20