
GraphQL

 i

GraphQL

 ii

About the Tutorial

GraphQL is an open source server-side technology which was developed by Facebook to

optimize RESTful API calls. It is an execution engine and a data query language. This

tutorial will introduce you to the fundamental concepts of GraphQL including:

 Implement GraphQL API using Apollo server

 Test GraphQL API using GraphiQL

 Build ReactJS (with Apollo Client library) and jQuery client applications to consume

the API

Audience

This tutorial is created for developers who have worked on JavaScript applications based

on Client-Server architecture. After completing this tutorial, you will be able to build
moderately complex GraphQL APIs for mobile and web applications.

Prerequisites

This course is based on NodeJs and Express. So, if you have a basic understanding of

NodeJS, it will be easy to learn GraphQL. For frontend integration of GraphQL, we will be

using ReactJs and Jquery. Since, illustrations in this tutorial uses EcmaScript 6 (ES6)
syntax, knowledge in these areas can be helpful.

Copyright & Disclaimer

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

GraphQL

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. GraphQL – Introduction .. 1

Why GraphQL .. 1

2. GraphQL – Environment Setup .. 5

How to Build a GraphQL server with Nodejs ... 5

3. GraphQL – Architecture .. 11

GraphQL Server with Connected Database ... 11

GraphQL Server Integrating Existing Systems ... 12

Hybrid Approach .. 12

4. GraphQL – Application Components ... 13

Server-Side Components ... 13

Client-side Components .. 13

5. GraphQL – Example... 15

Example ... 15

6. GraphQL – Type System .. 20

Scalar Typ .. 20

Object Type ... 21

Query Type .. 22

Mutation Type ... 22

Enum Type ... 23

List Type ... 23

7. GraphQL – Schema .. 25

GraphQL

 iv

Illustration ... 26

8. GraphQL – Resolver .. 29

Resolver Result Format ... 30

9. GraphQL – Query .. 33

Illustration 1: Query Student Model with a Custom Field ... 34

Illustration 2: Nested Query .. 38

What is a Query Variable? ... 40

Illustration ... 40

How to use Query Variable with Enum ... 42

10. GraphQL – Mutation ... 44

Illustration ... 44

Returning an Object in Mutation ... 48

11. GraphQL – Validation .. 51

Illustration: Implementing Custom Validators .. 51

12. GraphQL – JQuery Integration... 56

Illustration ... 57

Setting up the Server ... 57

Setting up the Client .. 58

13. GraphQL – React Integration ... 62

Illustration ... 62

Setting up the Server ... 62

Setting up the Client .. 64

14. GraphQL – Apollo Client .. 69

Illustration ... 69

Setting up Server ... 69

Setting up the Client .. 72

15. GraphQL – Authenticating Client ... 78

Express JWT ... 78

GraphQL

 v

Illustration ... 78

Setting up the Server ... 78

Setting up the JQuery Client .. 84

16. GraphQL – Caching .. 89

InMemory Cache ... 89

Illustration ... 90

Setting up the Server ... 90

Setting up the ReactJS Client ... 92

GraphQL

 1

GraphQL is an open source server-side technology which was developed by Facebook to

optimize RESTful API calls. It is an execution engine and a data query language. In this

chapter, we discuss about the advantages of using GraphQL.

Why GraphQL

RESTful APIs follow clear and well-structured resource-oriented approach. However, when

the data gets more complex, the routes get longer. Sometimes it is not possible to fetch

data with a single request. This is where GraphQL comes handy. GraphQL structures data

in the form of a graph with its powerful query syntax for traversing, retrieving, and

modifying data.

The following are advantages of using GraphQL query Language:

Ask for what you want — and get it

Send a GraphQL query to your API and get exactly what you need. GraphQL queries always

return predictable results. Applications using GraphQL are fast and stable. Unlike Restful

services, these applications can restrict data that should be fetched from the server.

The following example will help you understand this better:

Let us consider a business object Student with the attributes id, firstName, lastName and

collegeName. Suppose a mobile application needs to fetch only the firstName and id. If we

design a REST endpoint like /api/v1/students, it will end up fetching data for all the fields

for a student object. This means, data is over fetched by the RESTful service. This problem

can be solved by using GraphQL.

Consider the GraphQL query given below:

{

 students {

 id

 firstName

 }

}

This will return values only for the id and firstname fields. The query will not fetch values

for other attributes of the student object. The response of the query illustrated above is

as shown below:

{

 "data": {

 "students": [

1. GraphQL – Introduction

GraphQL

 2

 {

 "id": "S1001",

 "firstName": "Mohtashim"

 },

 {

 "id": "S1002",

 "firstName": "Kannan"

 }

]

 }

}

Get many resources in a single request

GraphQL queries help to smoothly retrieve associated business objects, while typical REST

APIs require loading from multiple URLs. GraphQL APIs fetch all the data your application

need in a single request. Applications using GraphQL can be quick even on slow mobile

network connections.

Let us consider one more business object, College which has the attributes: name and

location. The Student business object has an association relationship with the College

object. If we were to use a REST API in order to fetch the details of students and their

college, we will end up making two requests to the server

like /api/v1/students and /api/v1/colleges. This will lead to under fetching of data with

each request. So mobile applications are forced to make multiple calls to the server to get

the desired data.

However, the mobile application can fetch details for both Student and College objects in

a single request by using GraphQL.

The following is a GraphQL query to fetch data:

{

 students{

 id

 firstName

 lastName

 college{

 name

 location

 }

 }

 }

GraphQL

 3

The output of the above query contains exactly those fields we have requested for as

shown below:

{

 "data": {

 "students": [

 {

 "id": "S1001",

 "firstName": "Mohtashim",

 "lastName": "Mohammad",

 "college": {

 "name": "CUSAT",

 "location": "Kerala"

 }

 },

 {

 "id": "S1002",

 "firstName": "Kannan",

 "lastName": "Sudhakaran",

 "college": {

 "name": "AMU",

 "location": "Uttar Pradesh"

 }

 },

 {

 "id": "S1003",

 "firstName": "Kiran",

 "lastName": "Panigrahi",

 "college": {

 "name": "AMU",

 "location": "Uttar Pradesh"

 }

 }

]

 }

 }

GraphQL

 4

Describe what’s possible with a type system

GraphQL is strongly typed and the queries are based on fields and their associated data

types. If there is type mismatch in a GraphQL query, server applications return clear and

helpful error messages. This helps in smooth debugging and easy detection of bugs by

client applications. GraphQL also provides client side libraries that can help in reducing

explicit data conversion and parsing.

An example of the Student and College data types is given below:

type Query {

 students:[Student]

}

 type Student {

 id:ID!

 firstName:String

 lastName:String

 fullName:String

 college:College

 }

 type College {

 id:ID!

 name:String

 location:String

 rating:Float

 students:[Student]

 }

Move faster with powerful developer tools

GraphQL provides rich developer tools for documentation and testing queries. GraphiQL is

an excellent tool which generates documentation of the query and its schema. It also gives

a query editor to test GraphQL APIs and intelligent code completion capability while

building queries.

GraphQL

 5

In this chapter, we will learn about the environmental setup for GraphQL. To execute the

examples in this tutorial you will need the following:

 A computer running Linux, macOS, or Windows.

 A web browser, preferably the latest version of Google Chrome.

 A recent version of Node.js installed. The latest LTS version is recommended.

 Visual Studio Code with extension GraphQL for VSCode installed or any code editor

of your choice.

How to Build a GraphQL server with Nodejs

We will go through a detailed step-wise approach to build GraphQL server with Nodejs as

shown below:

Step 1: Verify Node and Npm Versions

After installing NodeJs, verify the version of node and npm using following commands on

the terminal:

C:\Users\Admin>node -v

v8.11.3

C:\Users\Admin>npm -v

5.6.0

Step 2: Create a Project Folder and Open in VSCode

The root folder of project can be named as test-app.

Open the folder using visual studio code editor by using the instructions below:

C:\Users\Admin>mkdir test-app

C:\Users\Admin>cd test-app

C:\Users\Admin\test-app>code.

Step 3: Create package.json and Install the Dependencies

Create a package.json file which will contain all the dependencies of the GraphQL server

application.

2. GraphQL – Environment Setup

GraphQL

 6

{

 "name": "hello-world-server",

 "private": true,

 "scripts": {

 "start": "nodemon --ignore data/ server.js"

 },

 "dependencies": {

 "apollo-server-express": "^1.4.0",

 "body-parser": "^1.18.3",

 "cors": "^2.8.4",

 "express": "^4.16.3",

 "graphql": "^0.13.2",

 "graphql-tools": "^3.1.1"

 },

 "devDependencies": {

 "nodemon": "1.17.1"

 }

}

Install the dependencies by using the command as given below:

C:\Users\Admin\test-app>npm install

Step 4: Create Flat File Database in Data Folder

In this step, we use flat files to store and retrieve data. Create a folder data and add two

files students.json and colleges.json.

Following is the colleges.json file:

 [

 {

 "id": "col-101",

 "name": "AMU",

 "location": "Uttar Pradesh",

 "rating":5.0

 },

 {

 "id": "col-102",

 "name": "CUSAT",

GraphQL

 7

 "location": "Kerala",

 "rating":4.5

 }

]

Following is the students.json file:

[

 {

 "id": "S1001",

 "firstName":"Mohtashim",

 "lastName":"Mohammad",

 "email": "mohtashim.mohammad@tutorialpoint.org",

 "password": "pass123",

 "collegeId": "col-102"

 },

 {

 "id": "S1002",

 "email": "kannan.sudhakaran@tutorialpoint.org",

 "firstName":"Kannan",

 "lastName":"Sudhakaran",

 "password": "pass123",

 "collegeId": "col-101"

 },

 {

 "id": "S1003",

 "email": "kiran.panigrahi@tutorialpoint.org",

 "firstName":"Kiran",

 "lastName":"Panigrahi",

 "password": "pass123",

 "collegeId": "col-101"

 }

]

GraphQL

 8

Step 5: Create a Data Access Layer

We need to create a datastore that loads the data folder contents. In this case, we need

collection variables, students and colleges. Whenever the application needs data, it makes

use of these collection variables.

Create file db.js with in the project folder as follows:

const { DataStore } = require('notarealdb');

const store = new DataStore('./data');

module.exports = {

 students:store.collection('students'),

 colleges:store.collection('colleges')

};

Step 6: Create Schema File, schema.graphql

Create a schema file in the current project folder and add the following contents:

 type Query {

 test: String

}

Step 7: Create Resolver File, resolvers.js

Create a resolver file in the current project folder and add the following contents:

const Query = {

 test: () => 'Test Success , GraphQL server is up & running !!'

}

module.exports = {Query}

Step 8: Create Server.js and Configure GraphQL

Create a server file and configure GraphQL as follows:

const bodyParser = require('body-parser');

const cors = require('cors');

const express = require('express');

const db = require('./db');

GraphQL

 9

const port = process.env.PORT || 9000;

const app = express();

const fs = require('fs')

const typeDefs = fs.readFileSync('./schema.graphql',{encoding:'utf-8'})

const resolvers = require('./resolvers')

const {makeExecutableSchema}=require('graphql-tools')

const schema = makeExecutableSchema({typeDefs , resolvers})

app.use(cors(), bodyParser.json());

const {graphiqlExpress,graphqlExpress} = require('apollo-server-express')

app.use('/graphql',graphqlExpress({schema}))

app.use('/graphiql',graphiqlExpress({endpointURL:'/graphql'}))

app.listen(port, () => console.info(`Server started on port ${port}`));

Step 9: Run the Application and Test with GraphiQL

Verify the folder structure of project test-app as follows:

test-app /

 -->package.json

 -->db.js

 -->data

 students.json

 colleges.json

 -->resolvers.js

 -->schema.graphql

 -->server.js

Run the command npm start as given below:

C:\Users\Admin\test-app>npm start

GraphQL

 10

The server is running in 9000 port, so we can test the application using GraphiQL tool.

Open the browser and enter the URL http://localhost:9000/graphiql. Type the following

query in the editor:

{

 Test

}

The response from the server is given below:

{

 "data": {

 "test": "Test Success , GraphQL server is running !!"

 }

}

http://localhost:9000/graphiql

GraphQL

 11

GraphQL is a specification that describes the behaviour of a GraphQL server. It is a set of

guidelines on how requests and responses should be handled like supported protocols,

format of the data that can be accepted by the server, format of the response returned by

the server, etc. The request made by a client to the GraphQL server is called a Query.

Another important concept of GraphQL is its transport layer agnostics. It can be used with

any available network protocol like TCP, websocket or any other transport layer protocol.

It is also neutral to databases, so you can use it with relational or NoSQL databases.

GraphQL Server can be deployed by using any of the three methods listed below:

 GraphQL server with connected database

 GraphQL server that integrates existing systems

 Hybrid approach

GraphQL Server with Connected Database

This architecture has a GraphQL Server with an integrated database and can often be used

with new projects. On the receipt of a Query, the server reads the request payload and

fetches data from the database. This is called resolving the query. The response returned

to the client adheres to the format specified in the official GraphQL specification.

In the above diagram, GraphQL server and the database are integrated on a single node.

The client (desktop/mobile) communicates with GraphQL server over HTTP. The server

processes the request, fetches data from the database and returns it to the client.

3. GraphQL – Architecture

GraphQL

 12

GraphQL Server Integrating Existing Systems

This approach is helpful for companies which have legacy infrastructure and different APIs.

GraphQL can be used to unify microservices, legacy infrastructure and third-party APIs in

the existing system.

In the above diagram, a GraphQL API acts as an interface between the client and the

existing systems. Client applications communicate with the GraphQL server which in turn

resolves the query.

Hybrid Approach

Finally, we can combine the above two approaches and build a GraphQL server. In this

architecture, the GraphQL server will resolve any request that is received. It will either

retrieve data from connected database or from the integrated API’s. This is represented in

the below figure:

GraphQL

 13

This chapter discusses different GraphQL components and the way they communicate with

each other. The entire application components can be distinguished as below:

 Server-side Components

 Client-side Components

Server-Side Components

GraphQL server forms the core component on the server side and allows to parse the

queries coming from GraphQL client applications. Apollo Server is most commonly used

implementation of GraphQL specification. Other server programming components include

the following:

S. No
Server

Essentials
Description

1 Schema

A GraphQL schema is at the center of any GraphQL server

implementation and describes the functionality available to

the clients which connect to it.

2 Query
A GraphQL query is the client application request to retrieve

data from database or legacy API's.

3 Resolver

Resolvers provide the instructions for turning a GraphQL

operation into data. They resolve the query to data by

defining resolver functions.

Client-side Components

Given below are the client-side components:

S. No Tool Description

1 GraphiQL
Browser based interface for editing and testing GraphQL

queries and mutations.

2 ApolloClient
Best tool to build GraphQL client applications.

Integrates well with all javascript front-end.

4. GraphQL – Application Components

GraphQL

 14

The below diagram shows a Client-Server architecture. The web server is built on

NodeJs and Express framework. A request is made to the Apollo GraphQL Server by

ReactJS application (built using Apollo Client library) or GraphiQL browser application. The

query will be parsed and validated against a schema defined in the server. If the request

schema passes the validation, then the associated resolver functions will be executed. The

resolver will contain code to fetch data from an API or a database.

GraphQL

 15

In this chapter, we will create a simple API that returns a greeting message, HelloWorld,

and access it using GraphiQL.

Example

This example is based on NodeJS, Express and Apollo server. We will learn to put all the

concepts together with the following steps:

Step 1: Setting up Express

ExpressJS is a web application framework that helps to build websites and web

applications. In this example, we will build a GraphQL API on top of the Express framework.

Next step is to create a folder hello-world-server and navigate to the same folder from

the terminal. Add package.json, and give a name to the package. Since this package is

only used internally, we can declare it private.

{

 "name":"hello-world-server",

 "private":true

}

Install the dependencies for Express server as shown below:

C:\Users\Admin\hello-world-server>npm install express body-parser cors

body-parser is a middleware package which helps Express to handle HTTP Post requests

efficiently. cors is another middleware package that handles cross-origin resource sharing.

Create a server.js file within the project folder and type the following in it:

const bodyParser = require('body-parser')

 const cors = require('cors')

 const express = require('express')

 const port = process.env.PORT|| 9000

 const app = express()

 //register middleware

 app.use(bodyParser.json() , cors())

 app.listen(port , ()=> console.log(`server is up and running at ${port}`)

5. GraphQL – Example

GraphQL

 16

To verify if the Express server is up and running, execute the following code in the terminal

window:

C:\Users\Admin\hello-world-server>node server.js

The following output is displayed in the server console. This shows that the express server

is running on port 9000.

server is up and running at 9000

If you open the browser and type http://localhost:9000, you will get the following screen:

To stop the server, press Ctrl + C.

Step 2: Install GraphQL and Apollo Server

Now that Express is configured, the next step is to download the following GraphQL

dependencies:

 graphql

 graphql-tools

 apollo-server-express@1

We shall use Apollo server v1.0 as it is a stable release. Type the following commands to

install these dependencies:

C:\Users\Admin\hello-world-server>npm install graphql graphql-tools apollo-

server-express@1

We can verify if these dependencies are installed successfully by checking

the package.json file that we created previously.

{

 "name": "hello-world-server",

 "private": true,

 "dependencies": {

 "apollo-server-express": "^1.4.0",

 "body-parser": "^1.18.3",

 "cors": "^2.8.4",

http://localhost:9000/

GraphQL

 17

 "express": "^4.16.3",

 "graphql": "^0.13.2",

 "graphql-tools": "^3.1.1"

 }

}

Step 3: Define the Schema

A GraphQL schema defines what kind of object can be fetched from a service, and what

fields it has. The schema can be defined using GraphQL Schema Definition Language.

Now, add the following code snippet in the server.js file:

// Adding Type Definitions

 const typeDefinition = `

 type Query {

 greeting: String

 }

Here, the query contains a greeting attribute that returns a string value.

Step 4: Create a Resolver

The first step in creating a resolver is to add some code to process the request for greeting

field. This is specified in a resolver. The structure of the resolver function must match the

schema. Add the following code snippet in the server.js file.

 // Adding resolver

 const resolverObject = {

 Query : {

 greeting: () => 'Hello GraphQL From TutorialsPoint !!'

 }

 }

The second step is to bind the schema and resolver using makeExecutableSchema. This

function is pre-defined in the graphql-tools module. Add the following code snippet in

the server.js file.

const {makeExecutableSchema} = require('graphql-tools')

 const schema = makeExecutableSchema({typeDefs:typeDefinition ,

resolvers:resolverObject})

Step 5: Define Routes to Fetch Data from ReactJS/GraphiQL Application

Add the following code snippet in the server.js file:

GraphQL

 18

const {graphqlExpress , graphiqlExpress} = require('apollo-server-express')

 //create routes for graphql and graphiql

 app.use('/graphql',graphqlExpress({schema}))

 app.use('/graphiql',graphiqlExpress({endpointURL:'/graphql'}))

The graphqlExpress function helps to register the route http://localhost:9000/graphql. The

ReactJS application can use this endpoint to query data. Similarly, the graphqliExpress

function helps to register the route http://localhost:9000/graphiql. This will be used by the

GraphiQL browser client to test the API.

The complete server.js code is as given below:

const bodyParser = require('body-parser')

 const cors = require('cors')

 const express = require('express')

 const port = process.env.PORT||9000

 const app = express()

 app.use(bodyParser.json() , cors())

 const typeDefinition = `

 type Query {

 greeting: String

 }`

 const resolverObject = {

 Query : {

 greeting: () => 'Hello GraphQL From TutorialsPoint !!'

 }

}

const {makeExecutableSchema} = require('graphql-tools')

 const schema = makeExecutableSchema({typeDefs:typeDefinition ,

resolvers:resolverObject})

const {graphqlExpress,graphiqlExpress} = require('apollo-server-express')

app.use('/graphql',graphqlExpress({schema}))

app.use('/graphiql',graphiqlExpress({endpointURL:'/graphql'}))

app.listen(port , ()=> console.log(`server is up and running ${port}`))

Step 6: Start the Application

Execute server.js using Node.js as follows:

C:\Users\Admin\hello-world-server>node server.js

GraphQL

 19

Step 7: Test the GraphQL API

Open the browser and type http://localhost:9000/graphiql. In the query tab of GraphiQL,

enter the following:

{

 greeting

 }

The response from the server is given below:

{

 "data": {

 "greeting": "Hello GraphQL From TutorialsPoint !!"

 }

}

The following image illustrates the response:

Note: Please ensure that Apollo Server Version 1.0 is used.

http://localhost:9000/graphiql

GraphQL

 20

GraphQL is a strongly typed language. Type System defines various data types that can

be used in a GraphQL application. The type system helps to define the schema, which is a

contract between client and server. The commonly used GraphQL data types are as

follows:

S. No Types Description

1 Scalar Stores a single value

2 Object Shows what kind of object can be fetched

3 Query Entry point type to other specific types

4 Mutation Entry point for data manipulation

5 Enum
Useful in a situation where you need the user to pick from a

prescribed list of options

Scalar Type

Scalar types are primitive data types that can store only a single value. The default scalar

types that GraphQL offers are:

 Int: Signed 32-bit Integer

 Float: Signed double precision floating point value

 String: UTF‐8-character sequence

 Boolean: True or false

 ID: A unique identifier, often used as a unique identifier to fetch an object or as

the key for a cache.

The syntax for defining a scalar type is as follows:

field: data_type

The snippet given below defines a field named greeting which returns String value.

 greeting: String

6. GraphQL – Type System

GraphQL

 21

Object Type

The object type is the most common type used in a schema and represents a group of

fields. Each field inside an object type maps to another type, thereby allowing nested

types. In other words, an object type is composed of multiple scalar types or object types.

The syntax for defining an object type is given below:

type object_type_name

{

 field1: data_type

 field2:data_type

 fieldn:data_type

 }

You can consider the following code snippet:

--Define an object type--

type Student {

 stud_id:ID

 firstname: String

 age: Int

 score:Float

}

--Defining a GraphQL schema--

type Query

{

 stud_details:[Student]

}

The example given above defines an object data-type Student. The stud_details field in

the root Query schema will return a list of Student objects.

GraphQL

 22

Query Type

A GraphQL query is used to fetch data. It is like requesting a resource in REST-based APIs.

To keep it simple, the Query type is the request sent from a client application to the

GraphQL server. GraphQL uses the Schema Definition Language (SDL) to define a

Query. Query type is one of the many root-level types in GraphQL.

The syntax for defining a Query is as given below:

type Query {

 field1: data_type

 field2:data_type

 field2(param1:data_type,param2:data_type,...paramN:data_type):data_type

}

An example of defining a Query:

 type Query {

 greeting: String

 }

Mutation Type

Mutations are operations sent to the server to create, update or delete data. These are

analogous to the PUT, POST, PATCH and DELETE verbs to call REST-based APIs.

Mutation is one of the root-level data-types in GraphQL. The Query type defines the entry-

points for data-fetching operations whereas the Mutation type specifies the entry points

for data-manipulation operations.

The syntax for defining a Mutation type is given below:

type Mutation {

 field1: data_type

 field2(param1:data_type,param2:data_type,...paramN:data_type):data_type

}

For example, we can define a mutation type to add a new Student as below:

 type Mutation {

 addStudent(firstName: String, lastName: String): Student

}

GraphQL

 23

Enum Type

An Enum is similar to a scalar type. Enums are useful in a situation where the value for a

field must be from a prescribed list of options.

The syntax for defining an Enum type is:

 type enum_name{

 value1

 value2

}

Following snippet illustrates how an enum type can be defined:

 type Days_of_Week{

 SUNDAY

 MONDAY

 TUESDAY

 WEDNESDAY

 THURSDAY

 FRIDAY

 SATURDAY

}

List Type

Lists can be used to represent an array of values of specific type. Lists are defined with a

type modifier [] that wraps object types, scalars, and enums.

The following syntax can be used to define a list type:

field:[data_type]

The below example defines a list type todos:

type Query {

 todos: [String]

}

GraphQL

 24

Non-Nullable Type

By default, each of the core scalar types can be set to null. In other words, these types

can either return a value of the specified type or they can have no value. To override this

default and specify that a field must be defined, an exclamation mark (!) can be appended

to a type. This ensures the presence of value in results returned by the query.

The following syntax can be used to define a non-nullable field:

field:data_type!

In the below example, stud_id is declared as a mandatory field.

type Student {

 stud_id:ID!

 firstName:String

 lastName:String

 fullName:String

 college:College

}

GraphQL

 25

A GraphQL schema is at the core of any GraphQL server implementation. It describes the

functionality available to the client applications that connect to it. We can use any

programming language to create a GraphQL schema and build an interface around it.

The GraphQL runtime defines a generic graph-based schema to publish the capabilities of

the data service it represents. Client applications can query the schema within its

capabilities. This approach decouples clients from servers and allows both to evolve and

scale independently.

In this chapter, we use Apollo server to execute GraphQL queries. The

makeExecutableSchema function in graphql-tools helps you to bind schema and

resolvers.

makeExecutableSchema Function Syntax

The makeExecutableSchema function takes a single argument {} of Object type. The

syntax for using this function is given below:

import { makeExecutableSchema } from 'graphql-tools';

const jsSchema = makeExecutableSchema({

 typeDefs,

 resolvers, // optional

 logger, // optional

 allowUndefinedInResolve = false, // optional

 resolverValidationOptions = {}, // optional

 directiveResolvers = null, // optional

 schemaDirectives = null, // optional

 parseOptions = {}, // optional

 inheritResolversFromInterfaces = false // optional

});

7. GraphQL – Schema

GraphQL

 26

S. No Parameter Description

1 typeDefs
This is a required argument. It represents a GraphQL

query as a UTF-8 string.

2 Resolvers
This is an optional argument (empty object by

default). This has functions that handle the query.

3 logger
This is an optional argument and can be used to print

errors to the server console.

4 parseOptions
This is an optional argument and allows customization

of parse when specifying typeDefs as a string.

5
allowUndefinedInR

esolve

This is true by default. When set to false, causes your

resolve functions to throw errors if they return

undefined.

5
resolverValidation

Options

This is an optional argument and accepts an object

with Boolean properties.

6
inheritResolversFr

omInterfaces

This is an optional argument and accepts a Boolean

argument to check resolvers object inheritance.

Illustration

Let us create a simple application to understand this schema. This will create a schema

for querying list of students from the server. The student data will be stored in a flat file

and we will use a node module called notarealdb to fake a database and read from the

flat file.

Step 1: Download and Install Required Dependencies for the Project

Create a folder named schema-app. Change your directory to schema-app from the

terminal. Then, follow steps 3 to 5 explained in the Environment Setup chapter to complete

the download and the installation process.

GraphQL

 27

Step 2: Create a Schema

Add schema.graphql file in the project folder, schema-app and add the following code:

type Query {

 greeting:String

 students:[Student]

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 password:String

 collegeId:String

}

The root of the schema will be Query type. The query has two fields: greeting and Students

that returns String and a list of students respectively. Student is declared as an Object

type since it contains multiple fields. The ID field is declared as non-nullable.

Step 3: Create Resolver

Create a file resolvers.js in the project folder and add the following code:

const db = require('./db')

const Query = {

 greeting:()=>{

 return "hello from TutorialsPoint !!!"

 },

 students:()=>db.students.list()

}

module.exports = {Query}

Here greeting and students are the resolvers that handle the query. students resolver

function returns a list of students from the data access layer. To access resolver functions

outside the module, Query object has to be exported using module.exports.

GraphQL

 28

Step 4: Run the Application

Create a server.js file and refer step 8 in the Environment Setup Chapter. The next step

is to execute the command npm start in the terminal. The server will be up and running

on 9000 port. Here, we use GraphiQL as a client to test the application. Open browser and

type the URL, http://localhost:9000/graphiql.

Type the following query in the editor:

{

 greeting

 students {

 id

 firstName

 lastName

 }

}

The query will display the output as shown below:

Note: We can replace the students.json with a RESTful API call to retrieve student data

or even a real database like MySQL or MongoDB. GraphQL becomes a thin wrapper around

your original application layer to improve performance.

http://localhost:9000/graphiql

GraphQL

 29

Resolver is a collection of functions that generate response for a GraphQL query. In simple

terms, a resolver acts as a GraphQL query handler. Every resolver function in a GraphQL

schema accepts four positional arguments as given below:

fieldName:(root, args, context, info) => { result }

An example of resolver functions is shown below:

//resolver function with no parameters and returning string

greeting:()=>{

 return "hello from TutorialsPoint !!!"

 }

//resolver function with no parameters and returning list

 students:()=>db.students.list()

//resolver function with arguments and returning object

 studentById:(root,args,context,info) => {

 return db.students.get(args.id);

 }

Given below are the positional arguments and their description:

S. No Arguments Description

1 root
The object that contains the result returned from the

resolver on the parent field.

2 args
An object with the arguments passed into the field in the

query.

3 context
This is an object shared by all resolvers in a particular

query.

4 info

It contains information about the execution state of the

query, including the field name, path to the field from the

root.

8. GraphQL – Resolver

GraphQL

 30

Resolver Result Format

Resolvers in GraphQL can return different types of values as given below:

S. No arguments Description

1 null or undefined this indicates the object could not be found

2 array
this is only valid if the schema indicates that the result

of a field should be a list

3 promise

resolvers often do asynchronous actions like fetching

from a database or backend API, so they can return

promises

4 scalar or object a resolver can also return other values

Illustration

Let us create a simple application to understand resolver. This will create schema for

querying a student by id from the server. The student data will be stored in a flat file and

we will use a node module called notarealdb to fake a database and read from flat file.

The following is a step-wise process to create a simple application:

Step 1: Download and Install Required Dependencies for the Project

Create a folder named resolver-app. Change your directory to resolver-app from the

terminal. Later, follow steps 3 to 5 in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder resolver-app and add the following code:

type Query { greeting:String

 students:[Student]

 studentById(id:ID!):Student }

type Student {id:ID!

 firstName:String

 lastName:String

 password:String

collegeId:String}

The schema file shows that user can query for greeting, students and studentById. To

retrieve students with specific id, we use data type ID! which shows a non nullable unique

GraphQL

 31

identifier field. The students field returns an array of students, and greeting returns a

simple string value.

Step 3: Create Resolver

Create a file resolvers.js in the project folder and add the following code:

const db = require('./db')

const Query = {

 //resolver function for greeting

 greeting:()=>{

 return "hello from TutorialsPoint !!!"

 },

 //resolver function for students returns list

 students:()=>db.students.list(),

 //resolver function for studentbyId

 studentById:(root,args,context,info) => {

 //args will contain parameter passed in query

 return db.students.get(args.id);

 }

}

module.exports = {Query}

Here, studentById takes in three parameters. As discussed in this chapter, the studentId

can be retrieved from args; root will contain the Query object itself. To return a specific

student, we need to call get method with id parameter in the students collection.

Here greeting, students, studentById are the resolvers that handle the query. students

resolver function returns a list of students from the data access layer. To access resolver

functions outside the module, Query object has to be exported using module.exports.

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we use GraphiQL as a client to test the application.

Open the browser and enter the url, http://localhost:9000/graphiql. Type the following

query in the editor:

{

studentById(id:"S1001"){

 id

 firstName

http://localhost:9000/graphiql

GraphQL

 32

 lastName

 }

}

The output for the above query is as shown below:

{

 "data": {

 "studentById": {

 "id": "S1001",

 "firstName": "Mohtashim",

 "lastName": "Mohammad"

 }

 }

}

GraphQL

 33

A GraphQL operation can either be a read or a write operation. A GraphQL query is used

to read or fetch values while a mutation is used to write or post values. In either case, the

operation is a simple string that a GraphQL server can parse and respond to with data in

a specific format. The popular response format that is usually used for mobile and web

applications is JSON.

The syntax to define a query is as follows:

//syntax 1

query query_name{ someField }

//syntax 2

{ someField }

Following is an example of a query:

//query with name myQuery

query myQuery{

 greeting

 }

// query without any name

{

 greeting

}

It is clear from the above example that the query keyword is optional.

GraphQL queries help to reduce over fetching of data. Unlike a Restful API, GraphQL allows

a user to restrict fields that should be fetched from the server. This means smaller queries

and lesser traffic over the network; which in turn reduces the response time.

9. GraphQL – Query

GraphQL

 34

Illustration 1: Query Student Model with a Custom Field

In this example, we have a set of students stored in a json file. Each student model has

fields like firstName, lastName and id but no fullName. Here, we will discuss how to make

a query to retrieve fullName of all students. For this, we need to create fullName field in

both schema resolver.

Let us see how to do this illustration using the below steps:

Step 1: Download and Install Required Dependencies for the Project

Create a folder named query-app. Change your directory to query-app from the

terminal. Later, follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder query-app and add the following code:

type Query {

 greeting:String

 students:[Student]

 studentById(id:ID!):Student

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 fullName:String }

Note that there is no fullName field in the students.json file. However, we need to fetch

the fullname of the student via a query. The fullName, in this case will be a custom field

that isn't available with the data source.

Step 3: Create Resolver

Create a file resolvers.js in the project folder and add the following code:

const db = require('./db')

const Query = {

 //resolver function for greeting

 greeting:()=>{

 return "hello from TutorialsPoint !!!"

 },

 //resolver function for students returns list

 students:()=>db.students.list(),

GraphQL

 35

 //resolver function for studentbyId

 studentById:(root,args,context,info) => {

 //args will contain parameter passed in query

 return db.students.get(args.id);

 }

}

 //for each single student object returned,resolver is invoked

const Student={

 fullName:(root,args,context,info)=>{

 return root.firstName+":"+root.lastName

 }

 }

module.exports = {Query,Student}

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we use GraphiQL as a client to test the application.

Open browser and type the URL http://localhost:9000/graphiql. Type the following query

in the editor:

{

 students{

 id

 fullName

 }

}

The response for the query is given below:

{

 "data": {

 "students": [

 {

 "id": "S1001",

http://localhost:9000/graphiql

GraphQL

 36

 "fullName": "Mohtashim:Mohammad"

 },

 {

 "id": "S1002",

 "fullName": "Kannan:Sudhakaran"

 },

 {

 "id": "S1003",

 "fullName": "Kiran:Panigrahi"

 }

]

 }

}

Create a server.js and add the following code:

const bodyParser = require('body-parser');

const cors = require('cors');

const express = require('express');

const db = require('./db');

const port = 9000;

const app = express();

//loading type definitions from schema file

const fs = require('fs')

const typeDefs = fs.readFileSync('./schema.graphql',{encoding:'utf-8'})

//loading resolvers

const resolvers = require('./resolvers')

//binding schema and resolver

const {makeExecutableSchema}=require('graphql-tools')

const schema = makeExecutableSchema({typeDefs , resolvers})

//enabling cross domain calls and form post

GraphQL

 37

app.use(cors(), bodyParser.json());

//enabling routes

const {graphiqlExpress,graphqlExpress} = require('apollo-server-express')

app.use('/graphql',graphqlExpress({schema}))

app.use('/graphiql',graphiqlExpress({endpointURL:'/graphql'}))

//registering port

app.listen(port, () => console.info(`Server started on port ${port}`));

Execute the command npm start in the terminal. The server will be up and running on

9000 port. Here, we use GraphiQL as a client to test the application.

Open the browser and type the URL http://localhost:9000/graphiql. Type the following

query in the editor:

{

 students{

 id

 fullName

 }

}

The response for the query is given below:

{

 "data": {

 "students": [

 {

 "id": "S1001",

 "fullName": "Mohtashim:Mohammad"

 },

 {

 "id": "S1002",

 "fullName": "Kannan:Sudhakaran"

 },

 {

 "id": "S1003",

 "fullName": "Kiran:Panigrahi"

 }

http://localhost:9000/graphiql

GraphQL

 38

]

 }

}

Illustration 2: Nested Query

Let us create a nested query for fetching the student details and their college details. We

will work with the same project folder.

Step 1: Edit the Schema

The schema file already has the student field. Let us add a field college and define its type.

type College {

 id:ID!

 name:String

 location:String

 rating:Float

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 fullName:String

 college:College

}

Step 2: Modify the resolver.js

We need to add a college resolver function as below. The college resolver function will be

executed for each student object returned. The root parameter of resolver in this case will

contain student.

const Student={

 fullName:(root,args,context,info)=>{

 return root.firstName+":"+root.lastName

 },

 college:(root)=>{

 return db.colleges.get(root.collegeId);

 }

}

GraphQL

 39

module.exports = {Query,Student}

The resolver returns college of each student by calling the get method of college collection

and passing the collegeId. We have association relationship between Student and College

through the collegeId.

Step 3: Test the Application

Open the terminal window and navigate to the project folder. Type the command -npm

start. Launch the browser and enter the URL http://localhost:9000/graphiql.

Enter the following query in the GraphiQL window:

 {

 students{

 id

 firstName

 college {

 id

 name

 location

 rating

 }

 }

}

The response for the query is as given below:

{

 "data": {

 "students": [

 {

 "id": "S1001",

 "firstName": "Mohtashim",

 "college": {

 "id": "col-102",

 "name": "CUSAT",

 "location": "Kerala",

 "rating": 4.5

 }

 },

http://localhost:9000/graphiql

GraphQL

 40

 {

 "id": "S1002",

 "firstName": "Kannan",

 "college": {

 "id": "col-101",

 "name": "AMU",

 "location": "Uttar Pradesh",

 "rating": 5

 }

 },

 {

 "id": "S1003",

 "firstName": "Kiran",

 "college": {

 "id": "col-101",

 "name": "AMU",

 "location": "Uttar Pradesh",

 "rating": 5

 }

 }

]

 }

}

What is a Query Variable?

If a query has some dynamic values to be passed, then represent these dynamic values

using variables. Hence, the query can be reused by the client applications.

Illustration

Let us create a simple application to understand the query variable.

Step 1: Edit Schema File

Add a sayHello field which takes a string parameter and returns a string. The name values

will be dynamic in client application.

type Query {

GraphQL

 41

 sayHello(name:String!):String

}

Step 2: Edit resolver.js File

Add a sayHello resolver which takes parameter as below:

sayHello:(root,args,context,info)=> `Hi ${args.name} GraphQL server says Hello

to you!!`

Step 3: Declare Query Variable in GraphiQL

A variable is declared with $ followed by name of the variable. For example:

$myname_Variable.

Once $myname_Variable is declared, it has to be used with a named query syntax. The

query, myQuery takes string value and passes it on to sayHello as shown below:

query myQuery($myname_Variable:String!){

 sayHello(name:$myname_Variable)

}

Set the value for $myname_Variable as a JSON object in the Query Variables section of

the GraphiQL client.

 {

 "myname_Variable": "Mohtashim"

 }

The output of the above code is as follows:

 {

 "data": {

 "sayHello": "Hi Mohtashim GraphQL server says Hello to you!!"

 }

}

GraphQL

 42

How to use Query Variable with Enum

Let us see how to use a query variable when field parameter is enum type.

Step 1: Edit schema.graphql File

enum ColorType {

 RED

 BLUE

 GREEN

}

type Query {

 setFavouriteColor(color:ColorType):String

}

The setFavouriteColor function takes enum as input and returns a string value.

Step 2: Edit resolvers.js File

The resolver function setFavouriteColor takes root and args. The enum value passed to

function at runtime can be accessed through args parameter.

setFavouriteColor:(root,args)=>{

 return "Your Fav Color is :"+args.color;

 }

GraphQL

 43

Step 3: Declare a Query Variable in GraphiQL

The query is named query_to_setColor which takes a variable of the name

color_variable of ColorType. This variable is passed on to method setFavouriteColor.

query query_to_setColor($color_variable:ColorType)

{

 setFavouriteColor(color:$color_variable)

}

In the query variable section of GraphiQL, type the following code:

 {

 "color_variable":"RED"

}

The response is shown below:

{

 "data": {

 "setFavouriteColor": "Your Fav Color is: RED"

 }

}

GraphQL

 44

In this chapter, we will learn mutation queries in GraphQL.

Mutation queries modify data in the data store and returns a value. It can be used to

insert, update, or delete data. Mutations are defined as a part of the schema.

The syntax of a mutation query is given below:

mutation{

 someEditOperation(dataField:"valueOfField"):returnType

 }

Illustration

Let us understand how to add new student record into the datastore using a mutation

query.

Step 1: Download and Install Required Dependencies for the Project

Create a project folder by the name mutation-app. Change your directory to mutation-

app from the terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a schema.graphql File

Add schema.graphql file in the project folder mutation-app and add the following code:

type Query {

 greeting:String

}

type Mutation {

 createStudent(collegeId:ID,firstName:String,lastName:String):String

}

Note that the function createStudent returns a String type. This is a unique identifier (ID)

which is generated after creating a student.

10. GraphQL – Mutation

GraphQL

 45

Step 3: Create a resolver.js File

Create a file resolvers.js in the project folder and add the following code:

 const db = require('./db')

 const Mutation ={

 createStudent:(root,args,context,info)=>{

 return db.students.create({collegeId:args.collegeId,

 firstName:args.firstName,

 lastName:args.lastName})

 }

}

const Query = {

 greeting:()=>"hello"

}

module.exports = {Query,Mutation}

The mutation function points to students collection in the datastore. To add a new student,

invoke the create method in students collection. The args object will contain the

parameters which are passed in the query. The create method of students collection will

return the id of a newly created student object.

Step 4: Run the Application

Create a server.js file. Refer to step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we use GraphiQL as a client to test the application.

Next step is to open browser and type the URL http://localhost:9000/graphiql. Type the

following query in the editor:

//college Id should be matched with data from colleges.json for easy retrieval

mutation {

 createStudent(collegeId:"col-2",firstName:"Tim",lastName:"George")

}

http://localhost:9000/graphiql

GraphQL

 46

The above query will create a student object in student.json file. The query will return a

unique identifier. The response of the query is as shown below:

 {

 "data": {

 "createStudent": "SkQtxYBUm"

 }

}

To verify if the student object is created, we can use the studentById query. You can also

open the students.json file from data folder to verify the id.

To use studentById query, edit the schema.graphql as given below:

type Query {

 studentById(id:ID!):Student

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 collegeId:String

}

Edit the resolver.js file as given below:

const db = require('./db')

const Query = {

 studentById:(root,args,context,info) => {

 return db.students.get(args.id);

 }

}

const Mutation ={

 createStudent:(root,args,context,info)=>{

 return db.students.create({collegeId:args.collegeId,

 firstName:args.firstName,

 lastName:args.lastName})

GraphQL

 47

 }

}

module.exports = {Query,Mutation}

Given below is the query to get student by unique id returned from the mutation query:

{

 studentById(id:"SkQtxYBUm"){

 id

 firstName

 lastName

 }

}

The response from the server is as follows:

{

 "data": {

 "studentById": {

 "id": "SkQtxYBUm",

 "firstName": "Tim",

 "lastName":"George"

 }

 }

}

GraphQL

 48

Returning an Object in Mutation

It is best practice to return an object in mutation. For example, the client application wants

to fetch student and college details. In this case, rather than making two different

requests, we can create a query that returns an object containing students and their

college details.

Step 1: Edit Schema File

Add a new method named addStudent which returns object in mutation type

of schema.graphql.

Let us learn how to access the college details through student details. Add college type in

the schema file.

 type Mutation {

addStudent_returns_object(collegeId:ID,firstName:String,lastName:String):Studen

t

 createStudent(collegeId:ID,firstName:String,lastName:String):String

}

type College {

 id:ID!

 name:String

 location:String

 rating:Float

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 college:College

}

GraphQL

 49

Step 2: Update the resolvers.js File

Update a file resolvers.js in the project folder and add the following code:

 const Mutation ={

 createStudent:(root,args,context,info)=>{

 return db.students.create({collegeId:args.collegeId,

 firstName:args.firstName,

 lastName:args.lastName})

 },

 // new resolver function

 addStudent_returns_object:(root,args,context,info)=>{

 const id= db.students.create({collegeId:args.collegeId,

 firstName:args.firstName,

 lastName:args.lastName})

 return db.students.get(id)

 }

}

//for each single student object returned,resolver is invoked

const Student={

 college:(root)=>{

 return db.colleges.get(root.collegeId);

 }

 }

module.exports = {Query,Student,Mutation}

GraphQL

 50

Step 3: Start the Server and Type the Request Query in GraphiQL

Next, we shall start the server and request query in GraphiQL with the following code:

mutation {

 addStudent_returns_object(collegeId:"col-

101",firstName:"Susan",lastName:"George"){

 id

 firstName

 college{

 id

 name

 }

 }

}

The above query adds a new student and retrieves the student object along with college

object. This saves round trips to the server.

The response is as given below:

 {

 "data": {

 "addStudent_returns_object": {

 "id": "rklUl08IX",

 "firstName": "Susan",

 "college": {

 "id": "col-101",

 "name": "AMU"

 }

 }

 }

}

GraphQL

 51

While adding or modifying data, it is important to validate the user input. For example, we

may need to ensure that the value of a field is always not null. We can use ! (non-

nullable) type marker in GraphQL to perform such validation.

The syntax for using the ! type marker is as given below:

 type TypeName {

 field1:String!,

 field2:String!,

 field3:Int!

 }

The above syntax ensures that all the fields are not null.

If we want to implement additional rules like checking a string's length or checking if a

number is within a given range, we can define custom validators. The custom validation

logic will be a part of the resolver function. Let us understand this with the help of an

example.

Illustration: Implementing Custom Validators

Let us create a signup form with basic validation. The form will have email, firstname and

password fields.

Step 1: Download and Install Required Dependencies for the Project

Create a folder named validation-app. Change the directory to validation-app from the

terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder validation-app and add the following

code:

type Query {

greeting:String

}

type Mutation {

 signUp(input:SignUpInput):String

}

11. GraphQL – Validation

GraphQL

 52

input SignUpInput {

 email:String!,

 password:String!,

 firstName:String!

}

Note: We can use the input type SignUpInput to reduce the number of parameters in

signUp function. So, signUp function takes only one parameter of type SignUpInput.

Step 3: Create Resolvers

Create a file resolvers.js in the project folder and add the following code:

const Query = {

 greeting:()=>"Hello"

}

const Mutation ={

 signUp:(root,args,context,info)=>{

const {email,firstName,password} = args.input;

const emailExpression =

/^(([^<>()\[\]\\.,;:\s@"]+(\.[^<>()\[\]\\.,;:\s@"]+)*)|(".+"))@((\[[0-

9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+[a-zA-

Z]{2,}))$/;

 const isValidEmail= emailExpression.test(String(email).toLowerCase())

 if(!isValidEmail)

 throw new Error("email not in proper format")

 if(firstName.length>15)

 throw new Error("firstName should be less than 15 characters")

 if(password.length <8)

 throw new Error("password should be minimum 8 characters")

 return "success";

 }

GraphQL

 53

}

module.exports={Query,Mutation}

The resolver function, signUp accepts parameters email, password and firstName. These

will be passed through input variable so that it can be accessed through args.input.

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we will use GraphiQL as a client to test the application.

Open the browser and enter the URL http://localhost:9000/graphiql. Type the following

query in the editor:

 mutation doSignUp($input:SignUpInput) {

 signUp(input:$input)

}

Since input to signup function is a complex type, we need to use query variables in

graphiql. For this, we need to first give a name to the query and call it doSignUp,

the $input is a query variable.

The following query variable must be entered in query variables tab of graphiql:

 {

 "input":{

 "email": "abc@abc",

 "firstName": "kannan",

 "password": "pass@1234"

 }

}

The errors array contains the details of validation errors as shown below:

{

 "data": {

 "signUp": null

 },

 "errors": [

 {

 "message": "email not in proper format",

 "locations": [

 {

GraphQL

 54

 "line": 2,

 "column": 4

 }

],

 "path": [

 "signUp"

]

 }

]

}

We have to enter a proper input for each field as given below:

 {

 "input":{

 "email": "abc@abc.com",

 "firstName": "kannan",

 "password": "pass@1234"

 }

}

The response is as follows:

 {

 "data": {

 "signUp": "success"

 }

}

Here, in the below query, we are not assigning any password.

 {

 "input":{

 "email": "abc@abc.com",

 "firstName": "kannan"

 }

}

GraphQL

 55

If a required field is not provided, then qraphql server will display the following error:

{

 "errors": [

 {

 "message": "Variable \"$input\" got invalid value

{\"email\":\"abc@abc.com\",\"firstName\":\"kannan\"}; Field value.password of

required type String! was not provided.",

 "locations": [

 {

 "line": 1,

 "column": 19

 }

]

 }

]

}

GraphQL

 56

Web applications send and retrieve data asynchronously (in the background). AJAX allows

websites to load content onto the screen without refreshing the page. jQuery provides

several methods for AJAX functionality thus making it easier to use AJAX. In this chapter,

we shall learn how we can integrate GraphQL with jQuery.

Consider an application using client server architecture. We can build a front end webpage

that requests data from a GraphQL server. The webpage will make AJAX calls using jQuery

to the GraphQL server.

To integrate GraphQL with JQuery, let us inspect the GraphiQL request headers and

understand the request parameters.

Start the hello-world app (refer to chapter 6 for the relevant illustration). Type the

graphql query {greeting} in the GraphiQL window. Right-click and inspect or press (ctrl +

shift + I) on chrome to go to the network tab as shown below:

From the simple hello-world example, we can understand that http method used

is POST. Now in the browser, scroll down to the header section to view the request

payload.

Once you click on view code, you will see the following in the request payload section of

chrome.

 {"query":"{\n greeting\n}","variables":null,"operationName":null}

Also note the request URL, http://localhost:9000/graphql that should be called from client

application.

12. GraphQL – JQuery Integration

https://user-images.githubusercontent.com/9062443/44342005-4f327280-a4a7-11e8-87ff-8afd3bf3547e.png

GraphQL

 57

Illustration

Let us understand how to integrate GraphQL with JQuery using a step-wise process.

Setting up the Server

We will learn to set up the server using the following steps:

Step 1: Download and Install Required Dependencies for the Project

Create a folder named jquery-server-app. Change your directory to jquery-server-

app from the terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder jquery-server-app and add the following

code:

type Query

{

 greeting: String

 sayHello(name:String!):String

}

The file has defined two queries greeting and sayHello. The sayHello query accepts a

string parameter and returns another string. The parameter to the sayHello() function is

not null.

Step 3: Create Resolvers

Create a file resolvers.js in the project folder and add the following code:

const Query =

{

 greeting: () => 'Hello GraphQL From TutorialsPoint !!' ,

 sayHello:(root,args,context,info)=> `Hi ${args.name} GraphQL server says

Hello to you!!`

}

module.exports = {Query}

Here, greeting and sayHello are two resolvers. In sayHello resolver, the value passed to

the name parameter can be accessed through args. To access resolver functions outside

the module, Query object has to be exported using module.exports.

GraphQL

 58

Step 4: Run the Application

Create a server.js file. Refer to step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we use GraphiQL as a client to test the application.

Open browser and type the URL http://localhost:9000/graphiql. Type the following query

in the editor:

{

 greeting,

 sayHello(name:"Mohtashim")

}

The response from the server is as given below:

{

 "data": {

 "greeting": "Hello GraphQL From TutorialsPoint !!",

 "sayHello": "Hi Mohtashim GraphQL server says Hello to you!!"

 }

}

Setting up the Client

Since, we have already set up the server, now we will learn how to set up the client.

Step 1: Create a new folder jquery-client-app outside the current project

folder

First, we will create a folder named jquery-client-app outside the project folder.

Step 2: Create a HTML Page index.html for jQuery Integration

We will create a client application in jquery and invoke both the methods. Following is the

code for index.html file. The index.html page sends requests to the server when the

buttons – Greet and SayHello are clicked. We will make asynchronous request

using $.ajax() function.

<!DOCTYPE html>

<html>

<head>

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script

>

GraphQL

 59

<script>

$(document).ready(function(){

 $("#btnSayhello").click(function(){

 const name = $("#txtName").val();

 console.log(name);

 $("#SayhelloDiv").html('loading....');

 $.ajax({url: "http://localhost:9000/graphql",

 contentType: "application/json",type:'POST',

 data: JSON.stringify({ query:`{

 sayHello(name:"${name}")

 }`

}),

 success: function(result){

 console.log(JSON.stringify(result))

 $("#SayhelloDiv").html("<h1>"+result.data.sayHello +"</h1>");

 }});

 });

 $("#btnGreet").click(function(){

 $("#greetingDiv").html('loading....');

 //https://kannan-first-graphql-app.herokuapp.com/graphql

 $.ajax({url: "http://localhost:9000/graphql",

 contentType: "application/json",

type:'POST',

 data: JSON.stringify({

query:`{greeting}`

}),

GraphQL

 60

 success: function(result){

 $("#greetingDiv").html("<h1>"+result.data.greeting+"</h1>");

 }});

 });

});

</script>

</head>

<body>

 <h1>Jquery Client </h1>

<hr/>

 <section>

 <button id="btnGreet">Greet</button>

 <div id="greetingDiv">

 </div>

 </section>

 <hr/>

 <section>

 Enter a name:<input id="txtName" type="text" value="kannan"/>

 <button id="btnSayhello">SayHello</button>

 <div id="SayhelloDiv">

 </div>

 </section>

</body>

</html>

Open this file in the browser and click on the button to see the response. The output will

be as given below:

GraphQL

 61

https://user-images.githubusercontent.com/9062443/44388206-2791e780-a545-11e8-9df6-20fc55625ac7.png

GraphQL

 62

React is a Javascript library for building user interfaces. This chapter explains how one can

integrate GraphQL with a React application.

Illustration

The quickest way to set up a react project is by using the Create React App tool. In the

subsequent sections, we will learn how to set up both the Server and the Client.

Setting up the Server

For setting up the Server, follow the below steps:

Step 1: Download and Install Required Dependencies for the Project

Create a folder react-server-app. Change your directory to react-server-app from the

terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder react-server-app and add the following

code:

type Query

{

 greeting: String

 sayHello(name:String!):String

}

The file has defined two queries – greeting and sayHello. The sayHello query accepts a

string parameter and returns another string. The parameter to the sayHello() function is

not null.

Step 3: Create Resolvers

Create a file resolvers.js in the project folder and add the following code:

const Query =

{

 greeting: () => 'Hello GraphQL From TutorialsPoint !!' ,

 sayHello:(root,args,context,info)=> `Hi ${args.name} GraphQL server says

Hello to you!!`

13. GraphQL – React Integration

GraphQL

 63

}

module.exports = {Query}

Here greeting and sayHello are two resolvers. In the sayHello resolver, the value passed

to the name parameter can be accessed through args. To access resolver functions outside

the module, Query object has to be exported using module.exports.

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we use GraphiQL as a client to test the application.

Open browser and type the URL http://localhost:9000/graphiql. Type the following query

in the editor:

{

 greeting,

 sayHello(name:"Mohtashim")

}

The response from the server is given below:

{

 "data": {

 "greeting": "Hello GraphQL From TutorialsPoint !!",

 "sayHello": "Hi Mohtashim GraphQL server says Hello to you!!"

 }

}

http://localhost:9000/graphiql

GraphQL

 64

Setting up the Client

Open a new terminal for client. The server terminal should be kept running before

executing the client application. React application will be running on port number 3000

and server application on port number 9000.

Step 1: Create a React Project hello-world-client

In the client terminal, type the following command:

npx create-react-app hello-world-client

This will install everything needed for a typical react application. The npx utility

and create-react-app tool create a project with name hello-world-client. Once the

installation is completed, open the project in VSCode.

Step 2: Start hello-world-client

Change the current folder path in the terminal to hello-world-client. Type npm start to

launch the project. This will run a development server at port 3000 and will automatically

open the browser and load the index page.

This is shown in the screenshot given below:

Step 3: Modify the App Component

In the App.js inside src folder, add two functions, one to load greeting and another to load

sayHello messages.

Following is the loadGreeting function which sends GraphQL query for greeting.

async function loadGreeting(){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

https://user-images.githubusercontent.com/9062443/45262323-58718800-b432-11e8-89d9-daf6ed707f98.png

GraphQL

 65

 body:JSON.stringify({query:'{greeting}'})

 })

 const rsponseBody= await response.json();

 return rsponseBody.data.greeting;

 console.log("end of function")

}

Following is the loadSayhello function which sends GraphQL query for sayHello:

async function loadSayhello(name){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

 body:JSON.stringify({query:`{sayHello(name:"${name}")}`})

 })

The complete App.js file is shown below:

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

async function loadGreeting(){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

 body:JSON.stringify({query:'{greeting}'})

 })

 const rsponseBody= await response.json();

 return rsponseBody.data.greeting;

 console.log("end of function")

GraphQL

 66

}

 async function loadSayhello(name){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

 body:JSON.stringify({query:`{sayHello(name:"${name}")}`})

 })

 const rsponseBody= await response.json();

 return rsponseBody.data.sayHello;

 }

class App extends Component {

 constructor(props){

 super(props);

 this.state = {greetingMessage:'',sayHelloMessage:'',userName:''}

 this.updateName = this.updateName.bind(this);

 this.showSayHelloMessage = this.showSayHelloMessage.bind(this);

 this.showGreeting = this.showGreeting.bind(this);

 }

 showGreeting(){

 loadGreeting().then(g=>this.setState({greetingMessage:g+" :-)"}))

 }

 showSayHelloMessage(){

 const name =this.state.userName;

 console.log(name)

 loadSayhello(name).then(m=>this.setState({sayHelloMessage:m}))

 }

 updateName(event){

GraphQL

 67

 this.setState({userName:event.target.value})

 }

 render() {

 return (

 <div className="App">

 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>

 </header>

 <section>

 <button id="btnGreet"

onClick={this.showGreeting}>Greet</button>

 <div id="greetingDiv">

 <h1>

 {this.state.greetingMessage}

 </h1>

 </div>

 </section>

 <hr/>

 <section>

 Enter a name:<input id="txtName" type="text"

onChange={this.updateName}

 value={this.state.userName}/>

 <button id="btnSayhello"

onClick={this.showSayHelloMessage}>SayHello</button>

 user name is:{this.state.userName}

 <div id="SayhelloDiv">

 <h1> {this.state.sayHelloMessage} </h1>

 </div>

GraphQL

 68

 </section>

 </div>

);

 }

}

export default App;

Once both the applications are running, click on the greet button. Next, enter a name in

the textbox and click on sayHello button. The output will be as given below:

https://user-images.githubusercontent.com/9062443/44403682-b6692900-a572-11e8-883b-1c8d50eada16.png

GraphQL

 69

We have used Apollo Server to build graphql specification on server side. It is quick and

easy to build production ready GraphQL server. Now let us understand the client side.

Apollo Client is the best way to use GraphQL to build client applications. The client is

designed to help developer quickly build a UI that fetches data with GraphQL and can be

used with any JavaScript front-end.

Apollo Client supports the following platforms:

Caching is one of the major features of Apollo Client. apollo-boost is a convenience

package which brings in a bunch of other dependencies.

Illustration

Let us see how to use Apollo Client to build client applications using the following steps:

Setting up Server

We have to follow the below steps for setting up a server:

Step 1: Download and Install Required Dependencies for the Project

Create a folder apollo-server-app. Change your directory to apollo-server-app from the

terminal. Then, follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder apollo-server-app and add the following

code:

type Query

{

 students:[Student]

 }

14. GraphQL – Apollo Client

S. No Platform Framework

1 Javascript React,Angular,Vue,Meteor,Ember

2 WebComponents Polymer , lit-apollo

3 Native Mobile Native Android with Java, Native iOS with Swift

GraphQL

 70

type Student {

 id:ID!

 firstName:String

 lastName:String

 college:College

}

type College {

 id:ID!

 name:String

 location:String

 rating:Float

}

Step 3: Add Resolvers

Create a file resolvers.js in the project folder and add the following code:

const db = require('./db')

const Query = {

 //resolver function for students returns list

 students:()=>db.students.list(),

}

const Student={

 college:(root)=>{

 return db.colleges.get(root.collegeId);

 }

}

module.exports = {Query,Student}

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we will use GraphiQL as a client to test the application.

Open browser and type the URL http://localhost:9000/graphiql. Type the following query

in the editor.

http://localhost:9000/graphiql

GraphQL

 71

 {

 students{

 id

 firstName

 college{

 name

 }

 }

 }

The response for the query is as given below:

{

 "data": {

 "students": [

 {

 "id": "S1001",

 "firstName": "Mohtashim",

 "college": {

 "name": "CUSAT"

 }

 },

 {

 "id": "S1002",

 "firstName": "Kannan",

 "college": {

 "name": "AMU"

 }

 },

 {

 "id": "S1003",

 "firstName": "Kiran",

 "college": {

 "name": "AMU"

 }

 }

]

GraphQL

 72

 }

}

Setting up the Client

Open a new terminal for client. The server terminal should be kept running before

executing the client application. React application will be running on port number 3000

and server application on port number 9000.

Step 1: Create a React Application

In the client terminal, type the following command:

npx create-react-app hello-world-client

This will install everything needed for a typical react application. The npx utility and create-

react-app tool create a project with name hello-world-client. Once the installation is

completed, open the project in VSCode.

Step 2: Start hello-world-client

Change the current folder path in the terminal to hello-world-client. Type npm start to

launch the project. This will run a development server at port 3000 and will automatically

open the browser and load the index page.

This is shown in the screenshot given below:

Step 3: Install Apollo Client Libraries

To install an Apollo Client, open a new terminal and be in current project folder path. Type

the following command:

 npm install apollo-boost graphql

https://user-images.githubusercontent.com/9062443/45262323-58718800-b432-11e8-89d9-daf6ed707f98.png

GraphQL

 73

This will download the graphql libraries for client side and also the Apollo Boost package.

We can cross check this by typing npm view in apollo-boost dependencies. This will have

many dependencies as shown below:

 { 'apollo-cache': '^1.1.15',

 'apollo-cache-inmemory': '^1.2.8',

 'apollo-client': '^2.4.0',

 'apollo-link': '^1.0.6',

 'apollo-link-error': '^1.0.3',

 'apollo-link-http': '^1.3.1',

 'apollo-link-state': '^0.4.0',

 'graphql-tag': '^2.4.2' }

We can clearly see that Apollo-Client library is installed.

Step 4: Modify the App Component in index.js File

With Apollo Client, we can directly call server without the use of fetch API. Also, the queries

and mutations should not be embedded in a string made with back tick notation. This is

because, the gql function directly parses the queries. This means, a programmer can

directly write queries in the same way when writing queries in GraphiQL tool. gql is a tag

function which will parse the template string written in back tick notation to graphql query

object. The Apollo Client query method returns a promise.

Following code snippet shows how to import Apollo Client:

import {ApolloClient ,HttpLink , InMemoryCache} from 'apollo-boost'

const endPointUrl = 'http://localhost:9000/graphql'

const client = new ApolloClient({

 link: new HttpLink({uri:endPointUrl}),

 cache:new InMemoryCache()

});

In the previous chapter, we discussed how to use fetch API for HTTP requests. The following

code shows how to use gql function. The loadStudentsAsync function uses graphql client

to query the server.

async function loadStudentsAsync() {

 const query=gql`

 {

 students{

 id

 firstName

 lastName

GraphQL

 74

 college{

 name

 }

 }

 }

 `

 const {data} = await client.query({query}) ;

 return data.students;

}

You only need to keep the index.js in src folder and index.html in public folder; all other

files that are auto generated can be removed.

The directory structure is given below:

hello-world-client /

 -->node_modules

 -->public

 index.html

 -->src

 index.js

 -->package.json

Following is the index.js in react application:

import React , {Component} from 'react';

import ReactDOM from 'react-dom';

// apollo client

import {ApolloClient ,HttpLink , InMemoryCache} from 'apollo-boost'

import gql from 'graphql-tag'

const endPointUrl = 'http://localhost:9000/graphql'

const client = new ApolloClient({

 link: new HttpLink({uri:endPointUrl}),

 cache:new InMemoryCache()

});

GraphQL

 75

async function loadStudentsAsync() {

 const query=gql`

 {

 students{

 id

 firstName

 lastName

 college{

 name

 }

 }

 }

 `

 const {data} = await client.query({query}) ;

 return data.students;

}

class App extends Component {

 constructor(props) {

 super(props);

 this.state ={

 students:[]

 }

 this.studentTemplate= [];

 }

 async loadStudents(){

 const studentData = await loadStudentsAsync();

 this.setState({

 students: studentData

 })

 console.log("loadStudents")

 }

 render()

 {

GraphQL

 76

 return(

 <div>

 <input type="button" value="loadStudents"

onClick={this.loadStudents.bind(this)}/>

 <div>

 <hr/>

 <table border="3">

 <thead>

 <tr>

 <td>First Name</td>

 <td>Last Name</td>

 <td>college Name</td>

 </tr>

 </thead>

 <tbody>

 { this.state.students.map(s=>{

 return (

 <tr key={s.id}>

 <td>

 {s.firstName}

 </td>

 <td>

 {s.lastName}

 </td>

 <td>

 {s.college.name}

 </td>

 </tr>

)

 })}

 </tbody>

 </table>

 </div>

 </div>

)

 }

GraphQL

 77

}

ReactDOM.render(<App/>, document.getElementById('root'));

The react application will load students from GraphQL server, once we click on

loadStudents button as shown below:

https://user-images.githubusercontent.com/9062443/44627918-45e85080-a954-11e8-89b0-1217dfbb1861.png

GraphQL

 78

Authentication is the process or action of verifying the identity of a user or a process. It is

important that an application authenticates a user to ensure that the data is not available

to an anonymous user. In this section, we will learn how to authenticate a GraphQL client.

Express JWT

In this example, we will use jQuery to create a client application. To authenticate requests,

we will use express-jwt module on the server-side.

The express-jwt module is a middleware that lets you authenticate HTTP requests using

JWT tokens. JSON Web Token (JWT) is a long string that identifies the logged in user.

Once the user logs in successfully, the server generates a JWT token. This token distinctly

identifies a log. In other words, the token is a representation of user's identity. So next

time, when the client comes to the server, it has to present this token to get the required

resources. The client can be either a mobile application or a web application.

Illustration

We will follow a step-wise procedure to understand this illustration.

Setting up the Server

Following are the steps for setting up the server:

Step 1: Download and Install Required Dependencies for the Project

Create a folder auth-server-app. Change your directory to auth-server-app from the

terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

15. GraphQL – Authenticating Client

https://user-images.githubusercontent.com/9062443/45263854-5d910000-b44f-11e8-834a-942389a0b2a9.jpg

GraphQL

 79

Step 2: Create a Schema

Add schema.graphql file in the project folder auth-server-app and add the following

code:

type Query

{

 greetingWithAuth:String

}

Step 3: Add Resolvers

Create a file resolvers.js in the project folder and add the following code:

The resolver will verify if an authenticated user object is available in the context object of

GraphQL. It will raise an exception if an authenticated user is not available.

const db = require('./db')

const Query = {

 greetingWithAuth:(root,args,context,info)=>{

//check if the context.user is null

 if (!context.user) {

 throw new Error('Unauthorized');

 }

 return "Hello from TutorialsPoint, welcome back :

"+context.user.firstName;

 }

}

module.exports = {Query}

Step 4: Create Server.js File

The authentication middleware authenticates callers using a JSON Web Token. The URL

for authentication is http://localhost:9000/login.

This is a post operation. The user has to submit his email and password which will be

validated from the backend. If a valid token is generated using jwt.sign method, the client

will have to send this in header for subsequent requests.

If the token is valid, req.user will be set with the JSON object decoded to be used by later

middleware for authorization and access control.

http://localhost:9000/login

GraphQL

 80

The following code uses two modules: jsonwebtoken and express-jwt to authenticate

requests:

 When the user clicks on the greet button, a request for the /graphql route is

issued. If the user is not authenticated, he will be prompted to authenticate himself.

 The user is presented with a form that accepts email id and password. In our

example, the /login route is responsible for authenticating the user.

 The /login route verifies if a match is found in the database for credentials provided

by the user.

 If the credentials are invalid, a HTTP 401 exception is returned to the user.

 If the credentials are valid, a token is generated by the server. This token is sent

as a part of response to the user. This is done by the jwt.sign function.

const expressJwt = require('express-jwt');

const jwt = require('jsonwebtoken');

//private key

const jwtSecret = Buffer.from('Zn8Q5tyZ/G1MHltc4F/gTkVJMlrbKiZt', 'base64');

app.post('/login', (req, res) => {

 const {email, password} = req.body;

 //check database

 const user = db.students.list().find((user) => user.email === email);

 if (!(user && user.password === password)) {

 res.sendStatus(401);

 return;

 }

 //generate a token based on private key , token doesn't have an expiry

 const token = jwt.sign({sub: user.id}, jwtSecret);

 res.send({token});

});

GraphQL

 81

For every request, the app.use() function will be called. This in turn will invoke the

expressJWT middleware. This middleware will decode the JSON Web Token. The user id

stored in the token will be retrieved and stored as a property user in the request object.

//decodes the JWT and stores in request object

app.use(expressJwt({

 secret: jwtSecret,

 credentialsRequired: false

}));

To make available the user property within GraphQL context, this property is assigned to

the context object as shown below:

//Make req.user available to GraphQL context

app.use('/graphql', graphqlExpress((req) => ({

 schema,

 context: {user: req.user && db.students.get(req.user.sub)}

})));

Create server.js in current folder path. The complete server.js file is as follows:

const bodyParser = require('body-parser');

const cors = require('cors');

const express = require('express');

const expressJwt = require('express-jwt'); //auth

const jwt = require('jsonwebtoken'); //auth

const db = require('./db');

var port = process.env.PORT || 9000

const jwtSecret = Buffer.from('Zn8Q5tyZ/G1MHltc4F/gTkVJMlrbKiZt', 'base64');

const app = express();

const fs = require('fs')

const typeDefs = fs.readFileSync('./schema.graphql',{encoding:'utf-8'})

const resolvers = require('./resolvers')

const {makeExecutableSchema}=require('graphql-tools')

GraphQL

 82

const schema = makeExecutableSchema({typeDefs , resolvers})

app.use(cors(), bodyParser.json(), expressJwt({

 secret: jwtSecret,

 credentialsRequired: false

}));

const {graphiqlExpress,graphqlExpress} = require('apollo-server-express')

app.use('/graphql', graphqlExpress((req) => ({

 schema,

 context: {user: req.user && db.students.get(req.user.sub)}

})));

app.use('/graphiql',graphiqlExpress({endpointURL:'/graphql'}))

//authenticate students

app.post('/login', (req, res) => {

 const email = req.body.email;

 const password = req.body.password;

 const user = db.students.list().find((user) => user.email === email);

 if (!(user && user.password === password)) {

 res.sendStatus(401);

 return;

 }

 const token = jwt.sign({sub: user.id}, jwtSecret);

 res.send({token});

});

app.listen(port, () => console.info(`Server started on port ${port}`));

GraphQL

 83

Step 5: Run the Application

Execute the command npm start in the terminal. The server will be up and running on

9000 port. Here, we use GraphiQL as a client to test the application.

Open browser and type the URL http://localhost:9000/graphiql. Type the following query

in the editor:

{

 greetingWithAuth

}

In the below response, we got an error as we are not authenticated user.

{

 "data": {

 "greetingWithAuth": null

 },

 "errors": [

 {

 "message": "Unauthorized",

 "locations": [

 {

 "line": 2,

 "column": 3

 }

],

 "path": [

 "greetingWithAuth"

]

 }

]

}

In the next section, let us create a client application to authenticate.

GraphQL

 84

Setting up the JQuery Client

In the client application, a greet button is provided which will invoke the

schema greetingWithAuth. If you click the button without login, it will give you the error

message as below:

Once you log in with a user available in database, the following screen will appear:

https://user-images.githubusercontent.com/9062443/44637227-a5367700-a9cd-11e8-91eb-79ff28e0673d.png
https://user-images.githubusercontent.com/9062443/44637611-d3b55180-a9cf-11e8-964c-518015d0c117.png

GraphQL

 85

To access greeting, we need to first access the URL http://localhost:9000/login route as

below.

The response will contain the token generated from the server.

 $.ajax({

 url:"http://localhost:9000/login",

 contentType:"application/json",

 type:"POST",

 data:JSON.stringify({email,password}),

 success:function(response){

 loginToken = response.token;

 $('#authStatus')

 .html("authenticated successfully")

 .css({"color":"green",'font-weight':'bold'});

 $("#greetingDiv").html('').css({'color':''});

 },

 error:(xhr,err)=> alert('error')

 })

After a successful login, we can access greetingWithAuth schema as given below. There

should be an Authorizationheader for all the subsequent requests with bearer token.

 { url: "http://localhost:9000/graphql",

 contentType: "application/json",

 headers: {"Authorization": 'bearer '+loginToken}, type:'POST',

 data: JSON.stringify({

 query:`{greetingWithAuth}`

 }

The following is the code for index.html:

<!DOCTYPE html>

<html>

<head>

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script

>

<script>

$(document).ready(function(){

 let loginToken="";

GraphQL

 86

 $("#btnGreet").click(function(){

 $.ajax({url: "http://localhost:9000/graphql",

 contentType: "application/json",

 headers: {"Authorization": 'bearer '+loginToken},

 type:'POST',

 data: JSON.stringify({

 query:`{greetingWithAuth}` }),

 success: function(result){

 $("#greetingDiv").html("<h1>"+result.data.greetingWithAuth+"</h1>")

 },

 error:function(jQxhr,error){

 if(jQxhr.status==401){

 $("#greetingDiv").html('please authenticate first!!')

 .css({"color":"red",'font-weight':'bold'})

 return;

 }

 $("#greetingDiv").html('error').css("color","red");

 }

 });

 });

 $('#btnAuthenticate').click(function(){

 var email = $("#txtEmail").val();

 var password = $("#txtPwd").val();

 if(email && password) {

 $.ajax({

 url:"http://localhost:9000/login",

 contentType:"application/json",

 type:"POST",

 data:JSON.stringify({email,password}),

 success:function(response){

GraphQL

 87

 loginToken = response.token;

 $('#authStatus')

 .html("authenticated successfully")

 .css({"color":"green",'font-weight':'bold'});

 $("#greetingDiv").html('').css({'color':''});

 },

 error:(xhr,err)=> alert('error')

 })

 }else alert("email and pwd empty")

 })

});

</script>

</head>

<body>

 <h1> GraphQL Authentication </h1>

<hr/>

 <section>

 <button id="btnGreet">Greet</button>

 <div id="greetingDiv">

 </div>

 </section>

 <hr/>

 <section id="LoginSection">

 <header>

 <h2>*Login first to access greeting </h2>

 </header>

 <input type="text" value="mohtashim.mohammad@tutorialpoint.org"

placeholder="enter email" id="txtEmail"/>

GraphQL

 88

 <input type="password" value="pass123" placeholder="enter password"

id="txtPwd"/>

 <input type="button" id="btnAuthenticate" value="Login"/>

 <p id="authStatus"></p>

 </section>

</body>

</html>

GraphQL

 89

Caching is the process of storing data in a temporary storage area called cache. When

you return to a page you've recently visited, the browser can get those files from the cache

rather than the original server. This saves your time, and network from the burden of

additional traffic.

Client applications interacting with GraphQL are responsible for caching data at their end.

One possible pattern for this is reserving a field, like id, to be a globally unique identifier.

InMemory Cache

InMemoryCache is a normalized data store commonly used in GraphQL client applications

without use of other library like Redux.

The sample code to use InMemoryCache with ApolloClient is given below:

 import {ApolloClient ,HttpLink , InMemoryCache} from 'apollo-boost'

 const cache = new InMemoryCache();

 const client = new ApolloClient({

 link: new HttpLink(),

 cache

 });

The InMemoryCache constructor takes an optional config object with properties to

customize your cache.

S. No Parameter Description

1 addTypename
A boolean to determine whether to add

__typename to the document (default: true)

2 dataIdFromObject

A function that takes a data object and returns a

unique identifier to be used when normalizing the

data in the store

3 fragmentMatcher
By default, the InMemoryCache uses a heuristic

fragment matcher

4 cacheRedirects
A map of functions to redirect a query to another

entry in the cache before a request takes place.

16. GraphQL – Caching

GraphQL

 90

Illustration

We will create a single page application in ReactJS with two tabs – one for the home tab

and another for students. The students tab will load data from a GraphQL server API. The

application will query for students data when the user navigates from the home tab to the

students tab. The resulting data will be cached by the application.

We will also query the server time using getTime field to verify if the page is cached. If

data is returned from the cache, the page will display the time of very first request sent

to the server. If the data is a result of a fresh request made to the sever, it will always

show the latest time from server.

Setting up the Server

Following are the steps for setting up the server:

Step 1: Download and Install Required Dependencies for the Project

Create a folder cache-server-app. Change your directory to cache-server-app from

the terminal. Follow steps 3 to 5 explained in the Environment Setup chapter.

Step 2: Create a Schema

Add schema.graphql file in the project folder cache-server-app and add the following

code:

 type Query {

 students:[Student]

 getTime:String

}

type Student {

 id:ID!

 firstName:String

 lastName:String

 fullName:String

 }

GraphQL

 91

Step 3: Add Resolvers

Create a file resolvers.js in the project folder, and add the following code:

const db = require('./db')

const Query = {

 students:()=>db.students.list(),

 getTime:()=>{

 const today = new Date();

 var h = today.getHours();

 var m = today.getMinutes();

 var s = today.getSeconds();

 return `${h}:${m}:${s}`;

 }

}

module.exports = {Query}

Step 4: Run the Application

Create a server.js file. Refer step 8 in the Environment Setup Chapter. Execute the

command npm start in the terminal. The server will be up and running on 9000 port. Here,

we will use GraphiQL as a client to test the application.

Open browser and enter the URL http://localhost:9000/graphiql. Type the following query

in the editor:

 {

 getTime

 students {

 id

 firstName

 }

 }

The sample response shows the students names and the server time.

{

 "data": {

 "getTime": "22:18:42",

 "students": [

http://localhost:9000/graphiql

GraphQL

 92

 {

 "id": "S1001",

 "firstName": "Mohtashim"

 },

 {

 "id": "S1002",

 "firstName": "Kannan"

 },

 {

 "id": "S1003",

 "firstName": "Kiran"

 }

]

 }

}

Setting up the ReactJS Client

Open a new terminal for client. The server terminal should be kept running before

executing the client application. React application will be running on port number 3000

and server application on port number 9000.

Step 1: Create a React Application

In the client terminal, type the following command:

npx create-react-app hello-world-client

This will install everything needed for a typical react application. The npx utility and

create-react-app tools create a project with name hello-world-client. Once the

installation is completed, open the project in VSCode.

Install router modules for react using following command – npm install react-router-

dom.

GraphQL

 93

Step 2: Start hello-world-client

Change the current folder path in the terminal to hello-world-client. Type npm start to

launch the project. This will run a development server at port 3000 and will automatically

open the browser and load the index page.

This is shown in the screenshot given below:

Step 3: Install Apollo Client Libraries

To install an Apollo Client, open a new terminal and be in current project folder path. Type

the following command:

npm install apollo-boost graphql

This will download the graphql libraries for client side and also the Apollo Boost package.

We can cross verify this by typing npm view apollo-boost dependencies. This will have

many dependencies as shown below:

{ 'apollo-cache': '^1.1.15',

 'apollo-cache-inmemory': '^1.2.8',

 'apollo-client': '^2.4.0',

 'apollo-link': '^1.0.6',

 'apollo-link-error': '^1.0.3',

 'apollo-link-http': '^1.3.1',

 'apollo-link-state': '^0.4.0',

 'graphql-tag': '^2.4.2' }

We can clearly see that apollo-client library is installed.

https://user-images.githubusercontent.com/9062443/45262323-58718800-b432-11e8-89d9-daf6ed707f98.png

GraphQL

 94

Step 4: Modify the App Component in index.js File

For a simple react application, you only need to keep the index.js in src folder and

index.html in public folder; all other files that are auto generated can be removed.

The directory structure is given below:

hello-world-client /

 -->node_modules

 -->public

 index.html

 -->src

 index.js

 students.js

 -->package.json

Add an additional file students.js which will contain Students Component. Student details

are fetched through the Student Component. In the App Component, we are using a

HashRouter.

Following is the index.js in react application:

import React ,{Component} from 'react';

import ReactDOM from 'react-dom';

import {HashRouter,Route , Link} from 'react-router-dom'

//components

import Students from './students'

class App extends Component {

 render(){

 return(

 <div><h1>Home !!</h1>

 <h2>Welcome to React Application !! </h2>

 </div>

)

 }

}

function getTime(){

 var d =new Date();

 return d.getHours()+":"+d.getMinutes()+":"+d.getSeconds()

}

GraphQL

 95

const routes = <HashRouter>

 <div>

 <h4>Time from react app:{getTime()}</h4>

 <header>

 <h1> <Link to="/">Home</Link> 

 <Link to="/students">Students</Link>  </h1>

 </header>

 <Route exact path="/students" component={Students}></Route>

 <Route exact path="/" component={App}></Route>

 </div>

 </HashRouter>

ReactDOM.render(routes, document.querySelector("#root"))

Step 5: Edit Component Students in Students.js

In Students Component, we will use the following two approaches to load data:

 Fetch API (loadStudents_noCache) - This will trigger a new request everytime the

clicks the student tab.

 Apollo Client (loadWithApolloclient)- This will fetch data from the cache.

Add a function loadWithApolloclient which queries for students and time from server.

This function will enable caching. Here we use a gql function to parse the query.

 async loadWithApolloclient(){

 const query =gql`{

 getTime

 students {

 id

 firstName

 }

 }`;

 const {data} = await client.query({query})

 return data;

 }

GraphQL

 96

The Fetch API is a simple interface for fetching resources. Fetch makes it easier to make

web requests and handle responses than with the older XMLHttpRequest. Following

method shows loading data directly using fetch api:

 async loadStudents_noCache(){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

 body:JSON.stringify({query:`{

 getTime

 students {

 id

 firstName

 }

 }`})

 })

 const rsponseBody= await response.json();

 return rsponseBody.data;

 }

In the constructor of StudentsComponent, call the loadWithApolloClient method. The

complete Student.js file is below:

import React ,{Component} from 'react';

import { Link} from 'react-router-dom'

//Apollo Client

import {ApolloClient , HttpLink , InMemoryCache} from 'apollo-boost'

import gql from 'graphql-tag'

const client = new ApolloClient({

 link: new HttpLink({uri:`http://localhost:9000/graphql`}),

 cache:new InMemoryCache()

})

class Students extends Component {

GraphQL

 97

 constructor(props){

 super(props);

 this.state={

 students:[{id:1,firstName:'test'}],

 serverTime:''

 }

 this.loadWithApolloclient().then(data=>{

 this.setState({

 students:data.students,

 serverTime:data.getTime

 })

 })

 }

 async loadStudents_noCache(){

 const response=await fetch('http://localhost:9000/graphql', {

 method:'POST',

 headers:{'content-type':'application/json'},

 body:JSON.stringify({query:`{

 getTime

 students {

 id

 firstName

 }

 }`})

 })

 const rsponseBody= await response.json();

 return rsponseBody.data;

 }

 async loadWithApolloclient(){

 console.log("inside apollo client function")

 const query =gql`{

 getTime

GraphQL

 98

 students {

 id

 firstName

 }

 }`;

 const {data} = await client.query({query})

 return data;

 }

 render(){

 return(

 <div>

 <h3>Time from GraphQL server :{this.state.serverTime}</h3>

 <p>Following Students Found </p>

 <div>

 {

 this.state.students.map(s=>{

 return(

 <li key={s.id}>

 {s.firstName}

)

 })

 }

 </div>

 </div>

)

 }

}

GraphQL

 99

export default Students

Step 6: Run the React Application with npm start

You can test the react application by switching from home tab to students tab. Once the

students tab is loaded with data from server. It will cache the data. You can test it by

switching from home to students tab multiple times. The output will be as shown below:

If you have loaded the students page first by typing the

URL, http://localhost:3000/#/students, you can see that the load time for react app and

GraphQL would be approximately same. After that if you switch to home view and return

to the GraphQL server, the time will not change. This shows the data is cached.

Step 7: Change loadWithApolloclient Call to loadStudents_noCache

If you change the load method to loadStudents_noCache in the constructor of

StudentComponent, the output will not cache the data. This shows the difference between

caching and non-caching.

http://localhost:3000/%23/students
https://user-images.githubusercontent.com/9062443/45249007-5aeeb780-b336-11e8-8f1d-37586b7b2266.png

GraphQL

 100

this.loadStudents_noCache().then(data=>{

 this.setState({

 students:data.students,

 serverTime:data.getTime

 })

 })

From the above output, it is clear that if you switch back and forth between the tabs, the

time from graphql server will always be the latest which means the data is not cached.

https://user-images.githubusercontent.com/9062443/45249057-24656c80-b337-11e8-986b-2e4e15e1c6c0.png

