- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
Given:
\( A, B, C \), are the interior angles of a triangle \( A B C \).
To do:
We have to show that \( \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} \).
Solution:
We know that,
$sin\ (90^{\circ}- \theta) = cos\ \theta$
Sum of the angles in a triangle is $180^{\circ}$.
This implies,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \frac{\angle A+\angle B+\angle C}{2}=\frac{180^{\circ}}{2}$
$\Rightarrow \frac{\angle A}{2}+ \frac{\angle B}{2}+ \frac{\angle C}{2}=90^{\circ}$
Therefore,
$\sin \left(\frac{B+C}{2}\right)=\sin (\frac{B}{2}+\frac{C}{2})$
$=\sin (90^{\circ}-\frac{A}{2})$
$=\cos \frac{A}{2}$
Hence proved.
- Related Articles
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \cos \frac{B+C}{2}=\sin \frac{A}{2} \)
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2} \)
- If \( tan \theta = \frac{a}{b} \), prove that\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).
- In $\vartriangle ABC$, if $cot \frac{A}{2},\ cot \frac{B}{2},\ cot \frac{C}{2}$ are in A.P. Then show that $a,\ b,\ c$ are in A.P.  
- In an acute angle triangle ABC, $sin\ (A + B - C) = \frac{1}{2}$, $cot\ (A - B + C) = 0$ and $cos (B + C - A) =\frac{1}{2}$. What are the values of A, B, and C?
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- If $2^{a}=3^{b}=6^{c}$ then show that $ c=\frac{a b}{a+b} $
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- Prove that \( \sin \left(C+\frac{A+B}{2}\right)=\sin \frac{A+B}{2} \)
- If \( x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \) and \( z=c \tan \theta \), show that \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \)
- Find acute angles \( A \) and \( B \), if \( \sin (A+2 B)=\frac{\sqrt{3}}{2} \) and \( \cos (A+4 B)=0, A>B \).
- If the angles $A,\ B,\ C$ of a $\vartriangle ABC$ are in A.P., then prove that $b^2=a^2+c^2-ac$.
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove thatIf \( \angle A=90^{\circ} \), then find the value of \( \tan \left(\frac{B+C}{2}\right) \).

Advertisements