- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In an AP:
Given $a_n = 4, d = 2, S_n = -14$, find $n$ and $a$.
Given:
To do:
We have to find $n$ and $a$.
Solution:
We know that,
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$n$th term $a_n=a+(n-1)d$
This implies,
$a_n=a+(n-1)2$
$4=a+(n-1)2$
$4-2n+2=a$
$a=6-2n$......(i)
$S_n=\frac{n}{2}[2 \times a+(n-1) \times 2]$
$-14=\frac{n}{2} \times 2[a+(n-1)]$
$-14=n(6-2n+n-1)$
$-14=n(5-n)$
$-14=5n-n^2$
$n^2-5n-14=0$
$n^2-7n+2n-14=0$
$n(n-7)+2(n-7)=0$
$(n-7)(n+2)=0$
$n=7$ or $n=-2$ which is not possible as $n$ cannot be negative
$\therefore a=6-2(7)$
$=6-14$
$=-8$
Therefore, $a=-8$ and $n=7$.
- Related Articles
- In an AP:Given $a = 2, d = 8, S_n = 90$, find $n$ and $a_n$.
- In an AP:Given $a = 8, a_n = 62, S_n = 210$, find $n$ and $d$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$n$ and $a$, if $a_n = 4, d = 2$ and $S_n = -14$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$n$ and $a_n$, if $a = 2, d = 8$ and $S_n = 90$.
- In an A.P. if $a = 1,\ a_n = 20$ and $S_n=399$, then find $n$.
- In an A.P., if $d = –4,\ n = 7,\ a_n=4$, then find $a$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$n$ and $S_n$ , if $a = 5, d = 3$ and $a_n = 50$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$n$ and $d$, if $a = 8, a_n = 62$ and $S_n = 210$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$a$, if $a_n = 28, S_n = 144$ and $n = 9$.
- In an AP:Given $a = 3, n = 8, S = 192$, find $d$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$d$, if $a = 3, n = 8$ and $S_n = 192$.
- Let there be an A.P. with first term ‘$a$’, common difference '$d$'. If $a_n$ denotes its $n^{th}$ term and $S_n$ the sum of first $n$ terms, find.$k$, if $S_n = 3n^2 + 5n$ and $a_k = 164$.
- In an A.P., if $a = 3.5,\ d = 0,\ n = 101$, then find $a_n$.
- In an AP:Given $d = 5, S_9 = 75$, find $a$ and $a_9$.
- In an AP:Given $a = 7, a_{13} = 35$, find $d$ and $S_{13}$.

Advertisements