- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \cos 9 \alpha=\sin \alpha $ and $ 9 \alpha<90^{\circ} $, then the value of $ \tan 5 \alpha $ is
(A) $ \frac{1}{\sqrt{3}} $
(B) $ \sqrt{3} $
(C) 1
(D) 0
Given:
\( \cos 9 \alpha=\sin \alpha \) and \( 9 \alpha<90^{\circ} \)
To do:
We have to find the value of \( \tan 5 \alpha \).
Solution:
We know that,
$sin\ (90^{\circ}- \theta) = cos\ \theta$
$\cos 9 \alpha=\sin \alpha$
$\sin (90^{\circ}-9 \alpha)=\sin \alpha$
This implies,
$90^{\circ}-9 \alpha=\alpha$
$10 \alpha=90^{\circ}$
$\alpha=9^{\circ}$
Therefore,
$\tan 5 \alpha=\tan (5 \times 9^{\circ})$
$=\tan 45^{\circ}$
$=1$ (Since $\tan 45^{\circ}=1$)
- Related Articles
- Prove the following:\( (\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha \)
- If \( \cos (\alpha+\beta)=0 \), then \( \sin (\alpha-\beta) \) can be reduced to(A) \( \cos \beta \)(B) \( \cos 2 \beta \)(C) \( \sin \alpha \)(D) \( \sin 2 \alpha \)
- Find the distance between the following pair of points:$(a sin \alpha, -b cos \alpha)$ and $(-a cos \alpha, -b sin \alpha)$
- If $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$, then show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
- Given that: \( (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma) \)Show that one of the values of each member of this equality is \( \sin \alpha \sin \beta \sin \gamma \)
- Given $sin\alpha=\frac{\sqrt{3}}{2}$ and $cos\beta=0$, then find the value of $( \beta-\alpha)$.
- For what value of $\alpha$, the system of equations $\alpha x+3y=\alpha -3$ $12x+\alpha y=\alpha$ will have no solution?
- If $\alpha+\beta=-2$ and $\alpha^3+\beta^3=-56$, then find the quadratic equation whose roots are $\alpha$ and $\beta$.
- If $\alpha$ and $\beta$ are the zeroes of a polynomial such that $\alpha+\beta=-6$ and $\alpha\beta=5$, then find the polynomial.
- If $\alpha ,\ \beta$ are the zeroes of a polynomial, such that $\alpha+\beta=6$ and $\alpha\beta=4$, then write the polynomial.
- Prove the following:\( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \)
- If $\alpha$ and $\beta$ are zeroes of $x^2-4x+1$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha\beta$.
- If $\alpha,\ \beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $\alpha +\beta=\alpha\beta$, then find the value of $p$.
- If $x = 2\alpha + 1$ and $y = \alpha - 1$ is a solution of the equation $2x – 3y + 5 = 0$, find the value of $\alpha$.
- Radioactivity Alpha Decay

Advertisements