
http://www.tutorialspoint.com/gnu_debugger/gdb_debugging_programs.htm Copyright © tutorialspoint.com

GDB - DEBUGGING PROGRAMSGDB - DEBUGGING PROGRAMS

Getting Started: Starting and Stopping
gcc -g myprogram.c

Compiles myprogram.c with the debugging option −g. You still get an a.out, but it
contains debugging information that lets you use variables and function names inside
GDB, rather than raw memory locations notfun.

gdb a.out

Opens GDB with file a.out, but does not run the program. You’ll see a prompt gdb - all
examples are from this prompt.

r

r arg1 arg2

r < file1

Three ways to run “a.out”, loaded previously. You can run it directly r, pass arguments 
rarg1arg2, or feed in a file. You will usually set breakpoints before running.

help

h breakpoints

Lists help topics help or gets help on a specific topic hbreakpoints. GDB is well-
documented.

q - Quit GDB

Stepping through Code
Stepping lets you trace the path of your program, and zero in on the code that is crashing or
returning invalid input.

l

l 50

l myfunction

Lists 10 lines of source code for current line l, a specific line l50, or for a function 
lmyfunction.

next

Runs the program until next line, then pauses. If the current line is a function, it
executes the entire function, then pauses. next is good for walking through your code
quickly.

step

Runs the next instruction, not line. If the current instruction is setting a variable, it is the
same as next. If it’s a function, it will jump into the function, execute the first statement,
then pause. step is good for diving into the details of your code.

finish

Finishes executing the current function, then pause alsocalledstepout. Useful if you
accidentally stepped into a function.

http://www.tutorialspoint.com/gnu_debugger/gdb_debugging_programs.htm


Breakpoints or Watchpoints
Breakpoints play an important role in debugging. They pause break a program when it reaches a
certain point. You can examine and change variables and resume execution. This is helpful when
some input failure occurs, or inputs are to be tested.

break 45

break myfunction

Sets a breakpoint at line 45, or at myfunction. The program will pause when it reaches
the breakpoint.

watch x == 3

Sets a watchpoint, which pauses the program when a condition changes 
whenx == 3changes. Watchpoints are great for certain inputs myPtr! = NULL without having
to break on every function call.

continue

Resumes execution after being paused by a breakpoint/watchpoint. The program will
continue until it hits the next breakpoint/watchpoint.

delete N

Deletes breakpoint N breakpointsarenumberedwhencreated.

Setting Variables
Viewing and changing variables at runtime is a critical part of debugging. Try providing invalid
inputs to functions or running other test cases to find the root cause of problems. Typically, you will
view/set variables when the program is paused.

print x

Prints current value of variable x. Being able to use the original variable names is why
the −g flag is needed; programs compiled regularly have this information removed.

set x = 3

set x = y

Sets x to a set value 3 or to another variable y

call myfunction

call myotherfunctionx

call strlenmystring

Calls user-defined or system functions. This is extremely useful, but beware of calling
buggy functions.

display x

Constantly displays the value of variable x, which is shown after every step or pause.
Useful if you are constantly checking for a certain value.

undisplay x

Removes the constant display of a variable displayed by display command.

Backtrace and Changing Frames
A stack is a list of the current function calls - it shows you where you are in the program. A frame
stores the details of a single function call, such as the arguments.



bt

Backtraces or prints the current function stack to show where you are in the current
program. If main calls function a, which calls b, which calls c, the backtrace is

c <= current location 
b 
a 
main 

up

down

Move to the next frame up or down in the function stack. If you are in c, you can move
to b or a to examine local variables.

return

Returns from current function.

Handling Signals
Signals are messages thrown after certain events, such as a timer or error. GDB may pause when
it encounters a signal; you may wish to ignore them instead.

handle [signalname] [action]

handle SIGUSR1 nostop

handle SIGUSR1 noprint

handle SIGUSR1 ignore

Instruct GDB to ignore a certain signal SIGUSR1 when it occurs. There are varying levels
of ignoring.

Loading [MathJax]/jax/output/HTML-CSS/jax.js


