- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How many terms of the AP: $ -15,-13,-11,- $ are needed to make the sum $ -55 $ ? Explain the reason for double answer.
Given:
Given A.P. is \( -15,-13,-11,...... \)
To do:
We have to find the number of terms that must be taken so that their sum is \( -55 \).
Solution:
Let the number of terms be \( n \).
First term \( (a)=-15 \)
Common difference \( (d)=-13-(-15)=-13+15=2 \)
We know that,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow -55=\frac{n}{2}[2 \times (-15)+(n-1) \times2]$
\( \Rightarrow -55=\frac{n}{2}[-30+2n-2] \)
\( \Rightarrow -110=n(2n-32) \)
\( \Rightarrow 2n^{2}-32n+110=0) \)
\( \Rightarrow n^{2}-16 n+55=0 \)
\( \Rightarrow n^{2}-11 n-5 n+55=0 \)
\( \Rightarrow n(n-11)-5(n-11)=0 \)
\( \Rightarrow(n-11)(n-5)=0 \)
This implies,
\( n-11=0 \) or \( n-5=0 \)
\( n=11 \) or \( n=5 \)
The number of terms needed to make the sum $-55$ is 5 or 11.
Advertisements