GDB - DEBUGGING PROGRAMS

Getting Started: Starting and Stopping
e gCC -g myprogram.c

o Compiles myprogram.c with the debugging option —g. You still get an a.out, but it
contains debugging information that lets you use variables and function names inside
GDB, rather than raw memory locations notfun.

gdb a.out

o Opens GDB with file a.out, but does not run the program. You’ll see a prompt gdb - all
examples are from this prompt.

or
e rargl arg2
o r<filel
o Three ways to run “a.out”, loaded previously. You can run it directly r, pass arguments
rarglarg2, or feed in a file. You will usually set breakpoints before running.
e help

h breakpoints

o Lists help topics help or gets help on a specific topic hbreakpoints. GDB is well-
documented.

e q-QuitGDB
Stepping through Code

Stepping lets you trace the path of your program, and zero in on the code thatis crashing or
returning invalid input.

e |50

I myfunction

o Lists 10 lines of source code for current line I, a specific line 150, or for a function
Imyfunction.

e next

o Runs the program until next line, then pauses. If the current line is a function, it
executes the entire function, then pauses. next is good for walking through your code
quickly.

step

o Runs the nextinstruction, not line. If the current instruction is setting a variable, itis the
same as next. If it's a function, it will jump into the function, execute the first statement,
then pause. step is good for diving into the details of your code.

finish

o Finishes executing the current function, then pause alsocalledstepout. Useful if you
accidentally stepped into a function.


http://www.tutorialspoint.com/gnu_debugger/gdb_debugging_programs.htm

Breakpoints or Watchpoints

Breakpoints play an important role in debugging. They pause break a program when it reaches a
certain point. You can examine and change variables and resume execution. This is helpful when
some input failure occurs, or inputs are to be tested.

e break 45

break myfunction

o Sets a breakpoint at line 45, or at myfunction. The program will pause when it reaches
the breakpoint.

watch x ==

o Sets a watchpoint, which pauses the program when a condition changes
whenx == 3changes. Watchpoints are great for certain inputs myPtr! = NULL without having
to break on every function call.

continue

o Resumes execution after being paused by a breakpoint/watchpoint. The program will
continue until it hits the next breakpoint/watchpoint.

delete N

o Deletes breakpoint N breakpointsarenumberedwhencreated.

Setting Variables

Viewing and changing variables at runtime is a critical part of debugging. Try providing invalid
inputs to functions or running other test cases to find the root cause of problems. Typically, you will
view/set variables when the program is paused.

e printx

o Prints current value of variable x. Being able to use the original variable names is why
the —g flag is needed; programs compiled regularly have this information removed.

e setx=3
e setx=y
o Sets x to a set value 3 or to another variable y
e call myfunction
e call myotherfunctionx
o call strlenmystring

o Calls user-defined or system functions. This is extremely useful, but beware of calling
buggy functions.

e display x

o Constantly displays the value of variable x, which is shown after every step or pause.
Useful if you are constantly checking for a certain value.

e undisplay x
o Removes the constant display of a variable displayed by display command.
Backtrace and Changing Frames

A stack is a list of the current function calls - it shows you where you are in the program. A frame
stores the details of a single function call, such as the arguments.



e bt

o Backtraces or prints the current function stack to show where you are in the current
program. If main calls function a, which calls b, which calls ¢, the backtrace is

c <= current location
b

a

main

e up
e down

o Move to the next frame up or down in the function stack. If you are in ¢, you can move
to b or a to examine local variables.

e return
o Returns from current function.
Handling Signals

Signals are messages thrown after certain events, such as a timer or error. GDB may pause when
it encounters a signal; you may wish to ignore them instead.

handle [signalname] [action]

handle SIGUSR1 nostop

handle SIGUSR1 noprint

handle SIGUSR1 ignore

o Instruct GDB to ignore a certain signal SIGUSR1 when it occurs. There are varying levels

nf innnrinn

Loading [Mathjax]/jax/output/HTML-CSS/jax.js



