GIT - QUICK GUIDE

GIT - BASIC CONCEPTS

Version Control System

Version Control System VCS is a software that helps software developers to work together and
maintain a complete history of their work.

Listed below are the functions of a VCS:

¢ Allows developers to work simultaneously.
e Does not allow overwriting each other’s changes.

e Maintains a history of every version.
Following are the types of VCS:

¢ Centralized version control system CVCS.

e Distributed/Decentralized version control system DVCS.

In this chapter, we will concentrate only on distributed version control system and especially on
Git. Git falls under distributed version control system.

Distributed Version Control System

Centralized version control system CVCS uses a central server to store all files and enables team
collaboration. But the major drawback of CVCS is its single point of failure, i.e., failure of the
central server. Unfortunately, if the central server goes down for an hour, then during that hour, no
one can collaborate at all. And even in a worst case, if the disk of the central server gets corrupted
and proper backup has not been taken, then you will lose the entire history of the project. Here,
distributed version control system DVCS comes into picture.

DVCS clients not only check out the latest snapshot of the directory but they also fully mirror the
repository. If the sever goes down, then the repository from any client can be copied back to the
server to restore it. Every checkout is a full backup of the repository. Git does not rely on the
central server and that is why you can perform many operations when you are offline. You can
commit changes, create branches, view logs, and perform other operations when you are offline.
You require network connection only to publish your changes and take the latest changes.

Advantages of Git

Free and open source

Gitis released under GPL's open source license. It is available freely over the internet. You can use
Git to manage propriety projects without paying a single penny. As itis an open source, you can
download its source code and also perform changes according to your requirements.

Fast and small

As most of the operations are performed locally, it gives a huge benefit in terms of speed. Git does
not rely on the central server; thatis why, there is no need to interact with the remote server for
every operation. The core part of Git is written in C, which avoids runtime overheads associated
with other high-level languages. Though Git mirrors entire repository, the size of the data on the
client side is small. This illustrates the efficiency of Git at compressing and storing data on the
client side.

Implicit backup

The chances of losing data are very rare when there are multiple copies of it. Data present on any
client side mirrors the repository, hence it can be used in the event of a crash or disk corruption.

http://www.tutorialspoint.com/git/git_quick_guide.htm

Security

Git uses a common cryptographic hash function called secure hash function SHA1, to name and
identify objects within its database. Every file and commit is check-summed and retrieved by its
checksum at the time of checkout. It implies that, it is impossible to change file, date, and commit
message and any other data from the Git database without knowing Git.

No need of powerful hardware

In case of CVCS, the central server needs to be powerful enough to serve requests of the entire
team. For smaller teams, it is not an issue, but as the team size grows, the hardware limitations of
the server can be a performance bottleneck. In case of DVCS, developers don’t interact with the
server unless they need to push or pull changes. All the heavy lifting happens on the client side, so
the server hardware can be very simple indeed.

Easier branching

CVCS uses cheap copy mechanism, If we create a new branch, it will copy all the codes to the new
branch, so itis time-consuming and not efficient. Also, deletion and merging of branches in CVCS
is complicated and time-consuming. But branch management with Git is very simple. It takes only
a few seconds to create, delete, and merge branches.

DVCS Terminologies
Local Repository

Every VCS tool provides a private workplace as a working copy. Developers make changes in their
private workplace and after commit, these changes become a part of the repository. Git takes it
one step further by providing them a private copy of the whole repository. Users can perform
many operations with this repository such as add file, remove file, rename file, move file, commit
changes, and many more.

Working Directory and Staging Area or Index

The working directory is the place where files are checked out. In other CVCS, developers
generally make modifications and commit their changes directly to the repository. But Git uses a
different strategy. Git doesn’t track each and every modified file. Whenever you do commit an
operation, Git looks for the files present in the staging area. Only those files present in the staging
area are considered for commit and not all the modified files.

Let us see the basic workflow of Git.

Step 1 : You modify a file from the working directory.

Step 2 : You add these files to the staging area.

Step 3 : You perform commit operation that moves the files from the staging area. After push
operation, it stores the changes permanently to the Git repository.

Working directory

Git add operation

Staging area

Git commit operation

Git repository

Suppose you modified two files, namely “sort.c” and “search.c” and you want two different
commits for each operation. You can add one file in the staging area and do commit. After the first
commit, repeat the same procedure for another file.

First commit
[bash]$ git add sort.c

adds file to the staging area
[bash]$ git commit -m “Added sort operation”

Second commit
[bash]$ git add search.c

adds file to the staging area
[bash]$ git commit -m “Added search operation”

Blobs

Blob stands for Binary Large Object. Each version of a file is represented by blob. A blob holds the
file data but doesn’t contain any metadata about the file. It is a binary file, and in Git database, itis
named as SHA1 hash of that file. In Git, files are not addressed by names. Everything is content-
addressed.

Trees

Tree is an object, which represents a directory. It holds blobs as well as other sub-directories. A
tree is a binary file that stores references to blobs and trees which are also named as SHA1 hash
of the tree object.

Commits

Commit holds the current state of the repository. A commit is also named by SHA1 hash. You can
consider a commit object as a node of the linked list. Every commit object has a pointer to the
parent commit object. From a given commit, you can traverse back by looking at the parent
pointer to view the history of the commit. If a commit has multiple parent commits, then that
particular commit has been created by merging two branches.

Branches

Branches are used to create another line of development. By default, Git has a master branch,
which is same as trunk in Subversion. Usually, a branch is created to work on a new feature. Once
the feature is completed, it is merged back with the master branch and we delete the branch.
Every branch is referenced by HEAD, which points to the latest commitin the branch. Whenever
you make a commit, HEAD is updated with the latest commit.

Tags

Tag assigns a meaningful name with a specific version in the repository. Tags are very similar to
branches, but the difference is that tags are immutable. It means, tag is a branch, which nobody
intends to modify. Once a tag is created for a particular commit, even if you create a new commit,
it will not be updated. Usually, developers create tags for product releases.

Clone

Clone operation creates the instance of the repository. Clone operation not only checks out the
working copy, but it also mirrors the complete repository. Users can perform many operations with
this local repository. The only time networking gets involved is when the repository instances are
being synchronized.

Pull

Pull operation copies the changes from a remote repository instance to a local one. The pull
operation is used for synchronization between two repository instances. This is same as the update
operation in Subversion.

Push

Push operation copies changes from a local repository instance to a remote one. This is used to
store the changes permanently into the Git repository. This is same as the commit operation in
Subversion.

HEAD

HEAD is a pointer, which always points to the latest commit in the branch. Whenever you make a
commit, HEAD is updated with the latest commit. The heads of the branches are stored in
.git/refs/heads/ directory.

[Cent0S]$ 1s -1 .git/refs/heads/
master

[Cent0S]$ cat .git/refs/heads/master
570837e7d58fadbccd86cbh575d884502188b0c49

Revision

Revision represents the version of the source code. Revisions in Git are represented by commits.
These commits are identified by SHAL secure hashes.

URL
URL represents the location of the Git repository. Git URL is stored in config file.

[tom@Cent0S tom_repo]$ pwd
/home/tom/tom_repo

[tom@Cent0S tom_repo]$ cat .git/config
[core]

repositoryformatversion = 0@

filemode = true

bare = false

logallrefupdates = true

[remote "origin"]

url = gituser@git.server.com:project.git
fetch = +refs/heads/* :refs/remotes/origin/*

GIT - ENVIRONMENT SETUP

Before you can use Git, you have to install and do some basic configuration changes. Below are
the steps to install Git client on Ubuntu and Centos Linux.

Installation of Git Client

If you are using Debian base GNU/Linux distribution, then apt-get command will do the needful.

[ubuntu ~]$ sudo apt-get install git-core

[sudo] password for ubuntu:

[ubuntu ~]$ git --version
git version 1.8.1.2

And if you are using RPM based GNU/Linux distribution, then use yum command as given.
[Cent0S ~]1$

su -
Password:

[CentOS ~]# yum -y install git-core

[CentOS ~]# git --version
git version 1.7.1

Customize Git Environment

Git provides the git config tool, which allows you to set configuration variables. Git stores all global
configurations in .gitconfig file, which is located in your home directory. To set these
configuration values as global, add the --global option, and if you omit --global option, then your
configurations are specific for the current Git repository.

You can also set up system wide configuration. Git stores these values in the /etc/gitconfig file,
which contains the configuration for every user and repository on the system. To set these values,
you must have the root rights and use the --system option.

When the above code is compiled and executed, it produces the following result:
Setting username
This information is used by Git for each commit.

[jerry@Cent0S project]$ git config --global user.name "Jerry Mouse"

Setting email id
This information is used by Git for each commit.

[jerry@Cent0S project]$ git config --global user.email "jerry@tutorialspoint.com"

Avoid merge commits for pulling

You pull the latest changes from a remote repository, and if these changes are divergent, then by
default Git creates merge commits. We can avoid this via following settings.

jerry@Cent0OS project]$ git config --global branch.autosetuprebase always

Color highlighting
The following commands enable color highlighting for Git in the console.

[jerry@Cent0S project]$ git config --global color.ui true
[jerry@Cent0S project]$ git config --global color.status auto

[jerry@Cent0S project]$ git config --global color.branch auto

Setting default editor

By default, Git uses the system default editor, which is taken from the VISUAL or EDITOR
environment variable. We can configure a different one by using git config.

[jerry@Cent0S project]$ git config --global core.editor vim

Setting default merge tool

Git does not provide a default merge tool for integrating conflicting changes into your working
tree. We can set default merge tool by enabling following settings.

[jerry@Cent0S project]$ git config --global merge.tool vimdiff

Listing Git settings
To verify your Git settings of the local repository, use git config -list command as given below.

[jerry@Cent0S ~]$ git config --1list

The above command will produce the following result.

user .name=Jerry Mouse

user .email=jerry@tutorialspoint.com
push.default=nothing
branch.autosetuprebase=always
color.ui=true

color.status=auto

color.branch=auto

core.editor=vim

merge.tool=vimdiff

GIT - LIFE CYCLE

In this chapter, we will discuss the life cycle of Git. In later chapters, we will cover the Git
commands for each operation.

General workflow is as follows:
e You clone the Git repository as a working copy.
e You modify the working copy by adding/editing files.
¢ If necessary, you also update the working copy by taking other developer's changes.
e You review the changes before commit.
e You commit changes. If everything is fine, then you push the changes to the repository.

e After committing, if you realize something is wrong, then you correct the last commit and
push the changes to the repository.

Shown below is the pictorial representation of the work-flow.

Clone operation

Working copy

W

Repository

Edit, Add, Move files

Update operation

- Modifv workine conv

- B EIEE O WW W n AR R Epmy e P

Status and Diff operation

Review changes

Commit and Push

operation
Push operation

Commit changes

Amend and Push

Push operation operation

Fix mistakes

GIT - CREATE OPERATION

In this chapter, we will see how to create a remote Git repository; from now on, we will refer to it as
Git Server. We need a Git server to allow team collaboration.

Create New User

add new group
[root@Cent0S ~]# groupadd dev

add new user
[root@Cent0S ~]# useradd -G devs -d /home/gituser -m -s /bin/bash gituser

change password
[root@Cent0S ~]# passwd gituser

The above command will produce the following result.

Changing password for user gituser.

New password:

Retype new password:

passwd: all authentication token updated successfully.

Create a Bare Repository

Let us initialize a new repository by using init command followed by --bare option. It initializes the
repository without a working directory. By convention, the bare repository must be named as .git.

[gituser@Cent0S ~1$ pwd
/home/gituser

[gituser@Cent0S ~1$ mkdir project.git
[gituser@Cent0S ~]$ cd project.git/
[gituser@CentOS project.git]$ 1s

[gituser@CentOS project.git]$ git --bare init
Initialized empty Git repository in /home/gituser-m/project.git/

[gituser@Cent0S project.git]$ 1s
branches config description HEAD hooks info objects refs

Generate Public/Private RSA Key Pair

Let us walk through the process of configuring a Git server, ssh-keygen utility generates
public/private RSA key pair, that we will use for user authentication.

Open a terminal and enter the following command and just press enter for each input. After
successful completion, it will create a .ssh directory inside the home directory.

tom@Cent0S ~]$ pwd
/home/tom

[tom@Cent0S ~]$ ssh-keygen

The above command will produce the following result.

Generating public/private rsa key pair.

Enter file in which to save the key (/home/tom/.ssh/id_rsa): Press Enter Only
Created directory '/home/tom/.ssh'.

Enter passphrase (empty for no passphrase): --------------- > Press Enter Only
Enter same passphrase again: ------------c-cmmmmmmmmnonn > Press Enter Only
Your identification has been saved in /home/tom/.ssh/id_rsa.

Your public key has been saved in /home/tom/.ssh/id_rsa.pub.

The key fingerprint is:

df:93:8c:al1:b8:b7:67:69:3a:1f:65:e8:0e:€9:25:a1 tom@Cent0S

The key's randomart image is:

+--[RSA 2048]----+

I

| Soo |

| o*B. |

| E = *.= |
| oo==. .

| ..+00

I

ssh-keygen has generated two keys, first one is private i. e., id,sa and the second one is public
i.e.,idsa. pub.

Note: Never share your PRIVATE KEY with others.

Adding Keys to authorized keys

Suppose there are two developers working on a project, namely Tom and Jerry. Both users have
generated public keys. Let us see how to use these keys for authentication.

Tom added his public key to the server by using ssh-copy-id command as given below:

[tom@Cent0S ~]$ pwd
/home/tom

[tom@Cent0S ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub gituser@git.server.com
The above command will produce the following result.

gituser@git.server.com's password:
Now try logging into the machine, with "ssh 'gituser@git.server.com'", and check in:

.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.

Similarly, Jerry added his public key to the server by using ssh-copy-id command.

[jerry@Cent0S ~]$ pwd
/home/jerry

[jerry@Cent0S ~]$ ssh-copy-id -i ~/.ssh/id_rsa gituser@git.server.com

The above command will produce the following result.

gituser@git.server.com's password:

Now try logging into the machine, with "ssh 'gituser@git.server.com'", and check in:
.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

Push Changes to the Repository

We have created a bare repository on the server and allowed access for two users. From now on,
Tom and Jerry can push their changes to the repository by adding it as a remote.

Git init command creates .git directory to store metadata about the repository every time it reads
the configuration from the .git/config file.

Tom creates a new directory, adds README file, and commits his change as initial commit. After
commit, he verifies the commit message by running the git log command.

[tom@Cent0S ~]$ pwd
/home/tom

[tom@Cent0S ~]$ mkdir tom_repo
[tom@Cent0S ~]$ cd tom_repo/

[tom@Cent0S tom_repo]$ git init
Initialized empty Git repository in /home/tom/tom_repo/.git/

[tom@CentOS tom_repo]$ echo 'TODO: Add contents for README' > README

[tom@CentOS tom_repo]$ git status -s
?? README

[tom@Cent0S tom_repo]$ git add

[tom@Cent0S tom_repo]$ git status -s
A README

[tom@CentOS tom_repo]$ git commit -m 'Initial commit'
The above command will produce the following result.

[master (root-commit) 19ae206] Initial commit
1 files changed, 1 insertions(+), © deletions(-)
create mode 100644 README

Tom checks the log message by executing the git log command.
[tom@Cent0S tom_repo]$ git log

The above command will produce the following result.

commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

Tom committed his changes to the local repository. Now, it's time to push the changes to the
remote repository. But before that, we have to add the repository as a remote, this is a one-time
operation. After this, he can safely push the changes to the remote repository.

Note: By default, Git pushes only to matching branches: For every branch that exists on the local
side, the remote side is updated if a branch with the same name already exists there. In our
tutorials, every time we push changes to the origin master branch, use appropriate branch name
according to your requirement.

[tom@Cent0S tom_repo]$ git remote add origin gituser@git.server.com:project.git

[tom@CentOS tom_repo]$ git push origin master

The above command will produce the following result.

Counting objects: 3, done.

Writing objects: 100% (3/3), 242 bytes, done.
Total 3 (delta @), reused 0 (delta 0)

To gituser@git.server.com:project.git

* [new branch]

master —-> master

Now, the changes are successfully committed to the remote repository.

GIT - CLONE OPERATION

We have a bare repository on the Git server and Tom also pushed his first version. Now, Jerry can
view his changes. The Clone operation creates an instance of the remote repository.

Jerry creates a new directory in his home directory and performs the clone operation.
[jerry@Cent0S ~]$ mkdir jerry_repo
[jerry@Cent0S ~]$ cd jerry_repo/

[jerry@Cent0S jerry_repo]$ git clone gituser@git.server.com:project.git
The above command will produce the following result.

Initialized empty Git repository in /home/jerry/jerry_repo/project/.git/
remote: Counting objects: 3, done.

Receiving objects: 100% (3/3), 241 bytes, done.
remote: Total 3 (delta 0), reused 0 (delta 0)

Jerry changes the directory to new local repository and lists its directory contents.

[jerry@Cent0S jerry_repo]$ cd project/

[jerry@Cent0S jerry_repo]$ 1ls
README

GIT - PERFORM CHANGES

Jerry clones the repository and decides to implement basic string operations. So he creates string.c
file. After adding the contents, string.c will look like as follows:

#include <stdio.h>

int my_strlen(char *s)

{

char *p = s;

while (*p)
+p;

return (p - s);

}
int main(void)
{
int i;
char *s[] =
{
"Git tutorials",
"Tutorials Point"
I
for (1 = 0; 1 < 2; ++i)
printf("string lenght of %s = %d\n", s[i], my_strlen(s[i]));
return 0O;
}

He compiled and tested his code and everything is working fine. Now, he can safely add these
changes to the repository.

Git add operation adds file to the staging area.

[jerry@Cent0OS project]$ git status -s
?? string
?? string.c

[jerry@Cent0S project]$ git add string.c
Gitis showing a question mark before file names. Obviously, these files are not a part of Git, and

that is why Git does not know what to do with these files. That is why, Git is showing a question
mark before file names.

Jerry has added the file to the stash area, git status command will show files present in the staging
area.

[jerry@Cent0S project]$ git status -s
A string.c
?? string

To commit the changes, he used the git commit command followed by -m option. If we omit -m
option. Git will open a text editor where we can write multiline commit message.

[jerry@Cent0S project]$ git commit -m 'Implemented my_ strlen function'

The above command will produce the following result:

[master cbel249] Implemented my_strlen function
1 files changed, 24 insertions(+), 0 deletions(-)
create mode 100644 string.c

After commit to view log details, he runs the git log command. It will display the information of all
the commits with their commit ID, commit author, commit date and SHA-1 hash of commit.

[jerry@Cent0S project]$ git log
The above command will produce the following result:

commit cbel249b140dad24b2c35b15cc7e26a6f02d2277

Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Implemented my_strlen function
commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

GIT - REVIEW CHANGES

After viewing the commit details, Jerry realizes that the string length cannot be negative, that's why
he decides to change the return type of my_strlen function.

Jerry uses the git log command to view log details.
[jerry@Cent0S project]$ git log
The above command will produce the following result.

commit cbel249b140dad24b2c35b15cc7e26a6f02d2277
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Implemented my_strlen function

Jerry uses the git show command to view the commit details. The git show command takes SHA-
1 commitID as a parameter.

[jerry@Cent0S project]$ git show cbel249b140dad24b2c35b15cc7e26a6f02d2277

The above command will produce the following result:

commit chel249b140dad24b2c35b15cc7e26a6f02d2277
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Implemented my_strlen function

diff --git a/string.c b/string.c
new file mode 100644
index 0000000..187afb9
--- /dev/null
+++ b/string.c
@@ _010 +1124 @@
+#include <stdio.h>
+
+int my_strlen(char *s)
+

+

char *p = s;

+

+

while (*p)

+ ++p,'

+ return (p -s);

+

+ <

He changes the return type of the function from int to size_t. After testing the code, he reviews his
changes by running the git diff command.

[jerry@Cent0S project]$ git diff

The above command will produce the following result:

diff --git a/string.c b/string.c
index 187afb9..7da2992 100644
--- a/string.c

+++ b/string.c

@@ -1,6 +1,6 @@

#include <stdio.h>

-int my_strlen(char *s)
+size_t my_strlen(char *s)

{
char *p = s;
@@ -18,7 +18,7 @@ int main(void)

i

for (1 = 0; 1 < 2; ++i)

{
- printf("string lenght of %s = %d\n", s[i],
+ printf("string lenght of %s = %lu\n", s[i],
return 0;

}

my_strlen(s[i]))
my_strlen(s[i])

4

)

Git diff shows '+' sign before lines, which are newly added and '—' for deleted lines.

GIT - COMMIT CHANGES

Jerry has already committed the changes and he wants to correct his last commit. In this case, git
amend operation will help. The amend operation changes the last commit including your commit

message; it creates a new commit ID.

Before amend operation, he checks the commit log.

[jerry@Cent0S project]$ git log

The above command will produce the following result.

commit cbel1249b140dad24b2c35b15cc7e26a6f02d2277
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530
Implemented my_strlen function

commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

Jerry commits the new changes with -- amend operat

[jerry@Cent0S project]$ git status -s
M string.c
?? string

[jerry@Cent0S project]$ git add string.c
[jerry@Cent0S project]$ git status -s
M string.c

?? string

[jerry@CentOS project]$ git commit --amend -m

ion and views the commit log.

'Changed return type of my_strlen to

size_t'

[master dl1e19d3] Changed return type of my_strlen to size_t
1 files changed, 24 insertions(+), 0 deletions(-)

create mode 100644 string.c

Now, git log will show new commit message with new commit ID:
[jerry@Cent0S project]$ git log
The above command will produce the following result.

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t
commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

GIT - PUSH OPERATION

Jerry modified his last commit by using the amend operation and he is ready to push the changes.
The Push operation stores data permanently to the Git repository. After a successful push
operation, other developers can see Jerry’s changes.

He executes the git log command to view the commit details.
[jerry@Cent0S project]$ git log
The above command will produce the following result:

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t

Before push operation, he wants to review his changes, so he uses the git show command to
review his changes.

[jerry@Cent0S project]$ git show d1e19d316224cddc437e3ed34ec3c931ad803958

The above command will produce the following result:

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t

diff --git a/string.c b/string.c
new file mode 100644

index 0000000..7da2992

--- /dev/null

+++ b/string.c

@@ -0,0 +1,24 @@

+#include <stdio.h>

+

+size_t my_strlen(char *s)

+

+
char *p = s;
+
+
while (*p)
+ +p;
+ return (p -s);
+
}
+
+int main(void)
+
{ . .
+ int 1i;
+ char *s[] =
{
+ "Git tutorials",
+ "Tutorials Point"
+
+i
+
+
+
for (i = 0; i < 2; ++i)
printf("string lenght of %s = %lu\n", s[i], my_strlen(s[i]));
+
+
return O;
+

}
Jerry is happy with his changes and he is ready to push his changes.
[jerry@Cent0S project]$ git push origin master

The above command will produce the following result:

Counting objects: 4, done.

Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 517 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)

To gituser@git.server.com:project.git
19ae206..d1e19d3 master —> master

Jerry’s changes have been successfully pushed to the repository; now other developers can view

his changes by performing clone or update operation.

GIT - UPDATE OPERATION

Modify Existing Function

Tom performs the clone operation and finds a new file string.c. He wants to know who added this
file to the repository and for what purpose, so, he executes the git log command.

[tom@Cent0S ~]$ git clone gituser@git.server.com:project.git

The above command will produce the following result:

Initialized empty Git repository in /home/tom/project/.git/
remote: Counting objects: 6, done.

remote: Compressing objects: 100% (4/4), done.

Receiving objects: 100% (6/6), 726 bytes, done.

remote: Total 6 (delta 0), reused O (delta 0)

The Clone operation will create a new directory inside the current working directory. He changes
the directory to newly created directory and executes the git log command.

[tom@Cent0S ~]$ cd project/

[tom@Cent0S project]$ git log
The above command will produce the following result:

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t

commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

After observing the log, he realizes that the file string.c was added by Jerry to implement basic
string operations. He is curious about Jerry’s code. So he opens string.c in text editor and
immediately finds a bug. In my_strlen function, Jerry is not using a constant pointer. So, he decides
to modify Jerry’s code. After modification, the code looks as follows:

[tom@Cent0S project]$ git diff

The above command will produce the following result:

diff --git a/string.c b/string.c
index 7da2992..32489eb 100644
--- a/string.c

+++ b/string.c

@@ _118 +118 @@

#include <stdio.h>

-size_t my_strlen(char *s)
+size_t my_strlen(const char *s)

{
- char *p = s;
+ const char *p = s;
while (*p)
P,
}

After testing, he commits his change.

[tom@Cent0S project]$ git status -s
M string.c
?7? string

[tom@CentOS project]$ git add string.c
[tom@CentOS project]$ git commit -m 'Changed char pointer to const char pointer'
[master cea2c00] Changed char pointer to const char pointer

1 files changed, 2 insertions(+), 2 deletions(-)

[tom@Cent0S project]$ git log
The above command will produce the following result:

commit cea2cOOOf53ba99508c5959e3e12fff493b
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 08:32:07 2013 +0530

Changed char pointer to const char pointer

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t

commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

Tom uses git push command to push his changes.

[tom@CentO0S project]$ git push origin master

The above command will produce the following result:

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 336 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
d1e19d3..cea2c@0 master —> master

Add New Function

Meanwhile, Jerry decides to implement string compare functionality. So he modifies string.c.
After modification, the file looks as follows:

[jerry@Cent0S project]$ git diff
The above command will produce the following result:

index 7da2992..bc864ed 100644

--- a/string.c

+++ b/string.c

30Git Tutorials

@@ -9,9 +9,20 @@ size_t my_strlen(char *s)
return (p -s);

}
+char *my_strcpy(char *t, char *s)
+
{
+
char *p = t;
+
+ while (*t++ = *s++)
+
+
+
return p;
+
}
+
int main(void)
{ . .
int 1;
+
char p1[32];
char *s[] =

{

"Git tutorials",

"Tutorials Point"

@@ -20,5 +31,7 @@ int main(void)

for (1 = 0; 1 < 2; ++i)

printf("string lenght of %s = %lu\n", s[i], my_strlen(s[i]));

+

printf("%s\n", my_strcpy(pl, "Hello, World !!!1"));
+

return 0;

After testing, he is ready to push his change.

[jerry@Cent0S project]$ git status -s

M string.c

?? string

[jerry@Cent0S project]$ git add string.c

[jerry@CentOS project]$ git commit -m "Added my_strcpy function"

[master e944e5a] Added my_strcpy function
1 files changed, 13 insertions(+), 0 deletions(-)

Before push operation, he verifies commit by viewing log messages.
[jerry@CentOS project]$ git log
The above command will produce the following result:

commit e944e5aab74b26e7447d3281b225309e4e59efcd
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:41:42 2013 +0530

Added my_strcpy function

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t
commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

Jerry is happy with the changes and he wants to push his changes.
[jerry@Cent0S project]$ git push origin master

The above command will produce the following result:

To gituser@git.server.com:project.git

I [rejected]

master —-> master (non-fast-forward)

error: failed to push some refs to 'gituser@git.server.com:project.git'

To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes before pushing again. See the 'Note about
fast-forwards' section of 'git push --help' for details.

But Gitis not allowing Jerry to push his changes. Because Git identified that remote repository and

Jerry’s local repository are not in sync. Because of this, he can lose the history of the project. To
avoid this mess, Git failed this operation. Now, Jerry has to first update the local repository and only
thereafter, he can push his own changes.

Fetch Latest Changes

Jerry executes the git pull command to synchronize his local repository with the remote one.
[jerry@Cent0S project]$ git pull
The above command will produce the following result:

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused O (delta 0)

Unpacking objects: 100% (3/3), done.

From git.server.com:project

d1e19d3..cea2c00 master —-> origin/master

First, rewinding head to replay your work on top of it...
Applying: Added my_strcpy function

After pull operation, Jerry checks the log messages and finds the details of Tom’s commit with
commit ID cea2c000f53ba99508c5959e3el12fff493ba6f69

[jerry@Cent0S project]$ git log
The above command will produce the following result:

commit e86f0621c2a3f68190bba633a9fe6c57c94f8e4f
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:41:42 2013 +0530

Added my_strcpy function

commit cea2c000f53ba99508c5959e3el12fff493ba6f69
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 08:32:07 2013 +0530

Changed char pointer to const char pointer

commit d1e19d316224cddc437e3ed34ec3c931ad803958
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 08:05:26 2013 +0530

Changed return type of my_strlen to size_t

commit 19ae20683fc460db7d127cf201a1429523b0e319
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 07:32:56 2013 +0530

Initial commit

Now, Jerry’s local repository is fully synchronized with the remote repository. So he can safely push
his changes.

[jerry@Cent0S project]$ git push origin master
The above command will produce the following result:

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 455 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
cea2c00..e86f062 master —> master

GIT - STASH OPERATION

Suppose you are implementing a new feature for your product. Your code is in progress and
suddenly a customer escalation comes. Because of this, you have to keep aside your new feature
work for a few hours. You cannot commit your partial code and also cannot throw away your
changes. So you need some temporary space, where you can store your partial changes and later
on commit it.

In Git, the stash operation takes your modified tracked files, stages changes, and saves them on a
stack of unfinished changes that you can reapply at any time.

[jerry@Cent0S project]$ git status -s
M string.c
?? string

Now, you want to switch branches for customer escalation, but you don’t want to commit what
you've been working on yet; so you’ll stash the changes. To push a new stash onto your stack, run
the git stash command.

[jerry@Cent0S project]$ git stash
Saved working directory and index state WIP on master: e86f062 Added my_strcpy function
HEAD is now at e86f062 Added my_strcpy function

Now, your working directory is clean and all the changes are saved on a stack. Let us verify it with
the git status command.

[jerry@Cent0S project]$ git status -s
?? string

Now you can safely switch the branch and work elsewhere. We can view a list of stashed changes
by using the git stash list command.

[jerry@Cent0S project]$ git stash list
stash@{0}: WIP on master: e86f062 Added my_strcpy function

Suppose you have resolved the customer escalation and you are back on your new feature looking
for your half-done code, just execute the git stash pop command, to remove the changes from
the stack and place them in the current working directory.

[jerry@Cent0S project]$ git status -s
?? string

[jerry@Cent0S project]$ git stash pop

The above command will produce the following result:

On branch master

Changed but not updated:

(use "git add ..." to update what will be committed)

(use "git checkout -- ..." to discard changes in working directory)
#

#

m

#

odified: string.c

Untracked files:

(use "git add ..." to include in what will be committed)

#

#

string

no changes added to commit (use "git add" and/or 'git commit -a")
Dropped refs/stash@{0} (36f79dfedae4ac20e2e8558830154bd6315e72d4)

[jerry@Cent0S project]$ git status -s
M string.c
?? string

GIT - MOVE OPERATION

As the name suggests, the move operation moves a directory or a file from one location to
another. Tom decides to move the source code into src directory. The modified directory structure

will appear as follows:

[tom@Cent0S project]$ pwd
/home/tom/project

[tom@CentOS project]$ 1s
README string string.c

[tom@Cent0S project]$ mkdir src
[tom@Cent0S project]$ git mv string.c src/

[tom@CentOS project]$ git status -s
R string.c —> src/string.c
?? string

To make these changes permanent, we have to push the modified directory structure to the
remote repository so that other developers can see this.

[tom@CentOS project]$ git commit -m "Modified directory structure"

[master 7d9ea97] Modified directory structure
1 files changed, 0 insertions(+), © deletions(-)
rename string.c => src/string.c (100%)

[tom@CentOS project]$ git push origin master
Counting objects: 4, done.

Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 320 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)

To gituser@git.server.com:project.git
e86f062..7d9ea97 master —> master

In Jerry’s local repository, before the pull operation, it will show the old directory structure.

[jerry@Cent0S project]$ pwd
/home/jerry/jerry_repo/project

[jerry@Cent0S project]$ 1s
README string string.c

But after the pull operation, the directory structure will get updated. Now, Jerry can see the src
directory and the file present inside that directory.

[jerry@Cent0S project]$ git pull

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From git.server.com:project

e86T062..7d9ea97 master —> origin/master

First, rewinding head to replay your work on top of it...
Fast-forwarded master to 7d9ea97683da90bcdb87c28ec9b4f64160673c8a.

[jerry@Cent0S project]$ 1s
README src string

[jerry@Cent0S project]$ 1ls src/
string.c

GIT - RENAME OPERATION

Till now, both Tom and Jerry were using manual commands to compile their project. Now, Jerry
decides to create Makefile for their project and also give a proper name to the file “string.c”.

[jerry@Cent0S project]$ pwd
/home/jerry/jerry_repo/project

[jerry@Cent0S project]$ 1s
README src

[jerry@Cent0S project]$ cd src/

[jerry@CentOS src]$ git add Makefile

[jerry@Cent0S src]$ git mv string.c string_operations.c
[jerry@Cent0S src]$ git status -s

A Makefile
R string.c —> string_operations.c

Gitis showing R before file name to indicate that the file has been renamed.

For commit operation, Jerry used -a flag, that makes git commit automatically detect the modified
files.

[jerry@Cent0S src]$ git commit -a -m 'Added Makefile and renamed strings.c to
string_operations.c '

[master 94f7b26] Added Makefile and renamed strings.c to string_operations.c
1 files changed, 0 insertions(+), © deletions(-)

create mode 100644 src/Makefile

rename src/{string.c => string_operations.c} (100%)

After commit, he pushes his changes to the repository.

[jerry@CentOS src]$ git push origin master

The above command will produce the following result:

Counting objects: 6, done.

Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 396 bytes, done.
Total 4 (delta 0), reused 0 (delta 0)

To gituser@git.server.com:project.git
7d9ea97..94f7b26 master —-> master

Now, other developers can view these modifications by updating their local repository.

GIT - DELETE OPERATION

Tom updates his local repository and finds the compiled binary in the src directory. After viewing
the commit message, he realizes that the compiled binary was added by Jerry.

[tom@Cent0S src]$ pwd
/home/tom/project/src

[tom@Cent0S src]$ 1s
Makefile string_operations string_operations.c

[tom@Cent0S src]$ file string_operations

string_operations: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses
shared 1libs), for GNU/Linux 2.6.18, not stripped

[tom@CentOS src]$ git log

commit 29af9d45947dc044e33d69b9141d8d2dad37cc62
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 10:16:25 2013 +0530

Added compiled binary

VCS is used to store the source code only and not executable binaries. So, Tom decides to remove
this file from the repository. For further operation, he uses the git rm command.

[tom@Cent0S src]$ 1s
Makefile string_operations string_operations.c

[tom@Cent0S src]$ git rm string_operations
rm 'src/string_operations'

[tom@CentOS src]$ git commit -a -m "Removed executable binary"

[master 5776472] Removed executable binary
1 files changed, 0 insertions(+), © deletions(-)
delete mode 100755 src/string_operations

After commit, he pushes his changes to the repository.

[tom@Cent0S src]$ git push origin master

The above command will produce the following result.

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 310 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
29af9d4..5776472 master —> master

GIT - FIX MISTAKES

To err is human. So every VCS provides a feature to fix mistakes until a certain point. Git provides
a feature that we can use to undo the modifications that have been made to the local repository.

Suppose the user accidentally does some changes to his local repository and then wants to undo
these changes. In such cases, the revert operation plays an important role.

Revert Uncommitted Changes

Let us suppose Jerry accidentally modifies a file from his local repository. But he wants to undo his
modification. To handle this situation, we can use the git checkout command. We can use this
command to revert the contents of a file.

[jerry@Cent0S src]$ pwd
/home/jerry/jerry_repo/project/src

[jerry@Cent0S src]$ git status -s
M string_operations.c

[jerry@Cent0S src]$ git checkout string_operations.c

[jerry@CentOS src]$ git status -s

Further, we can use the git checkout command to obtain a deleted file from the local repository.
Let us suppose Tom deletes a file from the local repository and we want this file back. We can

achieve this by using the same command.

[tom@Cent0S src]$ pwd
/home/tom/top_repo/project/src

[tom@Cent0S src]$ 1s -1
Makefile
string_operations.c

[tom@Cent0S src]$ rm string_operations.c

[tom@Cent0S src]$ 1ls -1
Makefile

[tom@CentOS src]$ git status -s
D string_operations.c

Gitis showing the letter D before the filename. This indicates that the file has been deleted from
the local repository.

[tom@Cent0S src]$ git checkout string_operations.c
[tom@CentOS src]$ 1ls -1

Makefile

string_operations.c

[tom@CentOS src]$ git status -s

Note: We can perform all these operations before commit operation.

Remove Changes from Staging Area

We have seen that when we perform an add operation, the files move from the local repository to
the stating area. If a user accidently modifies a file and adds it into the staging area, he can revert
his changes, by using the git checkout command.

In Git, there is one HEAD pointer that always points to the latest commit. If you want to undo a
change from the staged area, then you can use the git checkout command, but with the checkout
command, you have to provide an additional parameter, i.e., the HEAD pointer. The additional
commit pointer parameter instructs the git checkout command to reset the working tree and also
to remove the staged changes.

Let us suppose Tom modifies a file from his local repository. If we view the status of this file, it will
show that the file was modified but not added into the staging area.

tom@Cent0S src]$ pwd
/home/tom/top_repo/project/src

Unmodified file

[tom@CentOS src]$ git status -s

Modify file and view it’s status.
[tom@CentOS src]$ git status -s

M string_operations.c

[tom@CentOS src]$ git add string_operations.c

Git status shows that the file is present in the staging area, now revert it by using the git checkout
command and view the status of the reverted file.

[tom@CentOS src]$ git checkout HEAD -- string_operations.c

[tom@Cent0S src]$ git status -s

Move HEAD Pointer with Git Reset

After doing few changes, you may decide to remove these changes. The Git reset command is
used to reset or revert changes. We can perform three different types of reset operations.

Below diagram shows the pictorial representation of Git reset command.

Master
Commit 1 Commit 2 Commit 3
Before git reset command
Master
Commit 1 Commit 2 Commit 3

After git reset command

Soft

Each branch has a HEAD pointer, which points to the latest commit. If we use Git reset command
with --soft option followed by commit ID, then it will reset the HEAD pointer only without destroying
anything.

.git/refs/heads/master file stores the commit ID of the HEAD pointer. We can verify it by using
the git log -1 command.

[jerry@Cent0S project]$ cat .git/refs/heads/master
577647211ed44fe2aed479427a0668a4f12ed71al

Now, view the latest commit ID, which will match with the above commit ID.
[jerry@Cent0S project]$ git log -2
The above command will produce the following result.

commit 577647211ed44fe2aed479427a0668a4f12ed71al
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 10:21:20 2013 +0530

Removed executable binary
commit 29af9d45947dc044e33d69b9141d8d2dad37cc62

Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 10:16:25 2013 +0530

Added compiled binary

Let us reset the HEAD pointer.

[jerry@CentOS project]$ git reset --soft HEAD~

Now, we just reset the HEAD pointer back by one position. Let us check the contents of
.git/refs/heads/master file.

[jerry@Cent0S project]$ cat .git/refs/heads/master
29af9d45947dc044e33d69h9141d8d2dad37cc62

Commit ID from file is changed, now verify it by viewing commit messages.
jerry@Cent0S project]$ git log -2
The above command will produce the following result.

commit 29af9d45947dc044e33d69b9141d8d2dad37cc62
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 10:16:25 2013 +0530

Added compiled binary

commit 94f7b26005f856f1alb733ad438e97a0cd509cla
Author: Jerry Mouse <jerry@tutorialspoint.com>

Date: Wed Sep 11 10:08:01 2013 +0530

Added Makefile and renamed strings.c to string_operations.c

mixed
Git reset with --mixed option reverts those changes from the staging area that have not been

committed yet. It reverts the changes from the staging area only. The actual changes made to the
working copy of the file are unaffected. The default Git reset is equivalent to the git reset -- mixed.

hard

If you use --hard option with the Git reset command, it will clear the staging area; it will reset the
HEAD pointer to the latest commit of the specific commit ID and delete the local file changes too.

Let us check the commit ID.

[jerry@Cent0S src]$ pwd
/home/jerry/jerry_repo/project/src

[jerry@Cent0S src]$ git log -1

The above command will produce the following result.

commit 577647211ed44fe2ae479427a0668a4f12ed71al
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 10:21:20 2013 +0530

Removed executable binary
Jerry modified a file by adding single-line comment at the start of file.

[jerry@Cent0S src]$ head -2 string_operations.c
/* This line be removed by git reset operation */
#include <stdio.h>

He verified it by using the git status command.

[jerry@Cent0S src]$ git status -s
M string_operations.c

Jerry adds the modified file to the staging area and verifies it with the git status command.

[jerry@Cent0S src]$ git add string_operations.c
[jerry@Cent0S src]$ git status

The above command will produce the following result.

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

#

modified: string_operations.c

#

Git status is showing that the file is present in the staging area. Now, reset HEAD with -- hard
option.

[jerry@Cent0S src]$ git reset --hard 577647211ed44fe2aed479427a0668a4f12ed71al

HEAD is now at 5776472 Removed executable binary

Git reset command succeeded, which will revert the file from the staging area as well as remove
any local changes made to the file.

[jerry@Cent0S src]$ git status -s
Git status is showing that the file has been reverted from the staging area.

[jerry@Cent0S src]$ head -2 string_operations.c
#include <stdio.h>

The head command also shows that the reset operation removed the local changes too.

GIT - TAG OPERATION

Tag operation allows giving meaningful names to a specific version in the repository. Suppose
Tom and Jerry decide to tag their project code so that they can later access it easily.

Create Tags

Let us tag the current HEAD by using the git tag command. Tom provides a tag name with -a
option and provides a tag message with -m option.

tom@Cent0S project]$ pwd
/home/tom/top_repo/project

[tom@Cent0S project]$ git tag -a 'Release_1_0' -m 'Tagged basic string operation code'
HEAD

If you want to tag a particular commit, then use the appropriate COMMIT ID instead of the HEAD
pointer. Tom uses the following command to push the tag into the remote repository.

[tom@CentOS project]$ git push origin tag Release_1 0

The above command will produce the following result:

Counting objects: 1, done.

Writing objects: 100% (1/1), 183 bytes, done.
Total 1 (delta @), reused 0 (delta 0)

To gituser@git.server.com:project.git

* [new tag]

Release_1 0 —> Release_ 1 0

View Tags

Tom created tags. Now, Jerry can view all the available tags by using the Git tag command with -I
option.

[jerry@Cent0S src]$ pwd
/home/jerry/jerry_repo/project/src

[jerry@Cent0S src]$ git pull

remote: Counting objects: 1, done.

remote: Total 1 (delta 0), reused O (delta 0)
Unpacking objects: 100% (1/1), done.

From git.server.com:project

* [new tag]

Release_1 0 —> Release_1_0

Current branch master is up to date.

[jerry@Cent0S src]$ git tag -1
Release_1_0

Jerry uses the Git show command followed by its tag name to view more details about tag.
[jerry@CentOS src]$ git show Release_1_0
The above command will produce the following result:

tag Release_1_0
Tagger: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 13:45:54 2013 +0530

Tagged basic string operation code

commit 577647211ed44fe2ae479427a0668a4f12ed71al
Author: Tom Cat <tom@tutorialspoint.com>
Date: Wed Sep 11 10:21:20 2013 +0530

Removed executable binary

diff --git a/src/string_operations b/src/string_operations
deleted file mode 100755

index 654004b..0000000

Binary files a/src/string_operations and /dev/null differ

Delete Tags

Tom uses the following command to delete tags from the local as well as the remote repository.

[tom@Cent0S project]$ git tag
Release 1 0

[tom@Cent0S project]$ git tag -d Release 1 0
Deleted tag 'Release_1 0' (was 0f81ff4)
Remove tag from remote repository.

[tom@Cent0S project]$ git push origin :Release 1 0
To gituser@git.server.com:project.git

- [deleted]

Release_1_0

GIT - PATCH OPERATION

Patch is a text file, whose contents are similar to Git diff, but along with code, it also has metadata
about commits; e.g., commit ID, date, commit message, etc. We can create a patch from commits
and other people can apply them to their repository.

Jerry implements the strcat function for his project. Jerry can create a path of his code and send it
to Tom. Then, he can apply the received patch to his code.

Jerry uses the Git format-patch command to create a patch for the latest commit. If you want to
create a patch for a specific commit, then use COMMIT_ID with the format-patch command.

[jerry@Cent0S project]$ pwd
/home/jerry/jerry_repo/project/src

[jerry@Cent0S src]$ git status -s
M string_operations.c
?? string_operations

[jerry@Cent0S src]$ git add string_operations.c
[jerry@CentOS src]$ git commit -m "Added my_strcat function"

[master b4c7f09] Added my_strcat function
1 files changed, 13 insertions(+), 0 deletions(-)

[jerry@Cent0S src]$ git format-patch -1
0001-Added-my_strcat-function.patch

The above command creates .patch files inside the current working directory. Tom can use this
patch to modify his files. Git provides two commands to apply patches git amand git apply,
respectively. Git apply modifies the local files without creating commit, while git am modifies the
file and creates commit as well.

To apply patch and create commit, use the following command:

[tom@Cent0S src]$ pwd
/home/tom/top_repo/project/src

[tom@CentOS src]$ git diff
[tom@CentOS src]$ git status -s
[tom@CentOS src]$ git apply 0001-Added-my_strcat-function.patch

[tom@Cent0S src]$ git status -s
M string_operations.c
?? 0001-Added-my_strcat-function.patch

The patch gets applied successfully, now we can view the modifications by using the git diff
command.

[tom@CentOS src]$ git diff

The above command will produce the following result:

diff --git a/src/string_operations.c b/src/string_operations.c
index 8ab7f42..f282fcf 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@e -1,5 +1,16 @@

#include <stdio.h>

+char *my_strcat(char *t, char *s)

diff --git a/src/string_operations.c b/src/string_operations.c
index 8ab7f42..f282fcf 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@@ _115 +1116 @@

#include <stdio.h>

+char *my_strcat(char *t, char *s)
+

{
+
char *p = t;
+
+
+
while (*p)
++p;
+
while (*p++ = *s++)
t
+ return t;
+
}
+
size_t my_strlen(const char *s)
{

const char *p = s;
@@ -23,6 +34,7 @@ int main(void)
{

GIT - MANAGING BRANCHES

Branch operation allows creating another line of development. We can use this operation to fork
off the development process into two different directions. For example, we released a product for
6.0 version and we might want to create a branch so that the development of 7.0 features can be
kept separate from 6.0 bug fixes.

Create Branch

Tom creates a new branch using the git branch <branch name> command. We can create a new
branch from an existing one. We can use a specific commit or tag as the starting point. If any
specific commit ID is not provided, then the branch will be created with HEAD as its starting point.

[jerry@Cent0S src]$ git branch new_branch

[jerry@Cent0S src]$ git branch
* master
new_branch

A new branch is created; Tom used the git branch command to list the available branches. Git
shows an asterisk mark before currently checked out branch.

The pictorial representation of create branch operation is shown below:

Master

Commit 1 Commit 2 Commit 3

Before create branch command

Master

Commit 1 Commit 2 Commit 3

New branch

After create branch operation

Switch between Branches

Jerry uses the git checkout command to switch between branches.

[jerry@Cent0S src]$ git checkout new_branch
Switched to branch 'new_branch'
[jerry@Cent0S src]$ git branch

master

* new_branch

Shortcut to Create and Switch Branch

In the above example, we have used two commands to create and switch branches, respectively.
Git provides -b option with the checkout command; this operation creates a new branch and

immediately switches to the new branch.

[jerry@Cent0OS src]$ git checkout -b test branch
Switched to a new branch 'test_branch'

[jerry@Cent0S src]$ git branch
master

new_branch

* test_branch

Delete a Branch

A branch can be deleted by providing -D option with git branch command. But before deleting the
existing branch, switch to the other branch.

Jerry is currently on test_branch and he wants to remove that branch. So he switches branch and
deletes branch as shown below.

[jerry@Cent0S src]$ git branch
master

new_branch

* test_branch

[jerry@Cent0S src]$ git checkout master
Switched to branch 'master'

[jerry@Cent0S src]$ git branch -D test_branch
Deleted branch test_branch (was 5776472).

Now, Git will show only two branches.

[jerry@Cent0S src]$ git branch
* master
new_branch

Rename a Branch

Jerry decides to add support for wide characters in his string operations project. He has already
created a new branch, but the branch name is not appropriate. So he changes the branch name by
using -m option followed by the old branch name and the new branch name.

[jerry@Cent0S src]$ git branch
* master
new_branch

[jerry@Cent0S src]$ git branch -m new_branch wchar_support

Now, the git branch command will show the new branch name.

[jerry@Cent0S src]$ git branch
* master
wchar_support

Merge Two Branches

Jerry implements a function to return the string length of wide character string. New the code will
appear as follows:

[jerry@Cent0S src]$ git branch
master
* wchar_support

[jerry@Cent0S src]$ pwd
/home/jerry/jerry_repo/project/src

[jerry@Cent0S src]$ git diff

The above command produces the following result:

t a/src/string_operations.c b/src/string_operations.c
index 8ab7f42..8fb4b00 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@@ _114 +1114 @@

#include <stdio.h>

+#include <wchar .h>

+
+size_t w_strlen(const wchar_t *s)
+
{
+
const wchar_t *p = s;
+
+
while (*p)
+ ++p;
+ return (p - s);
+
}

After testing, he commits and pushes his changes to the new branch.

[jerry@Cent0OS src]$ git status -s
M string_operations.c

?? string_operations

[jerry@Cent0S src]$ git add string_operations.c

[jerry@Cent0S src]$ git commit -m 'Added w_strlen function to return string lenght of
wchar_t

string'

[wchar_support 64192f9] Added w_strlen function to return string lenght of wchar_t string
1 files changed, 10 insertions(+), @ deletions(-)

Note that Jerry is pushing these changes to the new branch, which is why he used the branch name
wchar_support instead of master branch.

[jerry@Cent0S src]$ git push origin wchar_support <—-———————————- Observer branch_name

The above command will produce the following result.

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 507 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git

* [new branch]

wchar_support -> wchar_support

After committing the changes, the new branch will appear as follows:

Master

Commit 1 Commit 2 Commit 3 Commit 4

After commit in new branch New branch

Tom is curious about what Jerry is doing in his private branch and he checks the log from the
wchar_support branch.

[tom@Cent0S src]$ pwd
/home/tom/top_repo/project/src

[tom@CentO0S src]$ git log origin/wchar_support -2

The above command will produce the following result.

commit 64192f91d7cc2bcdf3bf946dd33ece63b74184a3
Author: Jerry Mouse <jerry@tutorialspoint.com>
Date: Wed Sep 11 16:10:06 2013 +0530

Added w_strlen function to return string lenght of wchar_t string

commit 577647211ed44fe2ae479427a0668a4f12ed71al
Author: Tom Cat <tom@tutorialspoint.com>

Date: Wed Sep 11 10:21:20 2013 +0530

Removed executable binary

By viewing commit messages, Tom realizes that Jerry implemented the strlen function for wide
character and he wants the same functionality in the master branch. Instead of re-implementing,
he decides to take Jerry’s code by merging his branch with the master branch.

[tom@Cent0S project]$ git branch
* master

[tom@Cent0S project]$ pwd
/home/tom/top_repo/project

[tom@CentOS project]$ git merge origin/wchar_support
Updating 5776472..64192f9

Fast-forward

src/string_operations.c | 10 ++++++++++

1 files changed, 10 insertions(+), 0 deletions(-)

After the merge operation, the master branch will appear as follows:

Master
Commit 1 Commit 2 Commit 3 Commit 4
After branch merge New branch

Now, the branch wchar_support has been merged with the master branch. We can verify it by
viewing the commit message or by viewing the modifications done into the string_operation.c file.

[tom@Cent0S project]$ cd src/

[tom@CentOS src]$ git log -1

commit 64192f91d7cc2bcdf3bf946dd33ece63b74184a3
Author: Jerry Mouse

Date: Wed Sep 11 16:10:06 2013 +0530

Added w_strlen function to return string lenght of wchar_t string

[tom@Cent0S src]$ head -12 string_operations.c

The above command will produce the following result.

#include <stdio.h>
#include <wchar.h>
size_t w_strlen(const wchar_t *s)

{

const wchar_t *p = s;

while (*p)
p;

return (p - s);

}
After testing, he pushes his code changes to the master branch.

[tom@Cent0S src]$ git push origin master
Total 0 (delta 0), reused 0 (delta 0)

To gituser@git.server.com:project.git
5776472..64192f9 master —> master

Rebase Branches

The Gitrebase command is a branch merge command, but the difference is that it modifies the
order of commits.

The Git merge command tries to put the commits from other branches on top of the HEAD of the
current local branch. For example, your local branch has commits A—>B—>C—->D and the merge
branch has commits A—>B—>X->Y, then git merge will convert the currentlocal branch to
something like A—>B—>C—>D—->X->Y

The Git rebase command tries to find out the common ancestor between the current local branch
and the merge branch. It then pushes the commits to the local branch by modifying the order of
commits in the current local branch. For example, if your local branch has commits
A—>B—>C->D and the merge branch has commits A->B—>X->Y, then Git rebase will convert
the current local branch to something like A—>B—>X—->Y—->C—->D.

When multiple developers work on a single remote repository, you cannot modify the order of the
commits in the remote repository. In this situation, you can use rebase operation to put your local
commits on top of the remote repository commits and you can push these changes.

GIT - HANDLING CONFLICTS

Perform Changes in wchar_support Branch

Jerry is working on the wchar_support branch. He changes the name of the functions and after
testing, he commits his changes.

[jerry@Cent0S src]$ git branch
master

* wchar_support

[jerry@Cent0S src]$ git diff

The above command produces the following result:

diff --git a/src/string_operations.c b/src/string_operations.c
index 8fb4b00..01ff4e0 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@@ _117 +1I7 @@

#include <stdio.h>

#include <wchar .h>

-size_t w_strlen(const wchar_t *s)

+size_t my_wstrlen(const wchar_t *s)

{

const wchar_t *p = s;

After verifying the code he commits his changes.

[jerry@CentO0S src]$ git status -s
M string_operations.c

[jerry@Cent0S src]$ git add string_operations.c

[jerry@Cent0S src]$ git commit -m 'Changed function name'
[wchar_support 3789fe8] Changed function name
1 files changed, 1 insertions(+), 1 deletions(-)

[jerry@Cent0S src]$ git push origin wchar_support

The above command will produce the following result:

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 409 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
64192f9..3789fe8 wchar_support -> wchar_support

Perform Changes in Master Branch

Meanwhile in the master branch, Tom also changes the name of the same function and pushes his
changes to the master branch.

[tom@Cent0S src]$ git branch
* master
[tom@Cent0S src]$ git diff

The above command produces the following result:

diff --git a/src/string_operations.c b/src/string_operations.c
index 8fb4b00..52bec84 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@@ _117 +118 @@

#include <stdio.h>

#include <wchar.h>

-size_t w_strlen(const wchar_t *s)

+/* wide character strlen fucntion */

+size_t my_wc_strlen(const wchar_t *s)

{

const wchar_t *p = s;

After verifying diff, he commits his changes.

[tom@CentOS src]$ git status -s
M string_operations.c

[tom@Cent0S src]$ git add string operations.c

[tom@Cent0S src]$ git commit -m 'Changed function name from w_strlen to my_wc_strlen'
[master ad4b530] Changed function name from w_strlen to my_wc_strlen
1 files changed, 2 insertions(+), 1 deletions(-)

[tom@Cent0S src]$ git push origin master

The above command will produce the following result:

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 470 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
64192f9..ad4b530 master -> master

On the wchar_support branch, Jerry implements strchr function for wide character string. After
testing, he commits and pushes his changes to the wchar_support branch.

[jerry@Cent0S src]$ git branch

master
* wchar_support
[jerry@Cent0S src]$ git diff

The above command produces the following result:

diff --git a/src/string_operations.c b/src/string_operations.c
index 01ff4e0..163a779 100644

--- a/src/string_operations.c

+++ b/src/string_operations.c

@@ -1,6 +1,16 @@

#include <stdio.h>

#include <wchar.h>

+wchar_t *my_wstrchr(wchar_t *ws, wchar_t wc)

+
{
+
while (*ws)
{
+
if (*ws == wc)
+
return ws;
+
+HWS;
+
}
+ return NULL;
+
}
+
size_t my_wstrlen(const wchar_t *s)
{

const wchar_t *p = s;

After verifying, he commits his changes.

[jerry@Cent0S src]$ git status -s
M string_operations.c

[jerry@Cent0S src]$ git add string_operations.c
[jerry@Cent0S src]$ git commit -m 'Addded strchr function for wide character string'
[wchar_support 9d201a9] Addded strchr function for wide character string

1 files changed, 10 insertions(+), 0 deletions(-)

[jerry@Cent0S src]$ git push origin wchar_support

The above command will produce the following result:

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 516 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)

To gituser@git.server.com:project.git
3789fe8..9d201a9 wchar_support -> wchar_support

Tackle Conflicts

Tom wants to see what Jerry is doing on his private branch so, he tries to pull the latest changes
from the wchar_support branch, but Git aborts the operation with the following error message.

[tom@CentO0S src]$ git pull origin wchar_support

The above command produces the following result:

remote: Counting objects: 11, done.

63Git Tutorials

remote: Compressing objects: 100% (8/8), done.

remote: Total 8 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (8/8), done.

From git.server.com:project

* branch

wchar_support -> FETCH_HEAD

Auto-merging src/string_operations.c

CONFLICT (content): Merge conflict in src/string_operations.c
Automatic merge failed; fix conflicts and then commit the result.

Resolve Conflicts

From the error message, itis clear that there is a conflict in src/string_operations.c . He runs the git
diff command to view further details.

[tom@CentOS src]$ git diff

The above command produces the following result:

diff --cc src/string_operations.c
index 52bec84,163a779..0000000

--- a/src/string_operations.c

+++ b/src/string_operations.c

eee -1,8 -1,17 +1,22 Q@@

#include <stdio.h>

#include <wchar.h>

++<<<<<<< HEAD

+/* wide character strlen fucntion */
+size_t my_wc_strlen(const wchar_t *s)

===z
+ wchar_t *my_wstrchr(wchar_t *ws, wchar_t wc)
+
{
+
+
while (*ws)
{
if (*ws == wc)
+
return ws;
+
++HWS;
+
}
+ return NULL;
+
}
+

+ size_t my_wstrlen(const wchar_t *s)
++>>>>>>>9d201a9¢c61bc4713f4095175F8954b642dae8186

{

const wchar_t *p = s;

As both Tom and Jerry changed the name of the same function, Gitis in a state of confusion and it
asks the user to resolve the conflict manually.

Tom decides to keep the function name suggested by Jerry, but he keeps the comment added by
him, as itis. After removing the conflict markers, git diff will look like this.

[tom@CentOS src]$ git diff
The above command produces the following result.

diff --cc src/string_operations.c

diff --cc src/string_operations.c

index 52bec84,163a779..0000000

--- a/src/string_operations.c

+++ b/src/string_operations.c

eee -1,8 -1,17 +1,18 @@@

#include <stdio.h>

#include <wchar.h>

+ wchar_t *my_wstrchr(wchar_t *ws, wchar_t wc)
+

{
+
while (*ws)
{
+
if (*ws == wc)
+
return ws;
+
++ws;
+
}
+ return NULL;
+
}

+

+/* wide character strlen fucntion */

- size_t my_wc_strlen(const wchar_t *s)
+ size_t my_wstrlen(const wchar_t *s)

{

const wchar_t *p = s;

As Tom has modified the files, he has to commit these changes first and thereafter, he can pull the
changes.

[tom@CentO0S src]$ git commit -a -m 'Resolved conflict'
[master 6blac36] Resolved conflict

[tom@CentOS src]$ git pull origin wchar_support.

Tom has resolved the conflict, now the pull operation will succeed.

GIT - DIFFERENT PLATFORMS

GNU/Linux and Mac OS uses line-feed LF, or new line as line ending character, while Windows
uses line-feed and carriage-return LFCR combination to represent the line-ending character.

To avoid unnecessary commits because of these line-ending differences, we have to configure the
Git client to write the same line ending to the Git repository.

For Windows system, we can configure the Git client to convert line endings to CRLF format while
checking out, and convert them back to LF format during the commit operation. The following
settings will do the needful.

[tom@Cent0S project]$ git config --global core.autocrlf true

For GNU/Linux or Mac OS, we can configure the Git client to convert line endings from CRLF to LF
while performing the checkout operation.

[tom@Cent0S project]$ git config --global core.autocrlf input

GIT - ONLINE REPOSITORIES

GitHub is a web-based hosting service for software development projects that uses the Git
revision control system. It also has their standard GUI application available for download

Windows, Mac, GNU/Linux directly from the service's website. But in this session, we will see only CLI
part.

Create GitHub Repository

Go to github.com. If you already have the GitHub account, then login using that account or create
a new one. Follow the steps from github.com website to create a new repository.

Push Operation

Tom decides to use the GitHub server. To start a new project, he creates a new directory and one
file inside that.

[tom@Cent0S]$ mkdir github_repo
[tom@Cent0S]$ cd github_repo/
[tom@Cent0S]$ vi hello.c

[tom@Cent0S]$ make hello
cc hello.c -o hello

[tom@Cent0S]$./hello

The above command will produce the following result:
Hello, World !!!

After verifying his code, he initializes the directory with the git init command and commits his
changes locally.

[tom@Cent0S]$ git init
Initialized empty Git repository in /home/tom/github_repo/.git/

[tom@Cent0S]$ git status -s
?? hello
?? hello.c

[tom@Cent0S]$ git add hello.c

[tom@Cent0S]$ git status -s
A hello.c
?? hello

[tom@Cent0S]$ git commit -m 'Initial commit'

After that, he adds the GitHub repository URL as a remote origin and pushes his changes to the
remote repository.

[tom@Cent0S]$ git remote add origin https://github.com/kangralkar/testing_repo.git

[tom@Cent0S]$ git push -u origin master

Push operation will ask for GitHub user name and password. After successful authentication, the
operation will succeed.

The above command will produce the following result:

Username for 'https://github.com': kangralkar

Password for 'https://kangralkar@github.com':

Counting objects: 3, done.

Writing objects: 100% (3/3), 214 bytes, done.

Total 3 (delta @), reused 0 (delta 0)

To https://github.com/kangralkar/test_repo.git
* [new branch] master —-> master

https://github.com
https://github.com

Branch master set up to track remote branch master from origin.

From now, Tom can push any changes to the GitHub repository. He can use all the commands
discussed in this chapter with the GitHub repository.

Pull Operation

Tom successfully pushed all his changes to the GitHub repository. Now, other developers can view
these changes by performing clone operation or updating their local repository.

Jerry creates a new directory in his home directory and clones the GitHub repository by using the
git clone command.

[jerry@Cent0S]$ pwd
/home/jerry

[jerry@Cent0S]1$ mkdir jerry_repo

[jerry@Cent0S]$ git clone https://github.com/kangralkar/test repo.git

The above command produces the following result:

Cloning into 'test_repo'...

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.

He verifies the directory contents by executing the Is command.

[jerry@Cent0S]$ 1s
test_repo

[jerry@Cent0S]$ 1s test_repo/
hello.c
Processing math: 100%

