HTTP - QUICK GUIDE

The Hypertext Transfer Protocol HTTP is an application-level protocol for distributed, collaborative,
hypermedia information systems. This is the foundation for data communication for the World
Wide Web ie. internet since 1990. HTTP is a generic and stateless protocol which can be used for
other purposes as well using extension of its request methods, error codes and headers.

Basically, HTTP is an TCP/IP based communication protocol, which is used to deliver data

HTML files, imagefiles, queryresultsetc on the World Wide Web. The default portis TCP 80, but other ports
can be used. It provides a standardized way for computers to communicate with each other. HTTP
specification specifies how clients request data will be constructed and sent to the serve, and how
servers respond to these requests.

Basic Features

There are following three basic features which makes HTTP a simple but powerful protocol:

e HTTP is connectionless: The HTTP clientie. browser initiates an HTTP request and after a
request is made, the client disconnects from the server and waits for a response. The server
process the request and re-establish the connection with the client to send response back.

¢ HTTP is media independent: This means, any type of data can be sent by HTTP as long as
both the client and server know how to handle the data content. This is required for client as
well as server to specify the content type using appropriate MIME-type.

e HTTP is stateless: As mentioned above, HTTP is a connectionless and this is a direct result
that HTTP is a stateless protocol. The server and client are aware of each other only during a
current request. Afterwards, both of them forget about each other. Due to this nature of the
protocol, neither the client nor the browser can retain information between different request
across the web pages.

HTTP/1.0 uses a new connection for each request/response exchange where as
HTTP/1.1 connection may be used for one or more request/response exchanges.

Basic Architecture

Following diagram shows a very basic architecture of a web application and depicts where HTTP
sits:

Web Server

Web Client Server Side Script

L— S—

http://www.tutorialspoint.com/http/http_quick_guide.htm

Database

HTTP Protocol

The HTTP protocol is a request/response protocol based on client/server based architecture where
web browser, robots and search engines, etc. act like HTTP clients and Web server acts as server.

Client

The HTTP client sends a request to the server in the form of a request method, URI, and protocol
version, followed by a MIME-like message containing request modifiers, client information, and
possible body content over a TCP/IP connection.

Server
The HTTP server responds with a status line, including the message's protocol version and a

success or error code, followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content.

HTTP - PARAMETERS

This chapter is going to list down few of the important HTTP Protocol Parameters and their syntax
in a way they are used in the communication. For example, format for date, format of URL etc. This
will help you in constructing your request and response messages while writing HTTP client or
server programs. You will see complete usage of these parameters in subsequent chapters while
explaining message structure for HTTP requests and responses.

HTTP Version

HTTP uses a <major>.<minor> numbering scheme to indicate versions of the protocol. The
version of an HTTP message is indicated by an HTTP-Version field in the first line. Here is the
general syntax of specifying HTTP version number:

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Example

HTTP/1.0
or

HTTP/1.1

Uniform Resource Identifiers URI
Uniform Resource Identifiers URI is simply formatted, case-insensitive string containing name,

location etc to identify a resource, for example a website, a web service etc. A general syntax of
URI used for HTTP is as follows:

URI = "http:" "//" host [":" port] [abs_path ["?" query]]

Here if the port is empty or not given, port 80 is assumed for HTTP and an empty abs_path is
equivalent to an abs_path of "/". The characters other than those in the reserved and unsafe sets
are equivalent to their ""%" HEX HEX" encoding.

Example

Following two URIs are equivalent:

http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html

Date/Time Formats
All HTTP date/time stamps MUST be represented in Greenwich Mean Time GMT, without exception.

HTTP applications are allowed to use any of the following three representations of date/time
stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Character Sets

You use character set to specify the character sets that the client prefers. Multiple character sets
can be listed separated by commas. If a value is not specified, the default is US-ASCII.

Example
Following are valid character sets:

US-ASCII
or
IS0-8859-1
or

IS0-8859-7

Content Encodings

A content ecoding values indicate an encoding algorithm has been used to encode the content
before passing it over the network. Content codings are primarily used to allow a document to be
compressed or otherwise usefully transformed without losing the identity.

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the Accept-
Encoding and Content-Encoding header fields which we will see in subsequent chapters.

Example

Following are valid encoding schemes:
Accept-encoding: gzip

or

Accept-encoding: compress

or

Accept-encoding: deflate

Media Types

HTTP uses Internet Media Types in the Content-Type and Accept header fields in order to
provide open and extensible data typing and type negotiation. All the Media-type values are
registered with the Internet Assigned Number Authority (IANA. Following is a general syntax to
specify media type:

media-type = type "/" subtype *(";" parameter)
The type, subtype, and parameter attribute names are case- insensitive.

Example
Accept: image/gif

Language Tags

HTTP uses language tags within the Accept-Language and Content-Language fields. A language
tag is composed of 1 or more parts: A primary language tag and a possibly empty series of
subtags:

language-tag = primary-tag *("-" subtag)
White space is not allowed within the tag and all tags are case- insensitive.
Example
Example tags include:
en, en-US, en-cockney, i-cherokee, x-pig-latin

Where any two-letter primary-tag is an 1ISO-639 language abbreviation and any two-letter initial
subtag is an ISO-3166 country code.

HTTP - MESSAGES

HTTP is based on client-server architecture model and a stateless request/response protocol that
operates by exchanging messages across a reliable TCP/IP connection.

An HTTP "client" is a program Webbrowseroranyotherclient that establishes a connection to a server for
the purpose of sending one or more HTTP request messages. An HTTP "server" is a program
generallyawebserverlikeApacheWebServerorInternetInformationServiceslISetc. that accepts connections in order
to serve HTTP requests by sending HTTP response messages.

HTTP makes use of the Uniform Resource Identifier URI to identify a given resource and to
establish a connection. Once connection is established, HTTP messages are passed in a format
similar to that used by Internet mail [RFC5322] and the Multipurpose Internet Mail Extensions MIME

[RFC2045]. These messages are consisted of requests from client to server and responses from
server to client which will have following format:

HTTP-message = <Request> | <Response> ; HTTP/1.1 messages

HTTP request and HTTP response use a generic message format of RFC 822 for transferring the
required data. This generic message format consists of following four items.

e A Start-1line

e Zero or more header fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating the end of
the header fields

Optionally a message-body

Following section will explain each of the entities used in HTTP message.

Message Start-Line

A start-line will have following generic syntax:

start-line = Request-Line | Status-Line

We will discuss Request-Line and Status-Line while discussing HTTP Request and HTTP Response
messages respectively. For now let's see the examples of start line in case of request and
response:

GET /hello.htm HTTP/1.1 (This is Request-Line sent by the client)

HTTP/1.1 200 OK (This is Status-Line sent by the server)

Header Fields

HTTP deader fields provide required information about the request or response, or about the
object sent in the message body. There are following four types of HTTP message headers:

¢ General-header: These header fields have general applicability for both request and
response messages.

¢ Request-header: These header fields are applicability only for request messages.
¢ Response-header: These header fields are applicability only for response messages.

e Entity-header: These header fields define metainformation about the entity-body or, if no
body is present

All the above mentioned headers follow the same generic format and each of the header field
consists of a name followed by a colon (:) and the field value as follows:

message-header = field-name ":" [field-value]

Following are the examples of various header fields:

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.71 zlib/1.2.3
Host: www.example.com

Accept-Language: en, mi

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Message Body

The message body partis optional for an HTTP message but if it is available then itis used to carry
the entity-body associated with the request or response. If entity body is associated then usually
Content-Type and Content-Length headers lines specify the nature of the body associated.

A message body is the one which carries actual HTTP request data includingformdataanduploadedetc.
and HTTP response data from the server includingfiles, imagesetc. Following is a simple content of a
message body:

<html>

<body>
<hi>Hello, World!</h1>
</body>
</htm1>

HTTP - REQUESTS

An HTTP client sends an HTTP request to a server in the form of a request message which includes
following format:

A Request-line

e Zero or more header (General |Request|Entity) fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating the end of
the header fields

Optionally a message-body

Following section will explain each of the entities used in HTTP message.

Message Request-Line

The Request-Line begins with a method token, followed by the Request-URI and the protocol
version, and ending with CRLF. The elements are separated by space SP characters.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Let's discuss each of the part mentioned in Request-Line.

Request Method

The request Method indicates the method to be performed on the resource identified by the given
Request-URI. The method is case-sensitive ans should always be mentioned uppercase. Following
are supported methods in HTTP/1.1

S.N. Method and Description

1 GET
The GET method is used to retrieve information from the given server using a given URI.
Requests using GET should only retrieve data and should have no other effect on the
data.

2 HEAD
Same as GET, but only transfer the status line and header section.

3 POST
A POST requestis used to send data to the server, for example customer information, file
upload etc using HTML formes.

4 PUT
Replace all current representations of the target resource with the uploaded content.

5 DELETE
Remove all current representations of the target resource given by URI.

CONNECT
Establish a tunnel to the server identified by a given URI.

7 OPTIONS
Describe the communication options for the target resource.
8 TRACE
Perform a message loop-back test along the path to the target resource.
Request-URI

The Request-URI is a Uniform Resource Identifier and identifies the resource upon which to apply
the request. Following are the most commonly used forms to specify an URI:

Request-URI = "*" | absoluteURI | abs_path | authority

S.N. Method and Description

1 The asterisk * is used when HTTP request does not apply to a particular resource, but to
the server itself, and is only allowed when the method used does not necessarily apply to
a resource. For example:
OPTIONS * HTTP/1.1

2 The absoluteURI is used when HTTP request is being made to a proxy. The proxy is
requested to forward the request or service it from a valid cache, and return the
response. For example:
GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

3 The most common form of Request-URI is that used to identify a resource on an origin

server or gateway. For example, a client wishing to retrieve the resource above directly
from the origin server would create a TCP connection to port 80 of the host "www.w3.org"
and send the lines:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.0org

Note that the absolute path cannot be empty; if none is presentin the original URI, it
MUST be given as "/" theserverroot

Request Header Fields

We will study General-header and Entity-header in a separate chapter when we will learn HTTP
header fields. For now let's check what are Request header fields.

The request-header fields allow the client to pass additional information about the request, and
about the client itself, to the server. These fields act as request modifiers and there are following
important Request-header fields available which can be used based on requirement.

e Accept-Charset

Accept-Encoding
Accept-Language
Authorization

Expect

e From

e Host

e If-Match

¢ If-Modified-Since

¢ If-None-Match

e If-Range

e If-Unmodified-Since
¢ Max-Forwards

e Proxy-Authorization
e Range

e Referer

o TE

e User-Agent

You can introduce your custom fields in case you are going to write your own custom Client and
Web Server.

Request Message Examples

Now let's put it all together to form an HTTP request to fetch hello.htm page from the web server
running on tutorialspoint.com

GET /hello.htm HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Here we are not sending any request data to the server because we are fetching a plan HTML
page from the server. Connection is a general-header used here and rest of the headers are
request headers. Following is one more example where we send form data to the server using
request message body:

POST /cgi-bin/process.cgi HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Content-Type: application/x-www-form-urlencoded
Content-Length: length

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

licenseID=string&content=string&/paramsxXML=string

Here given URL /cgi-bin/process.cgi will be used to process the passed data and accordingly a
response will be retuned. Here content-type tells the server that passed data is simple web form
data and length will be actual length of the data put in the message body. Following example
shows how you can pass plan XML to your web server:

POST /cgi-bin/process.cgi HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: length

Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

<?xml version="1.0" encoding="utf-8"?>
<string xmlns="http://clearforest.com/">string</string>

HTTP - RESPONSES

After receiving and interpreting a request message, a server responds with an HTTP response
message:

A Status-line

Zero or more header (General|Response|Entity) fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating the end of
the header fields

e Optionally a message-body

Following section will explain each of the entities used in HTTP message.
Message Status-Line

The Status-Line consisting of the protocol version followed by a numeric status code and its
associated textual phrase. The elements are separated by space SP characters.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Let's discuss each of the part mentioned in Status-Line.

HTTP Version

A server supporting HTTP version 1.1 will return following version information:

HTTP-Version = HTTP/1.1

Status Code

The Status-Code element is a 3-digit integer where first digit of the Status-Code defines the class of

response and the last two digits do not have any categorization role. There are 5 values for the
first digit:

S.N. Code and Description

1 1xx: Informational
This means request received and continuing process.

2 2xX: Success
This means the action was successfully received, understood, and accepted.

3 3xx: Redirection
This means further action must be taken in order to complete the request.

4 4xx: Client Error
This means the request contains bad syntax or cannot be fulfilled

5 5xx: Server Error
The server failed to fulfill an apparently valid request

HTTP status codes are extensible and HTTP applications are not required to understand the
meaning of all registered status codes. A list of all the status code has been given in a separate
chapter for you reference.

Response Header Fields

We will study General-header and Entity-header in a separate chapter when we will learn HTTP
header fields. For now let's check what are Response header fields.

The response-header fields allow the server to pass additional information about the response
which cannot be placed in the Status- Line. These header fields give information about the server
and about further access to the resource identified by the Request-URI.

e Accept-Ranges

e Age

e ETag

e Location

e Proxy-Authenticate
e Retry-After

e Server

e Vary

e WWW-Authenticate

You can introduce your custom fields in case you are going to write your own custom Web Client
and Server.

Response Message Examples

Now let's put it all together to form an HTTP response for a request to fetch hello.htm page from
the web server running on tutorialspoint.com

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
Content-Length: 88

Content-Type: text/html

Connection: Closed

<html1>

<body>

<hi>Hello, World!</h1>
</body>

</htm1l>

Following is an example of HTTP response message showing error condition when web server
could not find requested page:

HTTP/1.1 404 Not Found

Date: Sun, 18 Oct 2012 10:36:20 GMT
Server: Apache/2.2.14 (Win32)
Content-Length: 230

Connection: Closed
Content-Type: text/html; charset=iso0-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>404 Not Found</title>
</head>
<body>
<hi>Not Found</hi>
<p>The requested URL /t.html was not found on this server.</p>
</body>
</html>

Following is an example of HTTP response message showing error condition when web server
encountered a wrong HTTP version in given HTTP request:

HTTP/1.1 400 Bad Request

Date: Sun, 18 Oct 2012 10:36:20 GMT
Server: Apache/2.2.14 (Win32)
Content-Length: 230

Content-Type: text/html; charset=iso-8859-1
Connection: Closed

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>400 Bad Request</title>
</head>
<body>
<hi>Bad Request</h1>
<p>Your browser sent a request that this server could not understand.<p>
<p>The request line contained invalid characters following the protocol string.<p>
</body>
</htm1l>

HTTP - METHODS

The set of common methods for HTTP/1.1 is defined below and this set can be expanded based on
requirement. These method names are case sensitive and they must be used in uppercase.

S.N. Method and Description

1 GET
The GET method is used to retrieve information from the given server using a given URI.
Requests using GET should only retrieve data and should have no other effect on the
data.

2 HEAD
Same as GET, but only transfer the status line and header section.

3 POST
A POST request is used to send data to the server, for example customer information, file
upload etc using HTML forms.

4 PUT
Replace all current representations of the target resource with the uploaded content.

5 DELETE
Remove all current representations of the target resource given by URI.

6 CONNECT
Establish a tunnel to the server identified by a given URI.

7 OPTIONS

Describe the communication options for the target resource.

8 TRACE
Perform a message loop-back test along the path to the target resource.

GET Method

A GET request retrieves data from a web server by specifying parameters in the URL portion of the
request. This is the main method used for document retrieval. Following is a simple example which
makes use of GET method to fetch hello.htm:

GET /hello.htm HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Following will be a server response against the above GET request:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Vary: Authorization, Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html1>

<body>

<hi>Hello, World!</h1>
</body>

</htm1l>

HEAD Method

The HEAD method is functionally like GET, except that the server replies with a response line and
headers, but no entity-body. Following is a simple example which makes use of HEAD method to
fetch header information about hello.htm:

HEAD /hello.htm HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Following will be a server response against the above GET request:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Vary: Authorization, Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

You can notice that here server does not send any data after header.

POST Method

The POST method is used when you want to send some data to the server, for example file update,
form data etc. Following is a simple example which makes use of POST method to send a form
data to the server which will be processed by a process.cgi and finally a response will be returned:

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: 88

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

<?xml version="1.0" encoding="utf-8"?>
<string xmlns="http://clearforest.com/">string</string>

Server side script process.cgi process the passed data and send following response:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Vary: Authorization, Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<htm1>

<body>

<h1>Request Processed Successfully</hi>
</body>

</htm1>

PUT Method

The PUT method is used to request the server to store the included entity-body at a location
specified by the given URL. The following example request server to save the given entity-boy in
hello.htm at the root of the server:

PUT /hello.htm HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

Content-type: text/html

Content-Length: 182

<html>

<body>

<hi>Hello, World!</h1>
</body>

</html>

The server will store given entity-body in hello.htm file and will send following response back to
the client:

HTTP/1.1 201 Created

Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache/2.2.14 (Win32)
Content-type: text/html
Content-length: 30

Connection: Closed

<html>

<body>

<h1>The file was created.</h1>
</body>

</html>

DELETE Method

The DELETE method is used to request the server to delete file at a location specified by the given
URL. The following example request server to delete the given file hello.htm at the root of the
server:

DELETE /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

The server will delete mentioned file hello.htm and will send following response back to the
client:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache/2.2.14 (Win32)
Content-type: text/html
Content-length: 30

Connection: Closed

<html>

<body>

<h1>URL deleted.</h1>
</body>

</html>

CONNECT Method

The CONNECT method is used by the client to establish a network connection to a web server over
HTTP. The following example request a connection with a web server running on host
tutorialspoint.com:

CONNECT www.tutorialspoint.com HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

The connection is established with the server and following response is sent back to the client:

HTTP/1.1 200 Connection established
Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache/2.2.14 (Win32)

OPTIONS Method

The OPTIONS method is used by the client to find out what are the HTTP methods and other options
supported by a web server. The client can specify a URL for the OPTIONS method, or an asterisk *
to refer to the entire server. The following example request a list of methods supported by a web
server running on tutorialspoint.com:

OPTIONS * HTTP/1.1
User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

The server will send information based on the current configuration of the server, for example:

HTTP/1.1 200 OK
Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)
Allow: GET,HEAD, POST, OPTIONS, TRACE
Content-Type: httpd/unix-directory

TRACE Method

The TRACE method is used to eacho the contents of an HTTP Request back to the requester which
can be used for debugging purpose at the time of development. The following example shows the
usage of TRACE method:

TRACE / HTTP/1.1
Host: www.tutorialspoint.com
User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

The server will send following message in response of the above request:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache/2.2.14 (Win32)
Content-Type: message/http
Content-Length: 39

Connection: Closed

TRACE / HTTP/1.1

Host: www.tutorialspoint.com
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

HTTP - STATUS CODES

The Status-Code element in a server response, is a 3-digit integer where first digit of the Status-
Code defines the class of response and the last two digits do not have any categorization role.
There are 5 values for the first digit:

S.N. Code and Description

1 1xx: Informational
This means request received and continuing process.

2 2xX: Success
This means the action was successfully received, understood, and accepted.

3 3xx: Redirection
This means further action must be taken in order to complete the request.

4 4xx: Client Error
This means the request contains bad syntax or cannot be fulfilled

5 5xx: Server Error
The server failed to fulfill an apparently valid request

HTTP status codes are extensible and HTTP applications are not required to understand the
meaning of all registered status codes. Following is a list of all the status code.

1xx: Information

Message: Description:

100 Continue Only a part of the request has been received by the
server, but as long as it has not been rejected, the client
should continue with the request

101 Switching Protocols

2xx: Successful

Message:
200 OK
201 Created

202 Accepted

203 Non-authoritative Information

204 No Content

205 Reset Content

206 Partial Content

3xx: Redirection

Message:

300 Multiple Choices

301 Moved Permanently
302 Found

303 See Other
304 Not Modified

305 Use Proxy

306 Unused

307 Temporary Redirect

4xx: Client Error

Message:

The server switches protocol

Description:
The request is OK
The request is complete, and a new resource is created

The request is accepted for processing, but the
processing is not complete

The information in the entity header is from a local or
third-party copy, not from the original server.

A status code and header are given in the response, but
there is no entity-body in the reply.

The browser should clear the form used for this
transaction for additional input.

The server is returning partial data of the size
requested. Used in response to a request specifying a
Range header. The server must specify the range

included in the response with the Content-Range
header.

Description:

A link list. The user can select a link and go to that
location. Maximum five addresses

The requested page has moved to a new url

The requested page has moved temporarily to a new
url

The requested page can be found under a different url
This is the response code to an If-Modified-Since or If-
None-Match header, where the URL has not been
modified since the specified date.

The requested URL must be accessed through the proxy
mentioned in the Location header.

This code was used in a previous version. It is no longer
used, but the code is reserved

The requested page has moved temporarily to a new url

Description:

400 Bad Request

401 Unauthorized

402 Payment Required
403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-url Too Long

415 Unsupported Media Type
416 Requested Range Not
Satisfiable

417 Expectation Failed

5xx: Server Error

Message:

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

The server did not understand the request

The requested page needs a username and a password
You can not use this code yet

Access is forbidden to the requested page

The server can not find the requested page

The method specified in the request is not allowed

The server can only generate a response thatis not
accepted by the client

You must authenticate with a proxy server before this
request can be served

The request took longer than the server was prepared to
wait

The request could not be completed because of a
conflict

The requested page is no longer available

The "Content-Length" is not defined. The server will not
accept the request without it

The precondition given in the request evaluated to false
by the server

The server will not accept the request, because the
request entity is too large

The server will not accept the request, because the urlis
too long. Occurs when you convert a "post" request to a
"get" request with a long query information

The server will not accept the request, because the
media type is not supported

The requested byte range is not available and is out of
bounds.

The expectation given in an Expect request-header field
could not be met by this server.

Description:

The request was not completed. The server metan
unexpected condition

The request was not completed. The server did not
support the functionality required

The request was not completed. The server received an
invalid response from the upstream server

The request was not completed. The server is
temporarily overloading or down

504 Gateway Timeout The gateway has timed out

505 HTTP Version Not Supported The server does not support the "http protocol" version

HTTP - HEADER FIELDS

HTTP deader fields provide required information about the request or response, or about the
object sentin the message body. There are following four types of HTTP message headers:

e General-header: These header fields have general applicability for both request and
response messages.

o Client Request-header: These header fields are applicability only for request messages.

¢ Server Response-header: These header fields are applicability only for response
messages.

¢ Entity-header: These header fields define metainformation about the entity-body or, if no
body is present

General Headers

Cache-control

The Cache-Control general-header field is used to specify directives that MUST be obeyed by all
caching system. Following is the syntax:

Cache-Control : cache-request-directive|cache-response-directive

An HTTP clients or servers can use the Cache-control general header to specify parameters for
the cache or to request certain kinds of documents from the cache. The caching directives are
specified in a comma-separated list. For example:

Cache-control: no-cache

There are following important cache request directives which can be used by the clientin its HTTP
request:

S.N. Cache Request Directive and Description

1 no-cache
A cache must not use the response to satisfy a subsequent request without successful
revalidation with the origin server.

2 no-store
The cache should not store anything about the client request or server response.

3 max-age = seconds
Indicates that the client is willing to accept a response whose age is no greater than the
specified time in seconds.

4 max-stale [= seconds]
Indicates that the client is willing to accept a response that has exceeded its expiration
time. If seconds are given, it must not be expired by more than that time.

5 min-fresh = seconds
Indicates that the client is willing to accept a response whose freshness lifetime is no less
than its current age plus the specified time in seconds.

6 no-transform
Do not convert the entity-body.

7 only-if-cached
Do not retrieve new data. The cache can send a documentonly if itis in the cache, and
should not contact the origin-server to see if a newer copy exists.

There are following important cache response directives which can be used by the server in its
HTTP response:

S.N. Cache Request Directive and Description

1 public
Indicates that the response may be cached by any cache.

2 private
Indicates that all or part of the response message is intended for a single user and must
not be cached by a shared cache.

3 no-cache
A cache must not use the response to satisfy a subsequent request without successful
revalidation with the origin server.

4 no-store
The cache should not store anything about the client request or server response.

5 no-transform
Do not convert the entity-body.

6 must-revalidate
The cache must verify the status of stale documents before using it and expired one
should not be used.

7 proxy-revalidate
The proxy-revalidate directive has the same meaning as the must- revalidate directive,
except that it does not apply to non-shared user agent caches.

8 max-age = seconds
Indicates that the client is willing to accept a response whose age is no greater than the
specified time in seconds.

9 s-maxage = seconds
The maximum age specified by this directive overrides the maximum age specified by
either the max-age directive or the Expires header. The s-maxage directive is always
ignored by a private cache.

Connection

The Connection general-header field allows the sender to specify options that are desired for that
particular connection and must not be communicated by proxies over further connections.
Following is the simple syntax of using connection header:

Connection : "Connection"

HTTP/1.1 defines the "closed" connection option for the sender to signal that the connection will be
closed after completion of the response. For example:

Connection: Closed

By default, HTTP 1.1 uses persistent connections, where the connection does not automatically
close after a transaction. HTTP 1.0, on the other hand, does not have persistent connections by
default. If a 1.0 client wishes to use persistent connections, it uses the keep-alive parameter as
follows:

Connection: keep-alive

Date

All HTTP date/time stamps MUST be represented in Greenwich Mean Time GMT, without exception.
HTTP applications are allowed to use any of the following three representations of date/time
stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Here first format is the most preferred one.

Pragma

The Pragma general-header field is used to include implementation- specific directives that might
apply to any recipient along the request/response chain. For example:

Pragma: no-cache

The only directive defined in HTTP/1.0 is the no-cache directive and is maintained in HTTP 1.1 for
backward compatibility. No new Pragma directives will be defined in the future.

Trailer

The Trailer general field value indicates that the given set of header fields is present in the trailer
of a message encoded with chunked transfer-coding. Following is the syntax of Trailer header
field:

Trailer : field-name

Message header fields listed in the Trailer header field must not include the following header
fields:

e Transfer-Encoding

e Content-Length

e Trailer
Transfer-Encoding
The Transfer-Encoding general-header field indicates what type of transformation has been
applied to the message body in order to safely transfer it between the sender and the recipient.
This is not the same as content-encoding because transfer-encodings are a property of the

message, not of the entity-body. Following is the syntax of Transfer-Encoding header field:

Transfer-Encoding: chunked
All transfer-coding values are case-insensitive.

Upgrade

The Upgrade general-header allows the client to specify what additional communication protocols
it supports and would like to use if the server finds it appropriate to switch protocols. For example:

Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The Upgrade header field is intended to provide a simple mechanism for transition from HTTP/1.1
to some other, incompatible protocol

Via

The Via general-header must be used by gateways and proxies to indicate the intermediate
protocols and recipients. For example, a request message could be sentfrom an HTTP/1.0 user
agentto an internal proxy code-named "fred", which uses HTTP/1.1 to forward the requestto a
public proxy at nowhere.com, which completes the request by forwarding it to the origin server at
www.ics.uci.edu. The request received by www.ics.uci.edu would then have the following Via
header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

The Upgrade header field is intended to provide a simple mechanism for transition from HTTP/1.1
to some other, incompatible protocol

Warning

The Warning general-header is used to carry additional information about the status or
transformation of a message which might not be reflected in the message. A response may carry
more than one Warning header.

Warning : warn-code SP warn-agent SP warn-text SP warn-date

Client Request Headers

Accept

The Accept request-header field can be used to specify certain media types which are acceptable
for the response. Following is the general syntax:

Accept: type/subtype [g=qvalue]

Multiple media types can be listed separated by commas and the optional qvalue represents an
acceptable quality level for accept types on a scale of 0 to 1. Following is an example:

Accept: text/plain; gq=0.5, text/html, text/x-dvi; g=0.8, text/x-c

This would be interpreted as text/html and text/x-c are the preferred media types, butif they do
not exist, then send the text/x-dvi entity, and if that does not exist, send the text/plain entity.

Accept-Charset

The Accept-Charset request-header field can be used to indicate what character sets are
acceptable for the response. Following is the general syntax:

Accept-Charset: character_set [g=qvalue]

Multiple character sets can be listed separated by commas and the optional qvalue represents an
acceptable quality level for nonpreferred character sets on a scale of 0 to 1. Following is an
example:

Accept-Charset: iso-8859-5, unicode-1-1; g=0.8

The special value "*", if present in the Accept-Charset field, matches every character setand if no
Accept-Charset header is present, the default is that any character set is acceptable.

Accept-Encoding

The Accept-Encoding request-header field is similar to Accept, but restricts the content-codings
that are acceptable in the response. Following is the general syntax:

Accept-Encoding: encoding types

Following are examples:
Accept-Encoding: compress, gzip
Accept-Encoding:
Accept-Encoding: *

Accept-Encoding: compress;q=0.5, gzip;g=1.0
Accept-Encoding: gzip;g=1.0, identity; =0.5, *;q=0

Accept-Language

The Accept-Language request-header field is similar to Accept, but restricts the set of natural
languages that are preferred as a response to the request. Following is the general syntax:

Accept-Language: language [qg=qvalue]

Multiple languages can be listed separated by commas and the optional qvalue represents an
acceptable quality level for nonpreferred languages on a scale of 0 to 1. Following is an example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

Authorization

The Authorization request-header field value consists of credentials containing the authentication
information of the user agent for the realm of the resource being requested. Following is the
general syntax:

Authorization : credentials

The HTTP/1.0 specification defines the BASIC authorization scheme, where the authorization
parameter is the string of username:password encoded in base 64. Following is an example:

Authorization: BASIC Z3V1c3Q6Z3V1c3QxMjM=
The value decodes into is guest:guestl23 where guest is user ID and guestl23 is the password.

Cookie

The Cookie request-header field value contains a name/value pair of information stored for that
URL. Following is the general syntax:

Cookie: name=value
Multiple cookies can be specified separated by semicolons as follows:

Cookie: namel=valuel;name2=value2;name3=value3

Expect

The Expect request-header field is used to indicate that particular server behaviors are required
by the client. Following is the general syntax:

Expect : 100-continue | expectation-extension

If @ server receives a request containing an Expect field that includes an expectation-extension
that it does not support, it must respond with a 417 ExpectationFailed status.

From

The From request-header field contains an Internet e-mail address for the human user who

controls the requesting user agent. Following is a simple example:

From: webmaster@w3.org

This header field may be used for logging purposes and as a means for identifying the source of
invalid or unwanted requests.

Host

The Host request-header field is used to specify the Internet host and port number of the resource
being requested. Following is the general syntax:

Host : "Host" ":" host [":" port] ;

A host without any trailing port information implies the default port, which is 80. For example, a
request on the origin server for http://www.w3.org/pub/WWW/ would be:

GET /pub/WWW/ HTTP/1.1
Host: www.w3.0rg

If-Match

The If-Match request-header field is used with a method to make it conditional. This header
request the server to perform the requested method only if given value in this tag matches the
given entity tags represented by ETag. Following is the general syntax:

If-Match : entity-tag

An asterisk * matches any entity, and the transaction continues only if the entity exists. Following
are possible examples:

If-Match: "xyzzy"
If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-Match: *

If none of the entity tags match, or if "*" is given and no current entity exists, the server must not
perform the requested method, and must return a 412 PreconditionFailed response.

If-Modified-Since

The If-Modified-Since request-header field is used with a method to make it conditional. If the
requested URL has not been modified since the time specified in this field, an entity will not be
returned from the server; instead, a 304 notmodified response will be returned without any message-
body. Following is the general syntax:

If-Modified-Since : HTTP-date

An example of the field is:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If none of the entity tags match, or if "*" is given and no current entity exists, the server must not
perform the requested method, and must return a 412 PreconditionFailed response.

If-None-Match
The If-None-Match request-header field is used with a method to make it conditional. This header
request the server to perform the requested method only if one of the given value in this tag

matches the given entity tags represented by ETag. Following is the general syntax:

If-None-Match : entity-tag

An asterisk * matches any entity, and the transaction continues only if the entity does not exist.
Following are possible examples:

If-None-Match: "xyzzy"
If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-None-Match: *

If-Range

The If-Range request-header field can be used with a conditional GET to request only the portion
of the entity that is missing, if it has not been changed, and the entire entity if it has changed.
Following is the general syntax:

If-Range : entity-tag | HTTP-date

Either an entity tag or a date can be used to identify the partial entity already received. For
example:

If-Range: Sat, 29 Oct 1994 19:43:31 GMT

Here if the document has not been modified since the given date, the server returns the byte
range given by the Range header otherwise, it returns all of the new document.

If-Unmodified-Since

The If-Unmodified-Since request-header field is used with a method to make it conditional.
Following is the general syntax:

If-Unmodified-Since : HTTP-date

If the requested resource has not been modified since the time specified in this field, the server
should perform the requested operation as if the If-Unmodified-Since header were not present. For
example:

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If the request normally would result in anything other than a 2xx or 412 status, the If-Unmodified-
Since header should be ignored.

Max-Forwards

The Max-Forwards request-header field provides a mechanism with the TRACE and OPTIONS
methods to limit the number of proxies or gateways that can forward the request to the next
inbound server. Following is the general syntax:

Max-Forwards : n

The Max-Forwards value is a decimal integer indicating the remaining number of times this
request message may be forwarded. This is useful for debugging with the TRACE method, avoiding
infinite loops. For example:

Max-Forwards : 5

The Max-Forwards header field may be ignored for all other methods defined in HTTP
specification.

Proxy-Authorization

The Proxy-Authorization request-header field allows the client to identify itself oritsuser to a proxy
which requires authentication. Following is the general syntax:

Proxy-Authorization : credentials

The Proxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

Range

The Range request-header field specifies the partial ranges of the content requested from the
document. Following is the general syntax:

Range: bytes-unit=first-byte-pos "-" [last-byte-pos]

The first-byte-pos value in a byte-range-spec gives the byte-offset of the first byte in a range. The
last-byte-pos value gives the byte-offset of the last byte in the range; that s, the byte positions
specified are inclusive. You can specify a byte-unit as bytes Byte offsets start at zero. Following are
a simple examples:

- The first 500 bytes
Range: bytes=0-499

- The second 500 bytes
Range: bytes=500-999

- The final 500 bytes
Range: bytes=-500

- The first and last bytes only
Range: bytes=0-0, -1

Multiple ranges can be listed, separated by commas. If the first digit in the comma-separated byte
ranges is missing, the range is assumed to count from the end of the document. If the second digit
is missing, the range is byte n to the end of the document.

Referer

The Referer request-header field allows the client to specify the address URI of the resource from
which the URL has been requested. Following is the general syntax:

Referer : absoluteURI | relativeURI

Following is a simple example:

Referer: http://www.tutorialspoint.org/http/index.htm

If the field value is a relative URI, it should be interpreted relative to the Request-URI.

TE

The TE request-header field indicates what extension transfer-coding it is willing to accept in the
response and whether or not it is willing to accept trailer fields in a chunked transfer-coding.
Following is the general syntax:

TE : t-codings

The presence of the keyword "trailers" indicates that the client is willing to accept trailer fields in a
chunked transfer-coding and it is specified either of the ways:

TE: deflate
TE:
TE: trailers, deflate;q=0.5

If the TE field-value is empty or if no TE field is present, the only transfer-coding is chunked. A
message with no transfer-coding is always acceptable.

User-Agent

The User-Agent request-header field contains information about the user agent originating the
request. Following is the general syntax:

User -Agent : product | comment

Example:

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Server Response Headers

Accept-Ranges

The Accept-Ranges response-header field allows the server to indicate its acceptance of range
requests for a resource. Following is the general syntax:

Accept-Ranges : range-unit | none

For example a server that accept byte-range requests may send
Accept-Ranges: bytes

Servers that do not accept any kind of range request for a resource may send:
Accept—Ranges: none

This will advise the client not to attempt a range request.

Age

The Age response-header field conveys the sender's estimate of the amount of time since the
response oritsrevalidation was generated at the origin server. Following is the general syntax:

Age : delta-seconds

Age values are non-negative decimal integers, representing time in seconds. Following is a simple
example:

Age: 1030

An HTTP/1.1 server that includes a cache must include an Age header field in every response
generated from its own cache.

ETag

The ETag response-header field provides the current value of the entity tag for the requested
variant. Following is the general syntax:

ETag : entity-tag
Following are simple examples:

ETag: "xyzzy"
ETag: W/'"xyzzy"
ETag: ""

Location

The Location response-header field is used to redirect the recipient to a location other than the
Request-URI for completion. Following is the general syntax:

Location : absoluteURI

Following is a simple example:

Location: http://www.tutorialspoint.org/http/index.htm

The Content-Location header field differs from Location in that the Content-Location identifies the
original location of the entity enclosed in the request.

Proxy-Authenticate

The Proxy-Authenticate response-header field must be included as part of a 407
ProxyAuthenticationRequired response. Following is the general syntax:

Proxy-Authenticate : challenge

Retry-After

The Retry-After response-header field can be used with a 503 ServiceUnavailable response to indicate
how long the service is expected to be unavailable to the requesting client. Following is the
general syntax:

Retry-After : HTTP-date | delta-seconds

Following are two simple examples:

Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
Retry-After: 120

In the latter example, the delay is 2 minutes.

Server

The Server response-header field contains information about the software used by the origin
server to handle the request. Following is the general syntax:

Server : product | comment

Following is a simple example:

Server: Apache/2.2.14 (Win32)

If the response is being forwarded through a proxy, the proxy application must not modify the
Server response-header.

Set-Cookie

The Set-Cookie response-header field contains a name/value pair of information to retain for this
URL. Following is the general syntax:

Set-Cookie: NAME=VALUE; OPTIONS

Set-Cookie response header comprises the token Set-Cookie:, followed by a comma-separated list
of one or more cookies. Here are possible values you can specify as options:

S.N. Options and Description

1 Comment=comment
This option can be used to specify any comment associated with the cookie.

2 Domain=domain
The Domain attribute specifies the domain for which the cookie is valid.

3 Expires=Date-time
The date the cookie will expire. If this is blank, the cookie will expire when the visitor quits
the browser

4 Path=path
The Path attribute specifies the subset of URLs to which this cookie applies.

5 Secure
This instructs the user agent to return the cookie only under a secure connection.
Following is an example of a simple cookie header generated by the server:

Set-Cookie: namel=valuel, name2=value2; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Vary

The Vary response-header field specifies that the entity has multiple sources and may therefore
vary according to specified list of request headers. Following is the general syntax:

Vary : field-name

You can specify multiple headers separated by commas and a value of asterisk "*" signals that
unspecified parameters not limited to the request-headers. Following is a simple example:

Vary: Accept-Language, Accept-Encoding
Here field names are case-insensitive.
WWW-Authenticate
The WWW-Authenticate response-header field must be included in 401 Unauthorized response
messages. The field value consists of at least one challenge that indicates the authentication

schemes and parameters applicable to the Request-URI. Following is the general syntax:

WWW-Authenticate : challenge

WWW- Authenticate field value as it might contain more than one challenge, or if more than one
WWW-Authenticate header field is provided, the contents of a challenge itself can contain a
comma-separated list of authentication parameters. Following is a simple example:

WWW-Authenticate: BASIC realm="Admin"

Entity Headers
Allow

The Allow entity-header field lists the set of methods supported by the resource identified by the
Request-URI. Following is the general syntax:

Allow : Method

You can specify multiple method separated by commas. Following is a simple example:

Allow: GET, HEAD, PUT

This field cannot prevent a client from trying other methods.
Content-Encoding

The Content-Encoding entity-header field is used as a modifier to the media-type. Following is the
general syntax:

Content-Encoding : content-coding

The content-coding is a characteristic of the entity identified by the Request-URI. Following is a
simple example:

Content-Encoding: gzip

If the content-coding of an entity in a request message is not acceptable to the origin server, the
server should respond with a status code of 415 UnsupportedMediaType.

Content-Language

The Content-Language entity-header field describes the natural languages of the intended
audience for the enclosed entity. Following is the general syntax:

Content-Language : language-tag

Multiple languages may be listed for content that is intended for multiple audiences. Following is a
simple example:

Content-Language: mi, en

The primary purpose of Content-Language is to allow a user to identify and differentiate entities
according to the user's own preferred language.

Content-Length
The Content-Length entity-header field indicates the size of the entity-body, in decimal number of
OCTETs, sent to the recipient or, in the case of the HEAD method, the size of the entity-body that

would have been sent had the request been a GET. Following is the general syntax:

Content-Length : DIGITS

Following is a simple example:

Content-Length: 3495
Any Content-Length greater than or equal to zero is a valid value.

Content-Location

The Content-Location entity-header field may be used to supply the resource location for the entity
enclosed in the message when that entity is accessible from a location separate from the
requested resource's URI. Following is the general syntax:

Content-Location: absoluteURI | relativeURI

Following is a simple example:

Content-Location: http://www.tutorialspoint.org/http/index.htm

The value of Content-Location also defines the base URI for the entity.

Content-MD5

The Content-MD5 entity-header field may be used to supply an MD5 digest of the entity, for
checking the integrity of the message upon receipt. Following is the general syntax:

Content-MD5 : md5-digest using base64 of 128 bit MD5 digest as per RFC 1864

Following is a simple example:

Content-MD5 : 8c2d46911f3f5a326455f0ed7a8ed3b3

The MD5 digest is computed based on the content of the entity-body, including any content-coding
that has been applied, but not including any transfer-encoding applied to the message-body.

Content-Range

The Content-Range entity-header field is sent with a partial entity-body to specify where in the full
entity-body the partial body should be applied. Following is the general syntax:

Content-Range : bytes-unit SP first-byte-pos "-" last-byte-pos

Examples of byte-content-range-spec values, assuming that the entity contains a total of 1234
bytes:

- The first 500 bytes:
Content-Range : bytes 0-499/1234

- The second 500 bytes:
Content-Range : bytes 500-999/1234

- All except for the first 500 bytes:
Content-Range : bytes 500-1233/1234

- The last 500 bytes:
Content-Range : bytes 734-1233/1234

When an HTTP message includes the content of a single range, this content is transmitted with a
Content-Range header, and a Content-Length header showing the number of bytes actually
transferred. For example,

HTTP/1.1 206 Partial content

Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-Range: bytes 21010-47021/47022
Content-Length: 26012

Content-Type: image/gif

Content-Type

The Content-Type entity-header field indicates the media type of the entity-body sent to the
recipient or, in the case of the HEAD method, the media type that would have been sent had the
request been a GET. Following is the general syntax:

Content-Type : media-type
Following is an example:

Content-Type: text/html; charset=IS0-8859-4

Expires

The Expires entity-header field gives the date/time after which the response is considered stale.
Following is the general syntax:

Expires : HTTP-date

Following is an example:

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Last-Modified

The Last-Modified entity-header field indicates the date and time at which the origin server
believes the variant was last modified. Following is the general syntax:

Last-Modified: HTTP-date
Following is an example:

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

HTTP - CACHING

HTTP is typically used for distributed information systems, where performance can be improved by
the use of response caches. The HTTP/1.1 protocol includes a number of elements intended to
make caching work.

The goal of caching in HTTP/1.1 is to eliminate the need to send requests in many cases, and to
eliminate the need to send full responses in many other cases.

The basic cache mechanisms in HTTP/1.1 are implicit directives to caches where server-specifies
expiration times and validators. We use the Cache-Control header for this purpose.

The Cache-Control header allows a client or server to transmit a variety of directives in either
requests or responses. These directives typically override the default caching algorithms. The
caching directives are specified in a comma-separated list. For example:

Cache-control: no-cache

There are following important cache request directives which can be used by the clientin its HTTP
request:

S.N. Cache Request Directive and Description

1 no-cache
A cache must not use the response to satisfy a subsequent request without successful
revalidation with the origin server.

2 no-store
The cache should not store anything about the client request or server response.

3 max-age = seconds
Indicates that the client is willing to accept a response whose age is no greater than the
specified time in seconds.

4 max-stale [= seconds]
Indicates that the client is willing to accept a response that has exceeded its expiration
time. If seconds are given, it must not be expired by more than that time.

5 min-fresh = seconds

Indicates that the client is willing to accept a response whose freshness lifetime is no less
than its current age plus the specified time in seconds.

no-transform
Do not convert the entity-body.

only-if-cached
Do notretrieve new data. The cache can send a documentonly if itis in the cache, and
should not contact the origin-server to see if a newer copy exists.

There are following important cache response directives which can be used by the server in its
HTTP response:

S.N.

1

Cache Request Directive and Description

public
Indicates that the response may be cached by any cache.

private
Indicates that all or part of the response message is intended for a single user and must
not be cached by a shared cache.

no-cache
A cache must not use the response to satisfy a subsequent request without successful
revalidation with the origin server.

no-store
The cache should not store anything about the client request or server response.

no-transform
Do not convert the entity-body.

must-revalidate
The cache must verify the status of stale documents before using it and expired one
should not be used.

proxy-revalidate
The proxy-revalidate directive has the same meaning as the must- revalidate directive,
except that it does not apply to non-shared user agent caches.

max-age = seconds
Indicates that the client is willing to accept a response whose age is no greater than the
specified time in seconds.

s-maxage = seconds

The maximum age specified by this directive overrides the maximum age specified by
either the max-age directive or the Expires header. The s-maxage directive is always
ignored by a private cache.

HTTP - URL ENCODING

HTTP URLs can only be sent over the Internet using the ASCII character-set, which often contain
characters outside the ASCII set. So these unsafe characters must be replaced with a % followed
by two hexadecimal digits.

Following table shows ASCIl symbol of the character and its equal Symbol and finally its
replacement which can be used in URL before passing it to the server:

ASCII
< 32

Symbol Replacement

Encode with %xx where xx is the hexadecimal representation of the

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

~

© 00 N o Uu b~ W N BB O

character.
+ or %20
%21
%22

%23

%24

%25

%26

%27

%28

%29

*

%2B
%2C

%2F

© 00 N o u b~ W N B

%3A
%3B
%3C
%3D
%3E
%3F
%40

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

%5B

91

%5C

92

%5D

93

%5E

94

95

%60

96

97

98

99

100

101 e e

102 f f
103 g g
104 h h
105 i i
106 J J
107 k k
108 I I
109 m m
110 n n
111 o] o]
112 p p
113 q q
114 r r
115 S S
116 t t
117 u u
118 Y \Y
119 w w
120 X X
121 y y
122 z z
123 { %7B
124 | %7C
125 } %7D
126 ~ %7E
127 %7F
> Encode with %xx where xx is the hexadecimal representation of the
127 character

HTTP - SECURITY

HTTP is used for a communication over the internet, so application developers, information
providers, and users should be aware of the security limitations in HTTP/1.1. This discussion does
not include definitive solutions to the problems mentioned here but it does make some
suggestions for reducing security risks.

Personal Information leakage

HTTP clients are often privy to large amounts of personal information such as the user's name,
location, mail address, passwords, encryption keys, etc. So you should be very careful to prevent
unintentional leakage of this information via the HTTP protocol to other sources.

e All the confidential information should be stored at server side in encrypted form.

e Revealing the specific software version of the server might allow the server machine to
become more vulnerable to attacks against software that is known to contain security holes.

e Proxies which serve as a portal through a network firewall should take special precautions
regarding the transfer of header information that identifies the hosts behind the firewall.

e The information sentin the From field might conflict with the user's privacy interests or their
site's security policy, and hence it should not be transmitted without the user being able to
disable, enable, and modify the contents of the field.

¢ Clients should notinclude a Referer header field in a non - secure HTTP request if the referring
page was transferred with a secure protocol.

e Authors of services which use the HTTP protocol should not use GET based forms for the
submission of sensitive data, because this will cause this data to be encoded in the Request-
URI

File and path names based attack

The document should be restricted to the documents returned by HTTP requests to be only those
that were intended by the server administrators.

For example, UNIX, Microsoft Windows, and other operating systems use .. as a path component to
indicate a directory level above the current one. On such a system, an HTTP server MUST disallow
any such construct in the Request-URI if it would otherwise allow access to a resource outside
those intended to be accessible via the HTTP server.

DNS Spoofing

Clients using HTTP rely heavily on the Domain Name Service, and are thus generally prone to
security attacks based on the deliberate mis-association of IP addresses and DNS names. So clients
need to be cautious in assuming the continuing validity of an IP number/DNS name association.

If HTTP clients cache the results of host name lookups in order to achieve a performance
improvement, they must observe the TTL information reported by DNS. If HTTP clients do not
observe this rule, they could be spoofed when a previously-accessed server's IP address changes.

Location Headers and Spoofing

If a single server supports multiple organizations that do not trust one another, then it MUST check
the values of Location and Content- Location headers in responses that are generated under
control of said organizations to make sure that they do not attempt to invalidate resources over
which they have no authority.

Authentication Credentials

Existing HTTP clients and user agents typically retain authentication information indefinitely.
HTTP/1.1. does not provide a method for a server to direct clients to discard these cached
credentials which is a big security risk.

There are a number of work- arounds to parts of this problem, and so its is recommended to make
the use of password protection in screen savers, idle time-outs, and other methods which mitigate
the security problems inherent in this problem.

Proxies and Caching

HTTP proxies are men-in-the-middle, and represent an opportunity for man-in-the-middle attacks.
Proxies have access to security-related information, personal information about individual users
and organizations, and proprietary information belonging to users and content providers.

Proxy operators should protect the systems on which proxies run as they would protect any system
that contains or transports sensitive information.

Caching proxies provide additional potential vulnerabilities, since the contents of the cache
represent an attractive target for malicious exploitation. Therefore, cache contents should be
protected as sensitive information.

HTTP - MESSAGE EXAMPLES

Example 1

HTTP request to fetch hello.htm page from the web server running on tutorialspoint.com
Client request

GET /hello.htm HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
Content-Length: 88

Content-Type: text/html

Connection: Closed

<html1>

<body>

<hi>Hello, World!</h1>
</body>

</htm1l>

Example 2

HTTP request to fetch t.html page which does not exist on the web server running on
tutorialspoint.com

Client request

GET /t.html HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 404 Not Found

Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)
Content-Length: 230

Content-Type: text/html; charset=iso0-8859-1
Connection: close

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>

<head>
<title>404 Not Found</title>
</head>
<body>
<hi>Not Found</hi>
<p>The requested URL /t.html was not found on this server.</p>
</body>
</htm1>

Example 3

HTTP request to fetch hello.htm page from the web server running on tutorialspoint.com, but
request goes with wrong HTTP version:

Client request

GET /hello.htm HTTP1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 400 Bad Request

Date: Sun, 18 Oct 2012 10:36:20 GMT
Server: Apache/2.2.14 (Win32)
Content-Length: 230

Content-Type: text/html; charset=iso0-8859-1
Connection: close

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html1>
<head>
<title>400 Bad Request</title>
</head>
<body>
<hi>Bad Request</h1>
<p>Your browser sent a request that this server could not understand.<p>
<p>The request line contained invalid characters following the protocol string.<p>
</body>
</htm1>

Example 4

HTTP request to post form data to process.cgi CGIl page on a web server running on
tutorialspoint.com. Server returns passed name after setting them as cookies:

Client request

POST /cgi-bin/process.cgi HTTP/1.1

User -Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: 60

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

first=zZara&last=Ali

Server response

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 88

Set-Cookie: first=Zara, last=Ali;domain=tutorialspoint.com;Expires=Mon, 19-
Nov-2010 04:38:14 GMT;Path=/

Content-Type: text/html

Connection: Closed

<html>

<body>

<hi>Hello Zara Ali</hi1>
</body>

</htm1>

Processing math: 100%

