- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In a triangle $ P Q R, N $ is a point on $ P R $ such that $ Q N \perp P R $. If $ P N $. $ N R=Q^{2} $, prove that $ \angle \mathrm{PQR}=90^{\circ} $.
Given:
In a triangle \( P Q R, N \) is a point on \( P R \) such that \( Q N \perp P R \).
\( P N \). \( N R=Q^{2} \)
To do:
We have to prove that \( \angle \mathrm{PQR}=90^{\circ} \).
Solution:
$P N . N R=Q N^{2}$
$P N . N R=Q N . Q N$
This implies,
$\frac{P N}{Q N}=\frac{Q N}{N R}$...........(i)
In $\triangle QNP$ and $\triangle RNQ$,
$\frac{P N}{Q N}=\frac{Q N}{N R}$
$\angle P N Q=\angle R N Q$
Therefore, by SAS similarity,
$\angle Q N P \sim \angle R N Q$
This implies,
$\angle P Q N=\angle Q R N$........(ii)
$\angle R Q N=\angle Q P N$........(iii)
Adding (ii) and (iii), we get,
$\angle P Q N+\angle R Q N=\angle Q R N+\angle Q P N$
$\angle P Q R=\angle Q R N+\angle Q P N$
We know that,
Sum of the angles of a triangle is \( 180^{\circ} \).
In $\triangle P Q R$,
$\angle P Q R+\angle Q P R+\angle Q R P=180^{\circ}$
$\angle P Q R+\angle Q P N+\angle Q R N=180^{\circ}$
$\angle P Q R+\angle P Q R=180^{\circ}$
$2 \angle P Q R=180^{\circ}$
$\angle P Q R=90^{\circ}$
Hence proved.