
http://www.tutorialspoint.com/gwt/gwt_formpanel_widget.htm Copyright © tutorialspoint.com

GWT - FORMPANEL WIDGETGWT - FORMPANEL WIDGET

Introduction
The FormPanel widget represents a panel that wraps its contents in an HTML <FORM> element.

Class declaration
Following is the declaration for com.google.gwt.user.client.ui.FormPanel class:

public class FormPanel
 extends SimplePanel
 implements FiresFormEvents,
 com.google.gwt.user.client.ui.impl.FormPanelImplHost

Class constructors

S.N. Constructor & Description

1
FormPanel

Creates a new FormPanel.

2
protected FormPanelElementelement

This constructor may be used by subclasses to explicitly use an existing element.

3
protected FormPanelElementelement, booleancreateIFrame

This constructor may be used by subclasses to explicitly use an existing element.

4
FormPanelNamedFrameframeTarget

Creates a FormPanel that targets a NamedFrame.

5
FormPaneljava. lang. Stringtarget

Creates a new FormPanel.

Class methods

S.N. Function name & Description

1
void add Form Handler FormHandlerhandler

Deprecated. Use add Submit Complete Handler
com. google. gwt. user. client. ui. FormPanel. SubmitCompleteHandler and add Submit Handler
com. google. gwt. user. client. ui. FormPanel. SubmitHandler instead

http://www.tutorialspoint.com/gwt/gwt_formpanel_widget.htm

2
Handler Registration addSubmit Complete Handler
FormPanel. SubmitCompleteHandlerhandler

Adds a FormPanel.Submit Complete Event handler.

3
HandlerRegistration addSubmitHandlerFormPanel. SubmitHandlerhandler

Adds a FormPanel.SubmitEvent handler.

4
java.lang.String getAction

Gets the 'action' associated with this form.

5
java.lang.String getEncoding

Gets the encoding used for submitting this form.

6
java.lang.String getMethod

Gets the HTTP method used for submitting this form.

7
java.lang.String getTarget

Gets the form's 'target'.

8
protected void onAttach

This method is called when a widget is attached to the browser's document.

9
protected void onDetach

This method is called when a widget is detached from the browser's document.

10
boolean onFormSubmit

Fired when a form is submitted.

11
void onFrameLoad

12
void removeFormHandlerFormHandlerhandler

Deprecated. Use the HandlerRegistration.removeHandler method on the object returned
by and add*Handler method instead

13
void reset

Resets the form, clearing all fields.

14
void setActionjava. lang. Stringurl

Sets the 'action' associated with this form.

15
void setEncodingjava. lang. StringencodingType

Sets the encoding used for submitting this form.

16
void setMethodjava. lang. Stringmethod

Sets the HTTP method used for submitting this form.

17
void submit

Submits the form.

18
static FormPanel wrapElementelement

Creates a FormPanel that wraps an existing <form> element.

19
static FormPanel wrapElementelement, booleancreateIFrame

Creates a FormPanel that wraps an existing <form> element.

Methods inherited
This class inherits methods from the following classes:

com.google.gwt.user.client.ui.UIObject

com.google.gwt.user.client.ui.Widget

com.google.gwt.user.client.ui.Panel

com.google.gwt.user.client.ui.SimplePanel

java.lang.Object

FormPanel Widget Example
This example will take you through simple steps to show usage of a FormPanel Widget in GWT.
Follow the following steps to update the GWT application we created in GWT - Create Application
chapter:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint as
explained in the GWT - Create Application chapter.

2 Modify HelloWorld.gwt.xml, HelloWorld.css, HelloWorld.html and HelloWorld.java as
explained below. Keep rest of the files unchanged.

3 Compile and run the application to verify the result of the implemented logic.

Following is the content of the modified module descriptor
src/com.tutorialspoint/HelloWorld.gwt.xml.

<?xml version="1.0" encoding="UTF-8"?>
<module rename-to='helloworld'>
 <!-- Inherit the core Web Toolkit stuff. -->
 <inherits name='com.google.gwt.user.User'/>

 <!-- Inherit the default GWT style sheet. -->
 <inherits name='com.google.gwt.user.theme.clean.Clean'/>

 <!-- Specify the app entry point class. -->
 <entry-point class='com.tutorialspoint.client.HelloWorld'/>

 <!-- Specify the paths for translatable code -->
 <source path='client'/>
 <source path='shared'/>

</module>

Following is the content of the modified Style Sheet file war/HelloWorld.css.

body{
 text-align: center;
 font-family: verdana, sans-serif;
}
h1{
 font-size: 2em;
 font-weight: bold;
 color: #777777;
 margin: 40px 0px 70px;
 text-align: center;
}

Following is the content of the modified HTML host file war/HelloWorld.html.

<html>
<head>
<title>Hello World</title>
 <link rel="stylesheet" href="HelloWorld.css"/>
 <script language="javascript" src="helloworld/helloworld.nocache.js">
 </script>
</head>
<body>

<h1>FormPanel Widget Demonstration</h1>
<div ></div>

</body>
</html>

Let us have following content of Java file src/com.tutorialspoint/HelloWorld.java which will
demonstrate use of FormPanel widget.

package com.tutorialspoint.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.DecoratorPanel;
import com.google.gwt.user.client.ui.FileUpload;
import com.google.gwt.user.client.ui.FormPanel;
import com.google.gwt.user.client.ui.FormPanel.SubmitCompleteEvent;

import com.google.gwt.user.client.ui.FormPanel.SubmitEvent;
import com.google.gwt.user.client.ui.ListBox;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.TextBox;
import com.google.gwt.user.client.ui.VerticalPanel;

public class HelloWorld implements EntryPoint {

 public void onModuleLoad() {
 // Create a FormPanel and point it at a service.
 final FormPanel form = new FormPanel();
 form.setAction("/myFormHandler");

 // Because we're going to add a FileUpload widget,
 // we'll need to set the form to use the POST method,
 // and multipart MIME encoding.
 form.setEncoding(FormPanel.ENCODING_MULTIPART);
 form.setMethod(FormPanel.METHOD_POST);

 // Create a panel to hold all of the form widgets.
 VerticalPanel panel = new VerticalPanel();
 panel.setSpacing(10);
 form.setWidget(panel);

 // Create a TextBox, giving it a name so that it will be submitted.
 final TextBox tb = new TextBox();
 tb.setWidth("220");

 tb.setName("textBoxFormElement");
 panel.add(tb);

 // Create a ListBox, giving it a name and
 // some values to be associated with its options.
 ListBox lb = new ListBox();
 lb.setName("listBoxFormElement");
 lb.addItem("item1", "item1");
 lb.addItem("item2", "item2");
 lb.addItem("item3", "item3");
 lb.setWidth("220");
 panel.add(lb);

 // Create a FileUpload widget.
 FileUpload upload = new FileUpload();
 upload.setName("uploadFormElement");
 panel.add(upload);

 // Add a 'submit' button.
 panel.add(new Button("Submit", new ClickHandler() {
 @Override
 public void onClick(ClickEvent event) {
 form.submit();
 }
 }));

 // Add an event handler to the form.
 form.addSubmitHandler(new FormPanel.SubmitHandler() {
 @Override
 public void onSubmit(SubmitEvent event) {
 // This event is fired just before the form is submitted.
 // We can take this opportunity to perform validation.
 if (tb.getText().length() == 0) {
 Window.alert("The text box must not be empty");
 event.cancel();
 }
 }
 });

 form.addSubmitCompleteHandler(new FormPanel.SubmitCompleteHandler() {
 @Override

 public void onSubmitComplete(SubmitCompleteEvent event) {
 // When the form submission is successfully completed,
 // this event is fired. Assuming the service returned
 // a response of type text/html, we can get the result
 // here.
 Window.alert(event.getResults());
 }
 });

 DecoratorPanel decoratorPanel = new DecoratorPanel();
 decoratorPanel.add(form);
 // Add the widgets to the root panel.
 RootPanel.get().add(decoratorPanel);
}

}

Once you are ready with all the changes done, let us compile and run the application in
development mode as we did in GWT - Create Application chapter. If everything is fine with your
application, this will produce following result:

Loading [MathJax]/jax/output/HTML-CSS/jax.js

/gwt/gwt_create_application.htm

