If $\angle A$ and $\angle B$ are acute angles such that $cos\ A = cos\ B$, then show that $∠A = ∠B$.
Given:
\( \angle A \) and \( \angle B \) are acute angles such that \( \cos A=\cos B \).
To do:
We have to show that \( \angle A=\angle B \).
Solution:
Let, in a triangle $ABC$ right angled at $C$, $cos\ A = cos\ B$.

We know that,
In a right-angled triangle $ABC$ with a right angle at $C$,
By trigonometric ratios definitions,
$cos\ A=\frac{Adjacent}{Hypotenuse}=\frac{AC}{AB}$
$cos\ B=\frac{Adjacent}{Hypotenuse}=\frac{BC}{AB}$
This implies,
$\cos A=\cos B$
$\Rightarrow \frac{AC}{AB}=\frac{BC}{AB}$
$\Rightarrow AC=BC$
We know that,
Angles opposite to equal sides are equal in a triangle.
Therefore,
$\angle A=\angle B$
Hence proved.
- Related Articles
- If \( \angle A \) and \( \angle B \) are acute angles such that \( \cos A=\cos B \), then show that \( \angle A=\angle B \).
- If angle B and Q are acute angles such that B=sinQ, prove that angle B= angle Q
- If \( \angle A \) and \( \angle P \) are acute angles such that \( \tan A=\tan P \), then show that \( \angle A=\angle P \).
- If ∠B and ∠Q are acute angles such that $Sin B = Sin Q$, then prove that $∠B = ∠Q$.
- If \( A=B=60^{\circ} \), verify that\( \cos (A-B)=\cos A \cos B+\sin A \sin B \)
- If \( A=30^{\circ} \) and \( B=60^{\circ} \), verify that\( \cos (A+B)=\cos A \cos B-\sin A \sin B \)
- If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
- If \( A=B=60^{\circ} \), verify that\( \sin (A-B)=\sin A \cos B-\cos A \sin B \)
- If \( A=30^{\circ} \) and \( B=60^{\circ} \), verify that\( \sin (A+B)=\sin A \cos B+\cos A \sin B \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \cos \frac{B+C}{2}=\sin \frac{A}{2} \)
- In a \( \Delta A B C \) right angled at \( B, \angle A=\angle C \). Find the values of\( \sin A \sin B+\cos A \cos B \)
- Find acute angles \( A \) and \( B \), if \( \sin (A+2 B)=\frac{\sqrt{3}}{2} \) and \( \cos (A+4 B)=0, A>B \).
- If \( \sin (A-B)=\sin A \cos B-\cos A \sin B \) and \( \cos (A-B)=\cos A \cos B+\sin A \sin B \), find the values of \( \sin 15^{\circ} \) and \( \cos 15^{\circ} \).
- If \( \triangle A B C \) is a right triangle such that \( \angle C=90^{\circ}, \angle A=45^{\circ} \) and \( B C=7 \) units. Find \( \angle B, A B \) and \( A C \).
- Prove that:\( \sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \)
Kickstart Your Career
Get certified by completing the course
Get Started