

1

TABLE OF CONTENTS ... 1

OVERVIEW .. 3
AUDIENCE ... 3
PREREQUISITE ... 3

HAZELCAST – INTRODUCTION .. 4

DISTRIBUTED IN-MEMORY DATA GRID ... 4
BENEFITS OF HAZELCAST .. 4
HAZELCAST VS OTHER CACHES & KEY-VALUE STORES .. 5
HAZELCAST VS REDIS ... 5

HAZELCAST – SETUP ... 6

INSTALLING HAZELCAST .. 6
POM FOR THE TUTORIAL ... 7

HAZELCAST – FIRST APPLICATION ... 9

SINGLE INSTANCE .. 9
CLUSTER: MULTI INSTANCE .. 11

HAZELCAST – CONFIGURATION... 13

XML CONFIGURATION.. 13
PROGRAMMATIC CONFIGURATION ... 15
LOGGING.. 16
VARIABLES .. 18

HAZELCAST – SETTING UP MULTI-NODE INSTANCES ... 20

MULTICAST ... 20
TCP/IP ... 21

HAZELCAST – DATA STRUCTURES ... 24

IATOMICLONG ... 24
Initializing and Setting value to IAtomicLong ... 24
Synchronization across JVMs .. 25
Useful Methods ... 26

ILOCK .. 26
Acquiring and Releasing Lock .. 27
Using tryLock instead of Lock ... 28
Good practices and know-hows ... 29
Useful Methods ... 29

ISEMAPHORE .. 30
Acquiring Permit, Releasing Permit ... 30

ICOUNTDOWNLATCH ... 32
Setting Latch & Awaiting Latch ... 32

Table of Contents

2

Useful Methods ... 33
ISET ... 34

Adding elements and reading elements .. 34
Useful Methods ... 35

ILIST .. 36
Adding elements and reading elements .. 36
Useful Methods ... 38

IQUEUE ... 38
Adding elements and reading elements .. 38
Useful Methods ... 40

IMAP .. 41
Creation & Read/Write ... 41
Useful Methods ... 42
Eviction .. 43
Partitioned data and High Availability ... 44
Hashcode and Equals ... 46
EntryProcessor ... 49

HAZELCAST – CLIENT .. 52

LOAD BALANCING.. 54
FAILOVER .. 54

HAZELCAST – SERIALIZATION ... 56

JAVA SERIALIZATION ... 56
JAVA EXTERNALIZABLE .. 59

HAZELCAST – SPRING INTEGRATION .. 64

HAZELCAST – MONITORING.. 69

MONITORING HAZELCAST VIA REST API .. 69
JMX MONITORING ... 71

HAZELCAST – MAP REDUCE & AGGREGATIONS ... 73

HAZELCAST – COLLECTION LISTENER .. 77

HAZELCAST – COMMON PITFALLS & PERFORMANCE TIPS ... 80

HAZELCAST QUEUE ON SINGLE MACHINE .. 80
USING MAP'S SET METHOD INSTEAD OF PUT .. 80
HAZELCAST USES SERIALIZED DATA FOR OBJECT COMPARISON ... 81
USE MONITORING .. 81
HOMOGENEOUS CLUSTER ... 81

3

Overview

Hazelcast is a distributed IMDG, i.e. in-memory data grid, which is used widely across industries

by companies like Nissan, JPMorgan, Tmobile, to name a few.

It offers various rich features including distributed cache to store key-value pairs, constructs to

create and use distributed data structure, and a way to distribute your computation and queries

among nodes in a cluster.

Hazelcast is a very useful tool in developing applications that require high scalability,

performance, and availability.

Audience

This tutorial deep dives into various features that make Hazelcast a very useful tool. It is directed

towards software professionals who want to develop highly scalable and performant applications.

Post this tutorial, you would have intermediate knowledge of Hazelcast and its usage.

Prerequisite

To make the most of this tutorial, you should have working knowledge of Data Structures, while

having some exposure to Java is preferable.

4

Distributed In-memory Data Grid

A data grid is a superset to distributed cache. Distributed cache is typically used only for storing
and retrieving key-value pairs which are spread across caching servers. However, a data grid,
apart from supporting storage of key-value pairs, also supports other features, for example,

 It supports other data structures like locks, semaphores, sets, list, and queues.

 It provides a way to query the stored data by rich querying languages, for example, SQL.

 It provides a distributed execution engine which helps to operate on the data in parallel.

Benefits of Hazelcast

 Support multiple data structures: Hazelcast supports the usage of multiple data
structures along with Map. Some of the examples are Lock, Semaphore, Queue, List, etc.

 Fast R/W access: Given that all the data is in-memory, Hazelcast offers very high-speed
data read/write access.

 High availability: Hazelcast supports the distribution of data across machines along with
additional support for backup. This means that the data is not stored on a single machine.
So, even if a machine goes down, which occurs frequently in a distributed environment,
the data is not lost.

 High Performance: Hazelcast provides constructs which can be used to distribute the
workload/computation/query among multiple worker machines. This means a
computation/query uses resources from multiple machines which reduces the execution
time drastically.

 Easy to use: Hazelcast implements and extends a lot of java.util.concurrent

constructs which make it very easy to use and integrate with the code. Configuration to
start using Hazelcast on a machine just involves adding the Hazelcast jar to our

classpath.

Hazelcast – Introduction

5

Hazelcast vs Other Caches & Key-Value stores

Comparing Hazelcast with other caches like Ehcache, Guava, and Caffeine may not be very

useful. It is because, unlike other caches, Hazelcast is a distributed cache, that is, it spreads the

data across machines/JVM. Although Hazelcast can work very well on single JVM as well,

however, it is more useful is a distributed environment.

Similarly comparing it with Databases like MongoDB is also of not much use. This is because,

Hazelcast mostly stores data in memory (although it also supports writing to disk). So, it offers

high R/W speed with the limitation that data needs to be stored in memory.

Hazelcast also supports caching/storing complex data types and provides an interface to query

them, unlike other data stores.

A comparison, however, can be made with Redis which also offers similar features.

Hazelcast vs Redis

In terms of features, both Redis and Hazelcast are very similar. However, following are the points
where Hazelcast scores over Redis:

 Built for Distributed Environment from ground-up: Unlike Redis, which started as

single machine cache, Hazelcast, from the very beginning, has been built for distributed
environment.

 Simple cluster scale in/out: Maintaining a cluster where nodes are added or removed is
very simple in case of Hazelcast, for example, adding a node is a matter of launching the
node with the required configuration. Removing a node requires simple shutting down of
the node. Hazelcast automatically handles partitioning of data, etc. Having the same setup
for Redis and performing the above operation requires more precaution and manual
efforts.

 Less resources needs to support failover: Redis follows master-slave approach. For
failover, Redis requires additional resources to setup Redis Sentinel. These Sentinel
nodes are responsible to elevate a slave to master if the original master node goes down.
In Hazelcast, all nodes are treated equal, failure of a node is detected by other nodes. So,
the case of a node going down is handled pretty transparently and that too without any
additional set of monitoring servers.

 Simple Distributed Compute: Hazelcast, with its EntryProcessor, provides a simple
interface to send the code to the data for parallel processing. This reduces data transfer
over the wire. Redis also supports this, however, achieving this requires one to be aware
of Lua scripting which adds additional learning curve.

6

Hazelcast requires Java 1.6 or above. Hazelcast can also be used with .NET, C++, or other JVM
based languages like Scala and Clojure. However, for this tutorial, we are going to use Java 8.

Before we move on, following is the project setup that we will use for this tutorial.

hazelcast/

├── com.example.demo/

│ ├── SingleInstanceHazelcastExample.java

│ ├── MultiInstanceHazelcastExample.java

│ ├── Server.java

│ └──

├── pom.xml

├── target/

├── hazelcast.xml

├── hazelcast-multicast.xml

├── ...

For now, we can just create the package, i.e., com.example.demo inside the hazelcast directory.

Then, just cd to that directory. We will look at other files in the upcoming sections.

Installing Hazelcast

Installing Hazelcast simply involves adding a JAR file to your build file. POM file or build.gradle

based on whether you are using Maven or Gradle respectively.

If you are using Gradle, adding the following to build.gradle file would be enough:

dependencies {

compile "com.hazelcast:hazelcast:3.12.12”

}

Hazelcast – Setup

7

POM for the tutorial

We will use the following POM for our tutorial:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>1.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>demo</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>demo</name>

 <description>Demo project for Hazelcast</description>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <dependencies>

 <dependency>

 <groupId>com.hazelcast</groupId>

 <artifactId>hazelcast</artifactId>

 <version>3.12.12</version>

 </dependency>

 </dependencies>

 <!-- Below build plugin is not needed for Hazelcast, it is being used only

to created a shaded JAR so that -->

 <!-- using the output i.e. the JAR becomes simple for testing snippets in

the tutorial-->

 <build>

8

 <plugins>

 <plugin>

 <!-- Create a shaded JAR and specify the entry point class-->

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 <version>3.2.4</version>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>shade</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

9

Hazelcast can be run in isolation (single node) or multiple nodes can be run to form a cluster. Let

us first try starting a single instance.

Single Instance

Now, let us try creating and using a single instance of Hazelcast cluster. For that, we will create

SingleInstanceHazelcastExample.java file.

package com.example.demo;

import java.util.Map;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

public class SingleInstanceHazelcastExample {

 public static void main(String... args){

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 System.out.println(“Hello world”);

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

Hazelcast – First Application

10

Now let’s compile the code and execute it:

mvn clean install

java -cp target/demo-0.0.1-SNAPSHOT.jar

com.example.demo.SingleInstanceHazelcastExample

If you execute above code, the output would be:

Hello World

However, more importantly, you will also notice log lines from Hazelcast which signifies that

Hazelcast has started. Since we are running this code only once, i.e., a single JVM, we would

only have one member in our cluster.

Jan 30, 2021 10:26:51 AM com.hazelcast.config.XmlConfigLocator

INFO: Loading 'hazelcast-default.xml' from classpath.

Jan 30, 2021 10:26:51 AM com.hazelcast.instance.AddressPicker

INFO: [LOCAL] [dev] [3.12.12] Prefer IPv4 stack is true.

Jan 30, 2021 10:26:52 AM com.hazelcast.instance.AddressPicker

INFO: [LOCAL] [dev] [3.12.12] Picked [localhost]:5701, using socket

ServerSocket[addr=/0:0:0:0:0:0:0:0,localport=5701], bind any local is true

Jan 30, 2021 10:26:52 AM com.hazelcast.system

...

Members {size:1, ver:1} [

 Member [localhost]:5701 - 9b764311-9f74-40e5-8a0a-85193bce227b this

]

Jan 30, 2021 10:26:56 AM com.hazelcast.core.LifecycleService

INFO: [localhost]:5701 [dev] [3.12.12] [localhost]:5701 is STARTED

...

You will also notice log lines from Hazelcast at the end which signifies

Hazelcast was shutdown:

INFO: [localhost]:5701 [dev] [3.12.12] Hazelcast Shutdown is completed in 784 ms.

11

Jan 30, 2021 10:26:57 AM com.hazelcast.core.LifecycleService

INFO: [localhost]:5701 [dev] [3.12.12] [localhost]:5701 is SHUTDOWN

Cluster: Multi Instance

Now, let's create MultiInstanceHazelcastExample.java file (as below) which would be used

for multi-instance cluster.

package com.example.demo;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

public class MultiInstanceHazelcastExample {

 public static void main(String... args) throws InterruptedException{

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //print the socket address of this member and also the size of the cluster

 System.out.println(String.format("[%s]: No. of hazelcast members: %s",

 hazelcast.getCluster().getLocalMember().getSocketAddress(),

 hazelcast.getCluster().getMembers().size()));

 // wait for the member to join

 Thread.sleep(30000);

 //perform a graceful shutdown

 hazelcast.shutdown();

 }

}

12

Let’s execute the following command on two different shells:

java -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.MultiInstanceHazelcastExample

You would notice on the 1st shell that a Hazelcast instance has been started and a member has

been assigned. Note the last line of output which says that there is a single member using port

5701.

Jan 30, 2021 12:20:21 PM com.hazelcast.internal.cluster.ClusterService

INFO: [localhost]:5701 [dev] [3.12.12]

Members {size:1, ver:1} [

 Member [localhost]:5701 - b0d5607b-47ab-47a2-b0eb-6c17c031fc2f this

]

Jan 30, 2021 12:20:21 PM com.hazelcast.core.LifecycleService

INFO: [localhost]:5701 [dev] [3.12.12] [localhost]:5701 is STARTED

[/localhost:5701]: No. of hazelcast members: 1

You would notice on the 2nd shell that a Hazelcast instance has joined the 1st instance. Note
the last line of the output which says that there are now two members using port 5702.

INFO: [localhost]:5702 [dev] [3.12.12]

Members {size:2, ver:2} [

 Member [localhost]:5701 - b0d5607b-47ab-47a2-b0eb-6c17c031fc2f

 Member [localhost]:5702 - 037b5fd9-1a1e-46f2-ae59-14c7b9724ec6 this

]

Jan 30, 2021 12:20:46 PM com.hazelcast.core.LifecycleService

INFO: [localhost]:5702 [dev] [3.12.12] [localhost]:5702 is STARTED

[/localhost:5702]: No. of hazelcast members: 2

13

Hazelcast supports programmatic as well as XML-based configuration. However, it is the XML

configuration which is heavily used in production, given its ease of use. But XML configuration

internally uses the Programmatic configuration.

XML Configuration

The hazelcast.xml is where these configurations need to be placed. The file is searched for in

the following location (in same order) and is chosen from the first available location:

 Passing the location of the XML to the JVM via the system property -

Dhazelcast.config=/path/to/hazelcast.xml

 hazelcast.xml in the current working directory

 hazelcast.xml in the classpath

 default hazelcast.xml provided by Hazelcast

Once the XML is found, Hazelcast would load the required configuration from the XML file.

Let's try that out with an example. Create an XML in your current directory with the name
hazelcast.xml.

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- name of the instance -->

 <instance-name>XML_Hazelcast_Instance</instance-name>

</hazelcast>

Hazelcast – Configuration

14

The XML as of now only contains the schema location of the Hazelcast XML which is used for
validation. But more importantly, it contains the instance name.

Now create an XMLConfigLoadExample.java file with the following content.

package com.example.demo;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

public class XMLConfigLoadExample {

 public static void main(String... args) throws InterruptedException{

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //specified the name written in the XML file

 System.out.println(String.format("Name of the instance:

%s",hazelcast.getName()));

 //perform a graceful shutdown

 hazelcast.shutdown();

 }

}

Execute the above Java file with the following command:

java -Dhazelcast.config=hazelcast.xml -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.XMLConfigLoadExample

15

The output for above command would be:

Jan 30, 2021 1:21:41 PM com.hazelcast.config.XmlConfigLocator

INFO: Loading configuration hazelcast.xml from System property

'hazelcast.config'

Jan 30, 2021 1:21:41 PM com.hazelcast.config.XmlConfigLocator

INFO: Using configuration file at C:\Users\demo\eclipse-

workspace\hazelcast\hazelcast.xml

...

Members {size:1, ver:1} [

 Member [localhost]:5701 - 3d400aed-ddb9-4e59-9429-3ab7773e7e09 this

]

Name of cluster: XML_Hazelcast_Instance

As you see, Hazelcast loaded the configuration and printed the name which was specified in the

configuration (last line).

There are a whole lot of configuration options which can be specified in the XML. The complete

list can be found at:

https://github.com/hazelcast/hazelcast/blob/master/hazelcast/src/main/resources/hazelcast-full-

example.xml

We will see a few of these configurations as we move along the tutorial.

Programmatic Configuration

As stated earlier, XML configuration is ultimately done via programmatic configuration. So, let’s
try programmatic configuration for the same example which we saw in XML configuration. For
that, let’s create the ProgramaticConfigLoadExample.java file with the following content.

package com.example.demo;

import com.hazelcast.config.Config;

import com.hazelcast.core.Hazelcast;

16

import com.hazelcast.core.HazelcastInstance;

public class ProgramaticConfigLoadExample {

 public static void main(String... args) throws InterruptedException {

 Config config = new Config();

 config.setInstanceName("Programtic_Hazelcast_Instance");

 // initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance(config);

 // specified the name written in the XML file

 System.out.println(String.format("Name of the instance: %s",

hazelcast.getName()));

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

Let’s execute the code without passing any hazelcast.xml file by:

java -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.ProgramaticConfigLoadExample

The output of the above code is:

Name of the instance: Programtic_Hazelcast_Instance

Logging

To avoid dependencies, Hazelcast by default uses JDK based logging. But it also supports

logging via slf4j, log4j. For example, if we want to setup logging via for sl4j with logback, we can

update the POM to contain the following dependencies:

17

 <!-- contains both sl4j bindings and the logback core -->

 <dependency>

 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

 <version>1.2.3</version>

 </dependency>

Define a configuration logback.xml file and add it to your classpath, for example,
src/main/resources.

<configuration>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} -

%msg%n</pattern>

 </encoder>

 </appender>

 <root level="info">

 <appender-ref ref="STDOUT" />

 </root>

 <logger name="com.hazelcast" level="error">

 <appender-ref ref="STDOUT" />

 </logger>

</configuration>

Now, when we execute the following command, we notice that all the meta information about the
Hazelcast member creation etc. is not printed. And this is because we have set the logging level
for Hazelcast to error and asked Hazelcast to use sl4j logger.

java -Dhazelcast.logging.type=slf4j -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.SingleInstanceHazelcastExample

Output

John

18

Variables

Value written to XML configuration files can vary based on the environment. For example, in

production, you may use a different username/password for connecting to the Hazelcast cluster

compared to the dev environment. Instead of maintaining separate XML files, one can also write

variables in the XML files and then pass those variables via command line or programmatically to

Hazelcast. Here is an example for choosing the name of the instance from the command line.

So, here is our XML file with the variable ${varname}

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <instance-name>${instance_name}</instance-name>

</hazelcast>

And here is the sample Java code we would use to print the variable value:

package com.example.demo;

import java.util.Map;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

public class XMLConfigLoadWithVariable {

 public static void main(String... args) throws InterruptedException {

 // initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // specified the name written in the XML file

 System.out.println(String.format("Name of the instance: %s",

hazelcast.getName()));

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

19

And, following is the command:

java -Dhazelcast.config=others\hazelcast.xml -Dinstance_name=dev_cluster -cp

.\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.XMLConfigLoadWithVariable

And the output shows that the variable was replaced by Hazelcast correctly.

Name of the instance: dev_cluster

20

Given that Hazelcast is a distributed IMDG and typically is set up on multiple machines, it requires

access to the internal/external network. The most important use-case being discovery of

Hazelcast nodes within a cluster.

Hazelcast requires the following ports:

 1 inbound port to receive pings/data from other Hazelcast nodes/clients

 n number of outbound ports which are required to send ping/data to other members of the
cluster.

This node discovery happens in few ways:

 Multicast

 TCP/IP

 Amazon EC2 auto discovery

Of this, we will look at Multicast and TCP/IP

Multicast

Multicast joining mechanism is enabled by default. https://en.wikipedia.org/wiki/Multicast is a way

of communication form in which message is transmitted to all the nodes in a group. And this is

what Hazelcast uses to discover other members of the cluster. All the examples that we have

looked at earlier use multicast to discover members.

Let’s now explicitly turn it on. Save the following in hazelcast-multicast.xml

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <network>

 <join>

Hazelcast – Setting up multi-node instances

21

 <multicast enabled="true" />

 </join>

 </network>

</hazelcast>

And then, let us execute the following:

java -Dhazelcast.config=hazelcast-multicast.xml -cp .\target\demo-0.0.1-

SNAPSHOT.jar com.example.demo.XMLConfigLoadExample

In the output, we notice the following lines from Hazelcast which effectively means that multicast
joiner is used to discover the members

.

Jan 30, 2021 5:26:15 PM com.hazelcast.instance.Node

INFO: [localhost]:5701 [dev] [3.12.12] Creating MulticastJoiner

.
Multicast, by default, accepts communication from all the machines in the multicast group. This

may be a security concern and that is why typically, on-premise, multicast communication is

firewalled. So, while multicast is good for development work, in production, it is best to use TCP/IP

based discovery.

TCP/IP

Due to the drawbacks stated for Multicast, TCP/IP is the preferred way for communication. In
case of TCP/IP, a member can connect to only known/listed members.

Let’s use TCP/IP for discovery mechanisms. Save the following in hazelcast-tcp.xml

<hazelcast
 xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <network>
 <join>
 <multicast enabled="false" />
 <tcp-ip enabled="true">
 <members>localhost</members>
 </tcp-ip>
 </join>
 </network>
</hazelcast>

22

And then, let’s execute the following command:

java -Dhazelcast.config=hazelcast-tcp.xml -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.XMLConfigLoadExample

The output is following:
.

INFO: [localhost]:5701 [dev] [3.12.12] Creating TcpIpJoiner

Jan 30, 2021 8:09:29 PM

com.hazelcast.spi.impl.operationexecutor.impl.OperationExecutorImpl

.
The above output shows that TCP/IP joiner was use to join two members

And if you execute following command on two different shells:

java '-Dhazelcast.config=hazelcast-tcp.xml' -cp .\target\demo-0.0.1-SNAPSHOT.jar

com.example.demo.MultiInstanceHazelcastExample

We see the following output:

.

Members {size:2, ver:2} [

 Member [localhost]:5701 - 62eedeae-2701-4df0-843c-7c3655e16b0f

 Member [localhost]:5702 - 859c1b46-06e6-495a-8565-7320f7738dd1 this

]

.
The above output means that the nodes were able to join using TCP/IP and both are using
localhost as the IP address.

Note that we can specify more IPs or the machine names (which would be resolved by DNS) in
the XML configuration file.

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

 http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <network>

 <join>

 <multicast enabled="false" />

 <tcp-ip enabled="true">

23

 <members>machine1, machine2....</members>

 </tcp-ip>

 </join>

 </network>

</hazelcast>

24

java.util.concurrent package provides data structures such as AtomicLong,

CountDownLatch, ConcurrentHashMap, etc. which are useful when you have more than one

thread reading/writing data to the data structure. But to provide thread safety, all of these threads

are expected to be on a single JVM/machine.

Hazelcast provides a way to distribute your data structure across JVMs/machines.

There are two major benefits of distributing data structure:

 Better Performance: If more than one machine has access to the data, all of them can
work in parallel and complete the work in a lesser timespan.

 Data Backup: If a JVM/machine goes down, we have another JVMs/machines holding
the data

IAtomicLong

The Atomic Long data structure in Java provides a thread safe way for using Long.

Similarly, IAtomicLong is more of a distributed version of AtomicLong. It provides similar

functions of which following are useful ones: set, get, getAndSet, incrementAndGet. One

important point to note here is that the performance of the above functions may not be similar as

the data structure is distributed across machines.

AtomicLong has one synchronous backup which means if we have a setup where we have, say,
5 JVMs running, only two JVMs will hold this variable.

Let's look at some of the useful functions.

Initializing and Setting value to IAtomicLong

public class Application {

 public static void main(String... args) throws IOException {

 //initialize hazelcast instance and the counter variable

Hazelcast – Data Structures

25

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IAtomicLong counter = hazelcast.getAtomicLong("counter");

 System.out.println(counter.get());

 counter.set(2);

 System.out.println(counter.get());

 System.exit(0);

 }

}

When the above code is executed, it will produce the following output:

0

2

Synchronization across JVMs

Atomic Long provides concurrency control across JVMs. So, methods like incrementAndGet,

compareAndSet can be used to atomically update the counter

Let’s execute code below simultaneously, on two JVMs

public class AtomicLong2 {

 public static void main(String... args) throws IOException,

InterruptedException {

 // initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IAtomicLong counter = hazelcast.getAtomicLong("counter");

 for(int i = 0; i < 1000; i++) {

 counter.incrementAndGet();

 }

 System.exit(0);

 }

}

26

The 2nd line of the output of the above code would always be:

2000

If incrementAndGet() would not have been thread safe, the above code may have not given

2000 as the output all the time. It would probably be less than that, as the writes one thread may
have gotten overwritten by another.

Useful Methods

Function Name Description

get() Return the current value

set(long newValue) Set the value to newValue

addAndGet(long value) Atomically add the value and return the updated value

decrementAndGet(long value)
Atomically subtract the value and return the updated
value

getAndAdd(long value)
Atomically return the current value and store the sum
of current value and the value

getAndDecrement(long value)
Atomically return the current value and store the
subtraction of value from the current value

compareAndSet(long expected,
long newValue)

Atomically set value to newValue if the oldValue is

equal to expected value

decrementAndGet(long value)
Atomically subtract the value and return the updated
value

ILock

The java.util.concurrent.locks.Lock provides an interface which can be implemented and

used for locking critical sections when working in a multithreaded environment in a JVM.

Similarly, ILock extends the interface to provide a distributed version of Java Lock. It provides

similar functions: lock, unlock, tryLock

27

But a major difference between ILock and Java Lock is that while Java Lock provides protection

of critical section from threads in a single JVM, ILock provides synchronization for threads in a

single JVM as well as multiple JVMs.

ILock has one synchronous backup meaning that if we have a setup where we have, say, 5 JVMs

running, only two JVMs will hold this variable.

Let's look at an example of the useful functions.

Acquiring and Releasing Lock

Let’s say we execute the following code on two JVMs.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a lock

 ILock hzLock = hazelcast.getLock("lock_1");

 IAtomicLong counter = hazelcast.getAtomicLong("counter");

 // acquire lock

 hzLock.lock();

 System.out.println("Acquiring Lock");

 try{

 Thread.sleep(5000);

 System.out.println("Incrementing Counter");

 counter.incrementAndGet();

 System.out.println("Counter: " + counter.get());

 }

 finally {

 // release lock

 System.out.println("Lock Released");

 hzLock.unlock();

 }

 System.exit(0);

 }

28

The output of the above function shows that the second JVM was able to acquire lock only after
first JVM released the lock.

Acquired Lock

Incrementing Counter

Counter: 1

Lock Released

Acquired Lock

Incrementing Counter

Counter: 2

Lock Released

Using tryLock instead of Lock

To reduce the chances of deadlock, it is recommended to use tryLock(timeout, unit) method

instead lock(). By default, the lock() has a timeout of 5 mins and throws

OperationTimeoutException exception if lock is not acquired in that timespan. tryLock instead

returns a Boolean based on whether the lock is acquired or not in the provided timespan.

Let’s execute the following code on two JVMs.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a lock

 ILock hzLock = hazelcast.getLock("lock_1");

 // acquire lock

 if(hzLock.tryLock(2000, TimeUnit.SECONDS)) {

 System.out.println("Acquired Lock");

 Thread.sleep(5000);

 System.out.println("Lock Released");

 hzLock.unlock();

 }

 else

 System.out.println("Couldn't acquire lock");

29

 System.exit(0);

 }

The output for the code would be:

Acquired Lock

Couldn't acquire lock

Lock Released

Good practices and know-hows

● While acquiring locks can be very useful, it is recommended to keep the critical section as

short as possible. This ensures that the performance does not degrade and it also reduces
the chances of a deadlock.

● If a member (which has acquired) goes down, the lock is automatically released and is up
for grabs for other members.

● The lock is rentrant; it ensures that the same thread can acquire a lock multiple times
without causing a deadlock.

Useful Methods

Function Name Description

lock()
Acquire the provided lock instance so that no
other thread can acquire it. If unavailable, it waits
indefinitely till lock is acquired.

unlock() Release the acquire lock

tryLock(long time, TimeUnit unit)
Try to acquire lock in the given time window.
Return true if the lock is acquired, else false.

isLocked()
Check if the lock is already acquired by some
other thread

30

ISemaphore

The java.util.concurrent.Semaphore supports synchronization by providing limited access

when working in a multithreaded environment in a JVM.

Sounds a lot like a lock, right? But there are two major differences between lock and semaphore:

● Semaphore does not have ownership. It can be acquired by a thread and released by
another thread. Locks are tied to a thread. It needs to be released and acquired by the
same thread.

● Semaphore supports entry of 1 of one or more threads into the critical section based on
req based on available permits.

Similarly, ISemaphore provides a distributed version of Java Semaphore. ISemaphore provides
a distributed version of Java Semaphore. It provides similar functions: acquire, release.

But a major difference between ISemaphore and Java Semaphore is that while the Java
Semaphore provides protection of critical section from threads in a single JVM, ISemaphore
provides synchronization for threads in a single JVM as well as multiple JVMs.

ISemaphore has one synchronous backup which means, if we have a setup where we have, say,
5 JVMs running, only two JVMs will hold this semaphore.

Acquiring Permit, Releasing Permit

Let’s execute the following code on three JVMs. The code is supposed to print the number of

threads that have acquired semaphore. And we have permit of 2 which means, at a time, only

two threads should be permitted to enter the if block

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a lock

 ISemaphore hzSemaphore = hazelcast.getSemaphore("semaphore_1");

 IAtomicLong activeThreads = hazelcast.getAtomicLong("threads");

 hzSemaphore.init(2);

 for(int i=0; i< 10; i++) {

31

 if(hzSemaphore.tryAcquire(2000, TimeUnit.MILLISECONDS));

 {

 System.out.println("Thread count: " +

activeThreads.incrementAndGet());

 Thread.sleep(2000);

 hzSemaphore.release();

 activeThreads.decrementAndGet();

 }

 }

 System.exit(0);

 }

The output for the code shows that we have 1 or 2 threads active which is what we expect given
the permit being set to 2.

Good Practices

● If a member which has permit goes down, the permit is released automatically, making it

available for other threads to acquire.

● Avoid using acquire() of semaphore, as it is a blocking call which may lead to deadlock.

It’s better to use tryAcquire() with a timeout to avoid blocking.

Useful Methods

Function Name Description

acquire()
Acquire the permit if available. If unavailable, it
waits indefinitely till the permit is available.

release() Release the acquired permit.

tryAcquire(long time, TimeUnit unit)
Try to acquire a permit in the given time window.
Return true if the permit is acquired, else false.

availablePermits()
Return the number of permits which are available
with this ISemaphore instance

32

ICountDownLatch

The java.util.concurrent.CountDownLatch provides a way for threads to wait, while other

threads complete a set of operations in a multithreaded environment in a JVM.

Similarly, ICountDownLatch provides a distributed version of Java CountDownLatch. It provides

similar functions: setCount, countDown, await, etc.

A major difference between ICountDownLatch and Java CountDownLatch is that while Java

CountDownLatch provides protection of critical section from threads in a single JVM,

ICountDownLatch provides synchronization for threads in a single JVM as well as multiple JVMs.

ICountDownLatch has one synchronous backup which means if we have a setup where we have,

say, 5 JVMs running, only two JVMs will hold this latch.

Setting Latch & Awaiting Latch

Let’s execute the following code on two JVMs. The master code on one and worker code on
other. The code is supposed to make the worker thread wait till the master thread completes.

The first piece is the master code which creates a latch and counts it down.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a lock

 ICountDownLatch countDownLatch =

hazelcast.getCountDownLatch("count_down_1");

 System.out.println("Setting counter");

 countDownLatch.trySetCount(2);

 Thread.sleep(2000);

 System.out.println("Counting down");

 countDownLatch.countDown();

 Thread.sleep(2000);

 System.out.println("Counting down");

 countDownLatch.countDown();

 System.exit(0);

 }

33

The second piece is of worker code which creates a latch and counts it down.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a lock

 ICountDownLatch countDownLatch =

hazelcast.getCountDownLatch("count_down_1");

 countDownLatch.await(5000, TimeUnit.MILLISECONDS);

 System.out.println("Worker successful");

 System.exit(0);

 }

The output for the code shows that the worker prints only after the countdown was completed to 0.

Setting counter

Counting down

Counting down

Worker successful

Useful Methods

Function Name Description

await() Wait for the latch’s count to reach to zero before proceeding

countDown() Decrement the countdown latch

trySetCount(int count) Set the count of the latch

getCount() Get the current count of the latch

34

ISet

The java.util.Set provides an interface for holding collections of objects which are unique.

The ordering of elements does not matter.

Similarly, ISet implements a distributed version of Java Set. It provides similar functions: add,

forEach, etc.

One important point to note about ISet is that, unlike other collection data, it is not partitioned.

All the data is stored/present on a single JVM. Data is still accessible to all JVMs, but the set
cannot be scaled beyond a single machine/JVM.

The set supports synchronous backup as well as asynchronous backup. Synchronous backup
ensures that even if the JVM holding the set goes down, all elements would be preserved and
available from the backup.

Let's look at an example of the useful functions.

Adding elements and reading elements

Let’s execute the following code on 2 JVMs. The producer code on one and consumer code on other.

The first piece is the producer code which creates a set and adds item to it.

 public static void main(String... args) throws IOException,
InterruptedException {

 //initialize hazelcast instance
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a set
 ISet<String> hzFruits = hazelcast.getSet("fruits");

 hzFruits.add("Mango");
 hzFruits.add("Apple");
 hzFruits.add("Banana");

 // adding an existing fruit
 System.out.println(hzFruits.add("Apple"));

 System.out.println("Size of set:" + hzFruits.size());

 System.exit(0);
 }

35

The second piece is of consumer code which reads set elements.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a set

 ISet<String> hzFruits = hazelcast.getSet("fruits");

 Thread.sleep(2000);

 hzFruits.forEach(System.out::println);

 System.exit(0);

 }

The output for the code for the producer shows that it is not able to add an existing element.

false

3

The output for the code for the consumer prints set size and the fruits which are can be in a
different order.

3

Banana

Mango

Apple

Useful Methods

Function Name Description

add(Type element) Add element to the set if not already present

remove(Type element) Remove element from the set

size() Return the count of elements in the set

contains(Type element) Return if the element is present

36

getPartitionKey() Return the partition key which hold the set

addItemListener(ItemListener<Type>
listener, value)

Notifies the subscriber of an element being
removed/added/modified in the set.

IList

The java.util.List provides an interface for holding collections of objects that do not

necessarily need to be unique. The ordering of elements does not matter.

Similarly, IList implements a distributed version of Java List. It provides similar functions: add,

forEach, etc.

All the data which is present in IList is stored/present on a single JVM. Data is still accessible

to all the JVMs, but the list cannot be scaled beyond a single machine/JVM.

The list supports synchronous backup as well as asynchronous backup. Synchronous backup

ensures that even if the JVM holding the list goes down, all the elements would be preserved and

available from the backup.

Let's look at an example of the useful functions.

Adding elements and reading elements

Let’s execute the following code on 2 JVMs. The producer code on one and consumer code on
other.

The first piece is the producer code which creates a list and adds item to it.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a list

 IList<String> hzFruits = hazelcast.getList("fruits");

 hzFruits.add("Mango");

 hzFruits.add("Apple");

 hzFruits.add("Banana");

37

 // adding an existing fruit

 System.out.println(hzFruits.add("Apple"));

 System.out.println("Size of list:" + hzFruits.size());

 System.exit(0);

 }

The second piece is of consumer code which reads the list elements.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a list

 IList<String> hzFruits = hazelcast.getList("fruits");

 Thread.sleep(2000);

 hzFruits.forEach(System.out::println);

 System.exit(0);

 }

The output for the code for the producer shows that it is not able to add an existing element.

true

4

The output for the code for the consumer prints the list size and the fruits are in expected order.

4

Mango

Apple

Banana

Apple

38

Useful Methods

Function Name Description

add(Type element) Add element to the list

remove(Type element) Remove element from the list

size() Return the count of elements in the list

contains(Type element) Return if the element is present

getPartitionKey() Return the partition key which holds the list

addItemListener(ItemListener<Type>
listener, value)

Notifies the subscriber of an element being
removed/added/modified in the list.

IQueue

The java.util.concurrent.BlockingQueue provides an interface which supports threads in a

JVM to produce and consume messages at different rates. The producer blocks based on

available capacity and the consumer blocks for the element to be available in the queue.

Similarly, IQueue extends the BlockingQueue and makes it a distributed version of it. It provides

similar functions: put, take, etc.

One important point to note about IQueue is that, unlike other collections, data is not partitioned.

All the data is stored/present on a single JVM. Data is still accessible to all the JVMs, but the

queue cannot be scaled beyond a single machine/JVM. If the number of elements increases

beyond available memory, an OutOfMemoryException is thrown.

The queue supports synchronous backup as well as asynchronous backup. Synchronous backup

ensures that even if the JVM holding the queue goes down, all the elements would be preserved

and available from the backup.

Let's look at an example of the useful functions.

Adding elements and reading elements

Let’s execute the following code on 3 JVMs. The producer code on one and 2 consumers code
on others.

39

The first piece is the producer code which creates a queue and adds item to it.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a queue

 IQueue<String> hzFruits = hazelcast.getQueue("fruits");

 String[] fruits = {"Mango", "Apple", "Banana", "Watermelon"};

 for (String fruit : fruits) {

 System.out.println("Producing: " + fruit);

 Thread.sleep(1000);

 }

 System.exit(0);

 }

The second piece is of consumer code which reads the elements.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IQueue<String> hzFruits = hazelcast.getQueue("fruits");

 while(!hzFruits.isEmpty()) {

 System.out.println("Consuming: " + hzFruits.take());

 Thread.sleep(2000);

 }

 System.exit(0);

 }

40

The output for the code for the producer shows that it is not able to add an existing element.

Producing Mango

Producing Apple

Producing Banana

Producing Watermelon

The output for the code for the first consumer shows that it consumes some part of the data.

Consuming Mango

Consuming Banana

The output for the code for the second consumer shows that it consumes the other part of the
data:

Consuming Apple

Consuming Watermelon

Useful Methods

Function Name Description

add(Type element) Add an element to the list

remove(Type element) Remove an element from the list

poll() Return the head of the queue or returns NULL
if the queue is empty

take() Return the head of the queue or wait till the
element becomes available

size() Return the count of elements in the list

contains(Type element) Return if the element is present

getPartitionKey() Return the partition key which holds the list

addItemListener(ItemListener<Type>
listener, value)

Notifies the subscriber of an element being
removed/added/modified in the list.

41

IMap

The java.util.concurrent.Map provides an interface which supports storing key value pair in

a single JVM. While java.util.concurrent.ConcurrentMap extends this to support thread

safety in a single JVM with multiple threads.

Similarly, IMap extends the ConcurrentHashMap and provides an interface which makes the map

thread safe across JVMs. It provides similar functions: put, get etc.

The IMap supports synchronous backup as well as asynchronous backup. Synchronous backup

ensures that even if the JVM holding the queue goes down, all elements would be preserved and
available from the backup.

Let's look at an example of the useful functions.

Creation & Read/Write

Adding elements and reading elements. Let’s execute the following code on two JVMs. The
producer code on one and one consumer code on the other.

The first piece is the producer code which creates a map and adds item to it.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a map

 IMap<String, String> hzStock = hazelcast.getMap("stock");

 hzStock.put("Mango", "4");

 hzStock.put("Apple", "1");

 hzStock.put("Banana", "7");

 hzStock.put("Watermelon", "10");

 Thread.sleep(5000);

 System.exit(0);

 }

42

The second piece is of consumer code which reads the elements.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a map

 IMap<String, String> hzStock = hazelcast.getMap("stock");

 for(Map.Entry<String, String> entry: hzStock.entrySet()){

 System.out.println(entry.getKey() + ":" + entry.getValue());

 }

 Thread.sleep(5000);

 System.exit(0);

 }

The output for the code for the consumer:

Mango:4

Apple:1

Banana:7

Watermelon:10

Useful Methods

Function Name Description

put(K key, V value) Add an element to the map

remove(K key) Remove an element from the map

keySet() Return a copy of all the keys in the map

localKeySet() Return a copy of all keys which are present in
the local partition

values() Return a copy of all the values in the map

43

size() Return the count of elements in the map

containsKey(K key) Return true if the key is present

executeOnEnteries(EntryProcessor
processor)

Applies the processor on all the map’s keys
and returns the output of this application. We
will look at an example for the same in the
upcoming section.

addEntryListener(EntryListener
listener, value)

Notifies the subscriber of an element being
removed/added/modified in the map.

addLocalEntryListener(EntryListener
listener, value)

Notifies the subscriber of an element being
removed/added/modified in the local partitions

Eviction

By default, keys in Hazelcast stay indefinitely in the IMap. If we have a very large set of keys, then

we need to ensure that the keys which are heavily used are stored in the IMap as compared to

the ones which are used less often, in order to have better performance and efficient memory

usage.

For this purpose, one can manually delete keys via remove()/evict() functions for the keys which

are not used that often. However, Hazelcast also provides automatic eviction of keys based on

various eviction algorithms.

This policy can be set by XML or programmatically. Let’s look at an example for the same:

<map name="stock">

 <max-size policy="FREE_HEAP_PERCENTAGE">30</max-size>

 <eviction-policy>LFU</eviction-policy>

</map>

There are two attributes in the above configuration.

● Max-size: Policy which is used to communicate to Hazelcast the limit at which we claim

that max size of the map “stock” has reached.

● Eviction-policy: Once the above max-size policy is hit, what algorithm to use to

remove/evict the key.

44

Here are some of the useful max_size policy.

Max Size Policy Description

PER_NODE
Max number of entries per JVM for the map which is the
default policy.

FREE_HEAP
Minimum free heap memory to be kept aside (in MBytes) in
the JVM

FREE_HEAP_PERCENTAGE
Minimum free heap memory to be kept aside (in percent) in
the JVM

USED_HEAP Maximum allowed heap memory used in the JVM (in MBytes)

USED_HEAP_PERCENTAGE Maximum allowed heap memory used in the JVM (in percent)

Here are some of the useful eviction policy:

Eviction Policy Description

NONE No eviction will be made which is the default policy

LFU Least frequently used would be evicted

LRU Least recently used key would be evicted

Another useful parameter for eviction is also time-to-live-seconds, i.e., TTL. With this, we can
ask Hazelcast to remove any key which is older than X seconds. This ensures that we are
proactive in removing older keys before max-size policy is hit.

Partitioned data and High Availability

One important point to note about IMap is that unlike other collections, the data is partitioned
across JVMs. All the data doesn't need to be stored/present on a single JVM. Complete data is
still accessible to all JVMs. This gives Hazelcast a way to scale linearly across available JVMs
and not be constrained by memory of a single JVM.

The IMap instances are divided into multiple partitions. By default, the map is divided into 271
partitions. And these partitions are distributed across Hazelcast members available. Each entry
in which is added to the map is stored in a single partition.

45

Let’s execute this code on 2 JVMs.

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a map

 IMap<String, String> hzStock = hazelcast.getMap("stock");

 hzStock.put("Mango", "4");

 hzStock.put("Apple", "1");

 hzStock.put("Banana", "7");

 hzStock.put("Watermelon", "10");

 Thread.sleep(5000);

 // print the keys which are local to these instance

 hzStock.localKeySet().forEach(System.out::println);

 System.exit(0);

 }

As seen in the following output, the consumer 1 prints its own partition which contains 2 keys:

Mango

Watermelon

Consumer 2 owns the partition which has the other 2 keys:

Banana

Apple

By default, IMap has one synchronous backup, which means that even if one node/member goes
down, the data would not get lost. There are two types of back up.

● Synchronous: The map.put(key, value) would not succeed till the key is also backed

up on another node/member. Sync backups are blocking and thus impact the performance
of the put call.

● Async: The backup of the stored key is performed eventually. Async backups are non-blocking
and fast but they do not guarantee existence of the data if a member were to go down.

46

The value can be configured using XML configuration. For example, let's do it for out stock map:

<map name="stock">

<backup-count>1</backup-count>

<async-backup-count>1<async-backup-count>

</map>

Hashcode and Equals

In Java-based HashMap, key comparison happens by checking equality of the hashCode() and

equals() method. For example, a vehicle may have serialId and the model to keep it simple.

public class Vehicle implements Serializable{

 private static final long serialVersionUID = 1L;

 private int serialId;

 private String model;

 public Vehicle(int serialId, String model) {

 super();

 this.serialId = serialId;

 this.model = model;

 }

 public int getId() {

 return serialId;

 }

 public String getModel() {

 return model;

 }

 @Override

 public int hashCode() {

47

 final int prime = 31;

 int result = 1;

 result = prime * result + serialId;

 return result;

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 Vehicle other = (Vehicle) obj;

 if (serialId != other.serialId)

 return false;

 return true;

 }

}

When we try using the above class as the key for HashMap and IMap, we see the difference in
comparison.

 public static void main(String... args) throws IOException,

InterruptedException {

 // create a Java based hash map

 Map<Vehicle, String> vehicleOwner = new HashMap<>();

 Vehicle v1 = new Vehicle(123, "Honda");

 vehicleOwner.put(v1, "John");

 Vehicle v2 = new Vehicle(123, null);

 System.out.println(vehicleOwner.containsKey(v2));

48

 // create a hazelcast map

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IMap<Vehicle, String> hzVehicleOwner = hazelcast.getMap("owner");

 hzVehicleOwner.put(v1, "John");

 System.out.println(hzVehicleOwner.containsKey(v2));

 System.exit(0);

 }

Now, why does Hazelcast give the answer as false?

Hazelcast serializes the key and stores it as a byte array in binary format. As these keys are

serialized, the comparison cannot be made based on equals() and hashcode().

Serializing and Deserializing are required in case of Hazelcast because the function get(),

containsKey(), etc. may be invoked on the node which does not own the key, so remote call is

required.

Serializing and Deserializng are expensive operations and so, instead of using equals() method,

Hazelcast compares byte arrays.

What this means is that all the attributes of the Vehicle class should match not just id. So, let’s

execute the following code:

 public static void main(String... args) throws IOException,

InterruptedException {

 Vehicle v1 = new Vehicle(123, "Honda");

 // create a hazelcast map

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IMap<Vehicle, String> hzVehicleOwner = hazelcast.getMap("owner");

 Vehicle v3 = new Vehicle(123, "Honda");

 System.out.println(hzVehicleOwner.containsKey(v3));

 System.exit(0);

49

 }

The output of the above code is:

true

This output means all the attributes of Vehicle should match for equality.

EntryProcessor

EntryProcessor is a construct which supports sending of code to the data instead of bringing data to

the code. It supports serializing, transferring, and the execution of function on the node which owns

the IMap keys instead of bringing in the data to the node which initiates the execution of the function.

Let’s understand this with an example. Let’s say we create an IMap of Vehicle -> Owner. And

now, we want to store lowercase for the owner. So, how do we do that?

 public static void main(String... args) throws IOException,

InterruptedException {

 // create a hazelcast map

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 IMap<Vehicle, String> hzVehicleOwner = hazelcast.getMap("owner");

 hzVehicleOwner.put(new Vehicle(123, "Honda"), "John");

 hzVehicleOwner.put(new Vehicle(23, "Hyundai"), "Betty");

 hzVehicleOwner.put(new Vehicle(103, "Mercedes"), "Jane");

 for(Map.Entry<Vehicle, String> entry: hzVehicleOwner.entrySet())

 hzVehicleOwner.put(entry.getKey(), entry.getValue().toLowerCase());

 for(Map.Entry<Vehicle, String> entry: hzVehicleOwner.entrySet())

 System.out.println(entry.getValue());

 System.exit(0);

 }

The output of the above code is:

john

jane

50

betty

While this code seems simple, it has a major drawback in terms of scale if there are high number
of keys:

 Processing would happen on the single/caller node instead of being distributed across nodes.

 More time as well as memory would be needed to get the key information on the caller node.

That is where the EntryProcessor helps. We send the function of converting to lowercase to each
node which holds the key. This makes the processing parallel and keeps the memory
requirements in check.

 public static void main(String... args) throws IOException,
InterruptedException {

 // create a hazelcast map
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();
 IMap<Vehicle, String> hzVehicleOwner = hazelcast.getMap("owner");

 hzVehicleOwner.put(new Vehicle(123, "Honda"), "John");
 hzVehicleOwner.put(new Vehicle(23, "Hyundai"), "Betty");
 hzVehicleOwner.put(new Vehicle(103, "Mercedes"), "Jane");

 hzVehicleOwner.executeOnEntries(new OwnerToLowerCaseEntryProcessor());

 for(Map.Entry<Vehicle, String> entry: hzVehicleOwner.entrySet())
 System.out.println(entry.getValue());

 System.exit(0);
 }

 static class OwnerToLowerCaseEntryProcessor extends
AbstractEntryProcessor<Vehicle, String> {
 @Override
 public Object process(Map.Entry<Vehicle, String> entry) {
 String ownerName = entry.getValue();
 entry.setValue(ownerName.toLowerCase());
 return null;
 }
 }

The output of the above code is:

john
jane
betty

51

52

Hazelcast clients are the lightweight clients to Hazelcast members. Hazelcast members are

responsible to store data and the partitions. They act like the server in the traditional client-server

model.

Hazelcast clients are created only for accessing data stored with Hazelcast members of the

cluster. They are not responsible to store data and do not take any ownership to store data.

The clients have their own life cycle and do not affect the Hazelcast member instances.

Let's first create Server.java and run it.

import java.util.Map;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

public class Server {

 public static void main(String... args){

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //create a simple map

 Map<String, String> vehicleOwners = hazelcast.getMap("vehicleOwnerMap");

 // add key-value to map

 vehicleOwners.put("John", "Honda-9235");

 // do not shutdown, let the server run

 //hazelcast.shutdown();

 }

}

Hazelcast – Client

53

Now, run the above class.

java -cp .\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.Server

For setting up a client, we also need to add client jar.

 <dependency>

 <groupId>com.hazelcast</groupId>

 <artifactId>hazelcast-client</artifactId>

 <version>3.12.12</version>

 </dependency>

Let's now create Client.java. Note that similar to Hazelcast members, clients can also be

configured programmatically or via XML configuration (i.e., via -Dhazelcast.client.config or

hazelcast-client.xml).

Let’s use the default configuration which means our client would be able to connect to local

instances.

import java.util.Map;

import com.hazelcast.client.HazelcastClient;

import com.hazelcast.core.HazelcastInstance;

public class Client {

 public static void main(String... args){

 //initialize hazelcast client

 HazelcastInstance hzClient = HazelcastClient.newHazelcastClient();

 //read from map

 Map<String, String> vehicleOwners = hzClient.getMap("vehicleOwnerMap");

 System.out.println(vehicleOwners.get("John"));

 System.out.println("Member of cluster: " +

hzClient.getCluster().getMembers());

 // perform shutdown

 hzClient.getLifecycleService().shutdown();

 }

}

54

Now, run the above class.

java -cp .\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.Client

It will produce the following output:

Honda-9235

Member of cluster: [Member [localhost]:5701 - a47ec375-3105-42cd-96c7-fc5eb382e1b0]

As seen from the output:

 The cluster only contains 1 member which is from Server.java.

 The client is able to access the map which is stored inside the server.

Load Balancing

Hazelcast Client supports load balancing using various algorithms. Load balancing ensures that

the load is shared across members and no single member of the cluster is overloaded. The default

load balancing mechanism is set to round-robin. The same can be changed by using the

loadBalancer tag in the config.

We can specify the type of load balancer using the load-balancer tag in the configuration. Here is

a sample for choosing a strategy that randomly picks up a node.

<hazelcast-client xmlns="http://www.hazelcast.com/schema/client-config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.hazelcast.com/schema/client-config

 http://www.hazelcast.com/schema/client-config/hazelcast-

client-config-4.2.xsd">

 <load-balancer type="random"/>

</hazelcast-client>

Failover

In a distributed environment, members can fail arbitrarily. For supporting failover, it is

recommended that address to multiple members is provided. If the client gets access to any one

55

member, that is sufficient for it to get addressed to other members. The parameters addressList

can be specified in the client configuration.

For example, if we use the following configuration:

<hazelcast-client xmlns="http://www.hazelcast.com/schema/client-config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.hazelcast.com/schema/client-config

 http://www.hazelcast.com/schema/client-config/hazelcast-

client-config-4.2.xsd">

 <address-list>machine1, machine2</address-list>

</hazelcast-client>

Even if, say, machine1 goes down, clients can use machine2 to get access to other members of
the cluster.

56

Hazelcast is ideally used in an environment where data/query are distributed across machines.

This requires data to be serialized from our Java objects to a byte array which can be transferred

over the network.

Hazelcast supports various types of Serialization. However, let’s look at some commonly used

ones, i.e., Java Serialization and Java Externalizable.

Java Serialization

First let's look at Java Serialization. Let's say, we define an Employee class with Serializable

interface implemented.

public class Employee implements Serializable{
 private static final long serialVersionUID = 1L;
 private String name;
 private String department;

 public Employee(String name, String department) {
 super();
 this.name = name;
 this.department = department;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDepartment() {
 return department;
 }

 public void setDepartment(String department) {
 this.department = department;
 }

Hazelcast – Serialization

57

 @Override
 public String toString() {
 return "Employee [name=" + name + ", department=" + department + "]";
 }
}

Let’s now write code to add Employee object to the Hazelcast map.

public class EmployeeExample {

 public static void main(String... args){

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //create a set to track employees

 Map<Employee, String> employeeOwners =

hazelcast.getMap("employeeVehicleMap");

 Employee emp1 = new Employee("John Smith", "Computer Science");

 // add employee to set

 System.out.println("Serializing key-value and add to map");

 employeeOwners.put(emp1, "Honda");

 // check if emp1 is present in the set

 System.out.println("Serializing key for searching and Deserializing

value got out of map");

 System.out.println(employeeOwners.get(emp1));

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

It will produce the following output:

Serializing key-value and add to map

Serializing key for searching and Deserializing value got out of map

Honda

A very important aspect here is that simply by implementing a Serializable interface, we can make

Hazelcast use Java Serialization. Also note that Hazelcast stores serialized data for key and value

58

instead of storing it in-memory like HashMap. So, Hazelcast does the heavy-lifting of Serialization

and Deserialization.

However, there is a pitfall here. In the above case, what if the department of the employee
changes? The person is still the same.

public class EmployeeExampleFailing {

 public static void main(String... args){

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //create a set to track employees

 Map<Employee, String> employeeOwners =

hazelcast.getMap("employeeVehicleMap");

 Employee emp1 = new Employee("John Smith", "Computer Science");

 // add employee to map

 System.out.println("Serializing key-value and add to map");

 employeeOwners.put(emp1, "Honda");

 Employee empDeptChange = new Employee("John Smith", "Electronics");

 // check if emp1 is present in the set

 System.out.println("Checking if employee with John Smith is present");

 System.out.println(employeeOwners.containsKey(empDeptChange));

 Employee empSameDept = new Employee("John Smith", "Computer Science");

 System.out.println("Checking if employee with John Smith is present");

 System.out.println(employeeOwners.containsKey(empSameDept));

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

59

Output of the above code is:

Serializing key-value and add to map

Checking if employee with name John Smith is present

false

Checking if employee with name John Smith is present

true

It is because Hazelcast does not deserialize the key, i.e., Employee while comparison. It directly

compares the bytecode of the serialized key. So, an object with the same value to all the attributes

would be treated the same. But if the value to those attributes changes, for example, department

in the above scenario, those two keys are treated as unique.

Java Externalizable

What if, in the above example, we don't care about the value of the department while performing

serialization/deserialization of keys. Hazelcast also supports Java Externalizable which gives us

control over what tags are used for serialization and deserialization.

Let’s modify our Employee class accordingly:

public class EmplyoeeExternalizable implements Externalizable {

 private static final long serialVersionUID = 1L;

 private String name;

 private String department;

 public EmplyoeeExternalizable(String name, String department) {

 super();

 this.name = name;

 this.department = department;

 }

 @Override

 public void readExternal(ObjectInput in) throws IOException,

ClassNotFoundException {

 System.out.println("Deserializaing....");

 this.name = in.readUTF();

 }

 @Override

60

 public void writeExternal(ObjectOutput out) throws IOException {

 System.out.println("Serializing....");

 out.writeUTF(name);

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getDepartment() {

 return department;

 }

 public void setDepartment(String department) {

 this.department = department;

 }

 @Override

 public String toString() {

 return "Employee [name=" + name + ", department=" + department + "]";

 }

}

So, as you can see from the code, we have added readExternal/writeExternal methods

which are responsible for serialization/deserialization. Given that we are not interested in the

department while serialization/deserialization, we exclude those in

readExternal/writeExternal methods.

Now, if we execute the following code:

public class EmployeeExamplePassing {

 public static void main(String... args){

 //initialize hazelcast server/instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //create a set to track employees

61

 Map<EmplyoeeExternalizable, String> employeeOwners =

hazelcast.getMap("employeeVehicleMap");

 EmplyoeeExternalizable emp1 = new EmplyoeeExternalizable("John Smith",

"Computer Science");

 // add employee to map

 employeeOwners.put(emp1, "Honda");

 EmplyoeeExternalizable empDeptChange = new EmplyoeeExternalizable("John

Smith", "Electronics");

 // check if emp1 is present in the set

 System.out.println("Checking if employee with John Smith is present");

 System.out.println(employeeOwners.containsKey(empDeptChange));

 EmplyoeeExternalizable empSameDept = new EmplyoeeExternalizable("John

Smith", "Computer Science");

 System.out.println("Checking if employee with John Smith is present");

 System.out.println(employeeOwners.containsKey(empSameDept));

 // perform a graceful shutdown

 hazelcast.shutdown();

 }

}

The output we get is:

Serializing....

Checking if employee with John Smith is present

Serializing....

true

Checking if employee with John Smith is present

Serializing....

true

As the output shows, using Externalizable interface, we can provide Hazelcast with serialized

data for only the name of the employee.

Also note that Hazelcast serializes our key twice:

62

 Once while storing the key,

 And, second for searching the given key in the map. As stated earlier, this is because
Hazelcast uses serialized byte arrays for key comparison.

Overall, using Externalizable has more benefits as compared to Serializable if we want to have

more control over what attributes are to be serialized and how we want to handle them.

63

Hazelcast – Advanced

64

Hazelcast supports an easy way to integrate with Spring Boot application. Let's try to understand
that via an example.

We will create a simple API application which provides an API to get employee information for a
company. For this purpose, we will use Spring Boot driven RESTController along with Hazelcast
for caching data.

Note that to integrate Hazelcast in Spring Boot, we will need two things:

 Add Hazelcast as a dependency to our project.

 Define a configuration (static or programmatic) and make it available to Hazelcast

Let’s first define the POM. Note that we have to specify Hazelcast JAR to use it in the Spring Boot
project.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>hazelcast</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>demo</name>

 <description>Demo project to explain Hazelcast integration with Spring

Boot</description>

 <properties>

 <maven.compiler.target>1.8</maven.compiler.target>

 <maven.compiler.source>1.8</maven.compiler.source>

 </properties>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.4.0</version>

Hazelcast – Spring Integration

65

 </parent>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-cache</artifactId>

 </dependency>

 <dependency>

 <groupId>com.hazelcast</groupId>

 <artifactId>hazelcast-all</artifactId>

 <version>4.0.2</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Also add hazelcast.xml to src/main/resources:

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <instance-name>XML_Hazelcast_Instance</instance-name>

</hazelcast>

66

Define an entry point file for Spring Boot to use. Ensure that we have @EnableCaching specified:

package com.example.demo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.cache.annotation.EnableCaching;

@EnableCaching

@SpringBootApplication

public class CompanyApplication {

 public static void main(String[] args) {

 SpringApplication.run(CompanyApplication.class, args);

 }

}

Let us define our employee POJO:

package com.example.demo;

import java.io.Serializable;

public class Employee implements Serializable{

 private static final long serialVersionUID = 1L;

 private int empId;

 private String name;

 private String department;

 public Employee(Integer id, String name, String department) {

 super();

 this.empId = id;

 this.name = name;

 this.department = department;

 }

 public int getEmpId() {

 return empId;

 }

 public void setEmpId(int empId) {

 this.empId = empId;

 }

67

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getDepartment() {

 return department;

 }

 public void setDepartment(String department) {

 this.department = department;

 }

 @Override

 public String toString() {

 return "Employee [empId=" + empId + ", name=" + name + ", department=" +

department + "]";

 }

}

And ultimately, let us define a basic REST controller to access employee:

package com.example.demo;

import org.springframework.cache.annotation.Cacheable;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/v1/")
class CompanyApplicationController{

 @Cacheable(value = "employee")
 @GetMapping("employee/{id}")
 public Employee getSubscriber(@PathVariable("id") int id) throws
InterruptedException {
 System.out.println("Finding employee information with id " + id + "
...");
 Thread.sleep(5000);

68

 return new Employee(id, "John Smith", "CS");
 }
}

Now let us execute the above application, by running the command:

mvn clean install

mvn spring-boot:run

You will notice that the output of the command would contain Hazelcast member information
which mean Hazelcast Instance is automatically configured for us using hazelcast.xml

configuration.

..

Members {size:1, ver:1} [

 Member [localhost]:5701 - 91b3df1d-a226-428a-bb74-6eec0a6abb14 this

]

.
Now let us execute via curl or use browser to access API:

curl -X GET http://localhost:8080/v1/employee/5

The output of the API would be our sample employee.

{

 "empId": 5,

 "name": "John Smith",

 "department": "CS"

}

In the server logs (i.e. where Spring Boot application running), we see the following line:

Finding employee information with id 5 ...

However, note that it takes almost 5 secs (because of sleep we added) to access the information.

But If we call the API again, the output of the API is immediate. This is because we have specified

@Cacheable notation. The data of our first API call has been cached using Hazelcast as a

backend.

69

Hazelcast provides multiple ways to monitor the cluster. We will look into how to monitor via REST

API and via JMX. Let's first look into REST API.

Monitoring Hazelcast via REST API

To monitor health of the cluster or member state via REST API, one has to enable REST API

based communication to the members. This can be done by configuration and also

programmatically.

Let us enable REST based monitoring via XML configuration in hazelcast-monitoring.xml:

<hazelcast

 xsi:schemaLocation="http://www.hazelcast.com/schema/config

http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"

 xmlns="http://www.hazelcast.com/schema/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <instance-name>XML_Hazelcast_Instance</instance-name>

 <network>

 <rest-api enabled="true">

 <endpoint-group name="CLUSTER_READ" enabled="true" />

 <endpoint-group name="HEALTH_CHECK" enabled="true" />

 </rest-api>

 </network>

</hazelcast>

Let us create a Hazelcast instance which runs indefinitely in Server.java file:

public class Server {

 public static void main(String... args){

 //initialize hazelcast server/instance
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

Hazelcast – Monitoring

70

 // do not shutdown, let the server run
 //hazelcast.shutdown();
 }
}

And now let us execute start the cluster:

java '-Dhazelcast.config=hazelcast-monitoring.xml' -cp .\target\demo-0.0.1-

SNAPSHOT.jar com.example.demo.Server

Once started, the health of the cluster can be found out by calling the API like:

http://localhost:5701/hazelcast/health

The output of the above API call:

Hazelcast::NodeState=ACTIVE

Hazelcast::ClusterState=ACTIVE

Hazelcast::ClusterSafe=TRUE

Hazelcast::MigrationQueueSize=0

Hazelcast::ClusterSize=1

This displays that there is 1 member in our cluster and it is Active.

More detailed information about the nodes, for example, IP, port, name can be found using:

http://localhost:5701/hazelcast/rest/cluster

The output of the above API:

Members {size:1, ver:1} [

 Member [localhost]:5701 - e6afefcb-6b7c-48b3-9ccb-63b4f147d79d this

]

ConnectionCount: 1

AllConnectionCount: 2

71

JMX monitoring

Hazelcast also supports JMX monitoring of the data structures embedded inside it, for example,
IMap, Iqueue, and so on.

To enable JMX monitoring, we first need to enable JVM based JMX agents. This can be done
by passing "-Dcom.sun.management.jmxremote" to the JVM. For using different ports or use

authentication, we can use -Dcom.sun.management.jmxremote.port, -
Dcom.sun.management.jmxremote.authenticate, respectively.

Apart from this, we have to enable JMX for Hazelcast MBeans. Let us enable JMX based
monitoring via XML configuration in hazelcast-monitoring.xml:

<hazelcast
 xsi:schemaLocation="http://www.hazelcast.com/schema/config
http://www.hazelcast.com/schema/config/hazelcast-config-3.12.12.xsd"
 xmlns="http://www.hazelcast.com/schema/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <instance-name>XML_Hazelcast_Instance</instance-name>

 <properties>
 <property name="hazelcast.jmx">true</property>
 </properties>
</hazelcast>

Let us create a Hazelcast instance which runs indefinitely in Server.java file and add a map:

public class Server {

 public static void main(String... args){

 //initialize hazelcast server/instance
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 //create a simple map
 Map<String, String> vehicleOwners = hazelcast.getMap("vehicleOwnerMap");

 // add key-value to map
 vehicleOwners.put("John", "Honda-9235");

 // do not shutdown, let the server run
 //hazelcast.shutdown();
 }
}

72

Now we can execute the following command to enable JMX:

java '-Dcom.sun.management.jmxremote' '-Dhazelcast.config=others\hazelcast-

monitoring.xml' -cp .\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.Server

The JMX ports can now be connected by JMX clients like jConsole, VisualVM, etc.

Here is a snapshot of what we will get if we connect using jConsole and see the attributes for

VehicleMap. As we can see, the name of the map as vehicleOwnerMap and the size of map

being 1.

73

MapReduce is a computation model which is useful for data processing when you have lots of

data and you need multiple machines, i.e., a distributed environment to calculate data. It involves

'map'ing of data into key-value pairs and then 'reducing', i.e., grouping these keys and performing

operation on the value.

Given the fact that Hazelcast is designed keeping a distributed environment in mind, implementing

Map-Reduce Frameworks comes naturally to it.

Let’s see how to do it with an example.

For example, let's suppose we have data about a car (brand & car number) and the owner of that car.

Honda-9235, John

Hyundai-235, Alice

Honda-935, Bob

Mercedes-235, Janice

Honda-925, Catnis

Hyundai-1925, Jane

And now, we have to figure out the number of cars for each brand, i.e., Hyundai, Honda, etc.

Let's try to find that out using MapReduce:

package com.example.demo;

import java.lang.reflect.Array;

import java.util.ArrayList;

import java.util.Map;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.atomic.AtomicInteger;

import com.hazelcast.core.Hazelcast;

import com.hazelcast.core.HazelcastInstance;

import com.hazelcast.core.ICompletableFuture;

import com.hazelcast.core.IMap;

Hazelcast – Map Reduce & Aggregations

74

import com.hazelcast.mapreduce.Context;

import com.hazelcast.mapreduce.Job;

import com.hazelcast.mapreduce.JobTracker;

import com.hazelcast.mapreduce.KeyValueSource;

import com.hazelcast.mapreduce.Mapper;

import com.hazelcast.mapreduce.Reducer;

import com.hazelcast.mapreduce.ReducerFactory;

public class MapReduce {

 public static void main(String[] args) throws ExecutionException,

InterruptedException {

 try {

 // create two Hazelcast instances

 HazelcastInstance hzMember = Hazelcast.newHazelcastInstance();

 Hazelcast.newHazelcastInstance();

 IMap<String, String> vehicleOwnerMap =

hzMember.getMap("vehicleOwnerMap");

 vehicleOwnerMap.put("Honda-9235", "John");

 vehicleOwnerMap.putc"Hyundai-235", "Alice");

 vehicleOwnerMap.put("Honda-935", "Bob");

 vehicleOwnerMap.put("Mercedes-235", "Janice");

 vehicleOwnerMap.put("Honda-925", "Catnis");

 vehicleOwnerMap.put("Hyundai-1925", "Jane");

 KeyValueSource<String, String> kvs =

KeyValueSource.fromMap(vehicleOwnerMap);

 JobTracker tracker = hzMember.getJobTracker("vehicleBrandJob");

 Job<String, String> job = tracker.newJob(kvs);

 ICompletableFuture<Map<String, Integer>> myMapReduceFuture =

job.mapper(new BrandMapper())

 .reducer(new BrandReducerFactory()).submit();

 Map<String, Integer> result = myMapReduceFuture.get();

 System.out.println("Final output: " + result);

 } finally {

 Hazelcast.shutdownAll();

 }

 }

75

 private static class BrandMapper implements Mapper<String, String, String,

Integer> {

 @Override

 public void map(String key, String value, Context<String, Integer>

context) {

 context.emit(key.split("-", 0)[0], 1);

 }

 }

 private static class BrandReducerFactory implements ReducerFactory<String,

Integer, Integer> {

 @Override

 public Reducer<Integer, Integer> newReducer(String key) {

 return new BrandReducer();

 }

 }

 private static class BrandReducer extends Reducer<Integer, Integer> {

 private AtomicInteger count = new AtomicInteger(0);

 @Override

 public void reduce(Integer value) {

 count.addAndGet(value);

 }

 @Override

 public Integer finalizeReduce() {

 return count.get();

 }

 }

}

Let’s try to understand this code:

1. We create Hazelcast members. In the example, we have a single member, but there can
well be multiple members.

2. We create a map using dummy data and create a Key-Value store out of it.

3. We create a Map-Reduce job and ask it to use the Key-Value store as the data.

4. We then submit the job to cluster and wait for completion.

76

5. The mapper creates a key, i.e., extracts brand information from the original key and sets
the value to 1 and then emits that information as K-V to the reducer.

6. The reducer simply sums the value, grouping the data, based on key, i.e., brand name.

The output of the code:

Final output: {Mercedes=1, Hyundai=2, Honda=3}

77

Hazelcast supports addition of listeners when a given collection, for example, queue, set, list, etc.

is updated. Typical events include entry added and entry removed.

Let's see how to implement a set listener via an example. So, let's say we want to implement a

listener which tracks the number of elements in a set.

So, let’s first implement the Producer:

public class SetTimedProducer{

 public static void main(String... args) throws IOException,

InterruptedException {

 //initialize hazelcast instance

 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 Thread.sleep(5000);

 // create a set

 ISet<String> hzFruits = hazelcast.getSet("fruits");

 hzFruits.add("Mango");

 Thread.sleep(2000);

 hzFruits.add("Apple");

 Thread.sleep(2000);

 hzFruits.add("Banana");

 System.exit(0);

 }

}

Hazelcast – Collection Listener

78

Now let's implement the listener:

package com.example.demo;

import java.io.IOException;

import com.hazelcast.core.ISet;
import com.hazelcast.core.ItemEvent;
import com.hazelcast.core.ItemListener;
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

public class SetListener{

 public static void main(String... args) throws IOException,
InterruptedException {

 //initialize hazelcast instance
 HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

 // create a set
 ISet<String> hzFruits = hazelcast.getSet("fruits");

 ItemListener<String> listener = new FruitListener<String>();
 hzFruits.addItemListener(listener, true);

 System.exit(0);
 }

 private static class FruitListener<String> implements ItemListener<String> {
 private int count = 0;

 @Override
 public void itemAdded(ItemEvent<String> item) {
 System.out.println("item added" + item);
 count ++;
 System.out.println("Total elements" + count);
 }

 @Override
 public void itemRemoved(ItemEvent<String> item) {
 count --;
 }
 }
}

79

We will first run the producer:

java -cp .\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.SetTimedProducer

And then, we run the listeners and let it run indefinitely:

java -cp .\target\demo-0.0.1-SNAPSHOT.jar com.example.demo.SetListener

The output from the Listener is as follows:

item added: ItemEvent{event=ADDED, item=Mango, member=Member [localhost]:5701 -

c28a60b7-3259-44bf-8793-54063d244394 this}

Total elements: 1

item added: ItemEvent{event=ADDED, item=Apple, member=Member [localhost]:5701 -

c28a60b7-3259-44bf-8793-54063d244394 this}

Total elements: 2

item added: ItemEvent{event=ADDED, item=Banana, member=Member [localhost]:5701 -

c28a60b7-3259-44bf-8793-54063d244394 this}

Total elements: 3

The call with hzFruits.addItemListener(listener, true) tells Hazelcast to provide member

information. If set to false, we will just be notified that an entry was added/removed. This helps in

avoiding the need to serialize and deserialize the entry to make it accessible to the listener.

80

Hazelcast Queue on single machine

Hazelcast queues are stored on a single member (along with a backup on different machines).

This effectively means the queue can hold as many items which can be accommodated on a

single machine. So, the queue capacity does not scale by adding more members. Loading more

data than what a machine can handle in a queue can cause the machine to crash.

Using Map's set method instead of put

If we use IMap's put(key, newValue), Hazelcast returns the oldValue. This means, extra

computation and time is spent in deserialization. This also includes more data sent from the

network. Instead, if we are not interested in the oldValue, we can use set(key, value) which

returns void.

Let’s see how to store and inject references to Hazelcast structures. The following code creates
a map of the name "stock" and adds Mango at one place and Apple at another.

//initialize hazelcast instance

HazelcastInstance hazelcast = Hazelcast.newHazelcastInstance();

// create a map

IMap<String, String> hzStockTemp = hazelcast.getMap("stock");

hzStock.put("Mango", "4");

IMap<String, String> hzStockTemp2 = hazelcast.getMap("stock");

hzStock.put("Apple", "3");

However, the problem here is that we are using getMap("stock") twice. Although this call seems

harmless in a single node environment, it creates slowness in a clustered environment. The

function call getMap() involves network round trips to other members of the cluster.

So, it is recommended that we store the reference to the map locally and use the referencing
while operating on the map. For example:

Hazelcast – Common Pitfalls & Performance Tips

81

// create a map

IMap<String, String> hzStock = hazelcast.getMap("stock");

hzStock.put("Mango", "4");

hzStock.put("Apple", "3");

Hazelcast uses serialized data for object comparison

As we have seen in the earlier examples, it is very critical to note that Hazelcast does not use

deserialize objects while comparing keys. So, it does not have access to the code written in our

equals/hashCode method. According to Hazelcast, keys are equal if the value to all the attributes

of two Java objects is the same.

Use monitoring

In a large-scale distributed system, monitoring plays a very important role. Using REST API and

JMX for monitoring is very important for taking proactive measures instead of being reactive.

Homogeneous cluster

Hazelcast assumes all the machines are equal, i.e., all the machines have same resources. But

if our cluster contains a less powerful machine, for example, less memory, lesser CPU power,

etc., then it can create slowness if the computation happens on that machine. Worst, the weaker

machine can run out of resources causing cascading failures. So, it is necessary that Hazelcast

members have equal resource power.

