Subject Code: MT

Course Structure

<table>
<thead>
<tr>
<th>Sections/Units</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A</td>
<td>Engineering Mathematics</td>
</tr>
<tr>
<td>Unit 1</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>Unit 2</td>
<td>Calculus</td>
</tr>
<tr>
<td>Unit 3</td>
<td>Vector Calculus</td>
</tr>
<tr>
<td>Unit 4</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>Unit 5</td>
<td>Probability and Statistics</td>
</tr>
<tr>
<td>Unit 6</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>Section B</td>
<td>Thermodynamics and Rate Processes</td>
</tr>
<tr>
<td>Section C</td>
<td>Extractive Metallurgy</td>
</tr>
<tr>
<td>Section D</td>
<td>Physical Metallurgy</td>
</tr>
<tr>
<td>Section E</td>
<td>Mechanical Metallurgy</td>
</tr>
<tr>
<td>Section F</td>
<td>Manufacturing Processes</td>
</tr>
</tbody>
</table>

Course Syllabus

Section A: Engineering Mathematics

Unit 1: Linear Algebra

- Matrices and Determinants
- Systems of linear equations
- Eigen values and Eigen vectors
Unit 2: Calculus
- Limit, continuity and differentiability
- Partial derivatives
- Maxima and minima
- Sequences and series
- Test for convergence
- Fourier series

Unit 3: Vector Calculus
- Gradient
- Divergence and Curl
- Line, Surface and volume integrals
- Stokes, Gauss and Green’s theorems

Unit 4: Differential Equations
- Linear and non-linear first order ODEs
- Higher order linear ODEs with constant coefficients
- Cauchy’s and Euler’s equations
- Laplace transforms
- PDEs – Laplace, one dimensional heat and wave equations

Unit 5: Probability and Statistics
- Definitions of probability and sampling theorems
- Conditional probability
- Mean, median, mode and standard deviation
- Random variables
- Poisson, normal and binomial distributions
- Correlation and regression analysis

Unit 6: Numerical Methods
- Solutions of linear and non-linear (Bisection, Secant, Newton Raphson methods) algebraic equations
- Integration by trapezoidal and Simpson’s rule
- Single and multi-step methods for differential equations
Section B: Thermodynamics and Rate Processes

- Laws of thermodynamics, activity, equilibrium constant, applications to metallurgical systems, solutions, phase equilibria, Ellingham and phase stability diagrams, thermodynamics of surfaces, interfaces and defects, adsorption and segregation
- Basic kinetic laws, order of reactions, rate constants and rate limiting steps
- Principles of electro chemistry - single electrode potential, electrochemical cells and polarizations, aqueous corrosion and protection of metals, galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, selective leaching, oxidation and high temperature corrosion – characterization and control
- Heat transfer – conduction, convection and heat transfer coefficient relations, radiation, mass transfer – diffusion and Fick’s laws, mass transfer coefficients
- Momentum transfer – concepts of viscosity, shell balances, Bernoulli’s equation, friction factors

Section C: Extractive Metallurgy

- Minerals:
 - Minerals of economic importance
 - Comminution techniques
 - Size classification
 - Flotation
 - Gravity and other methods of mineral processing
- Agglomeration, pyro-, hydro-, and electro-metallurgical processes
- Material and energy balance
- Principles and processes for the extraction of non-ferrous metals:
 - Aluminium
 - Copper
 - Zinc
 - Lead
 - Magnesium
 - Nickel
 - Titanium and other rare metals
- Iron and steel making:
 - Principles
 - Role structure and properties of slags
 - Metallurgical coke
 - Blast furnace
 - Direct reduction processes
 - Primary and secondary steel making
 - Ladle metallurgy operations including deoxidation
• Desulphurization
• Sulphide shape control
• Inert gas rinsing
• Vacuum reactors

➢ Secondary refining processes including
 • AOD
 • VAD
 • VOD
 • VAR
 • ESR

➢ Ingot and continuous casting
➢ Stainless steel making, furnaces and refractories

Section D: Physical Metallurgy

➢ Crystal structure and bonding characteristics of metals, alloys, ceramics and polymers, structure of surfaces and interfaces, Nano-crystalline and amorphous structures
➢ Solid solutions
➢ Solidification
➢ Phase transformation and binary phase diagrams
➢ Principles of heat treatment of steels, cast iron and aluminum alloys
➢ Surface treatments
➢ Recovery, recrystallization and grain growth
➢ Structure and properties of industrially important ferrous and non-ferrous alloys
➢ Elements of x-ray and electron diffraction
➢ Principles of optical, scanning and transmission electron microscopy
➢ Industrial ceramics, polymers and composites
➢ Introduction to electronic basis of thermal, optical, electrical and magnetic properties of materials
➢ Introduction to electronic and opto-electronic materials

Section E: Mechanical Metallurgy

➢ Elasticity, yield criteria and plasticity
➢ Defects in crystals
➢ Elements of dislocation theory – types of dislocations, slip and twinning, source and multiplication of dislocations, stress fields around dislocations, partial dislocations, dislocation interactions and reactions
➢ Strengthening mechanisms
➢ Tensile, fatigue and creep behavior
- Superplasticity
- Fracture – Griffith theory, basic concepts of linear elastic and elastoplastic fracture mechanics, ductile to brittle transition, fracture toughness
- Failure analysis
- Mechanical testing – tension, compression, torsion, hardness, impact, creep, fatigue, fracture toughness and formability

Section F: Manufacturing Processes

- Metal casting:
 - Patterns and moulds including mould design involving feeding
 - Gating and risering
 - Melting
 - Casting practices in sand casting
 - Permanent mould casting
 - Investment casting and shell moulding
 - Casting defects and repair
- Hot, warm and cold working of metals
- Metal forming:
 - Fundamentals of metal forming processes of rolling
 - Forging
 - Extrusion
 - Wire drawing and sheet metal forming
 - Defects in forming
- Metal joining:
 - Soldering
 - Brazing and welding
 - Common welding processes of shielded metal arc welding
 - Gas metal arc welding
 - Gas tungsten arc welding
 - Submerged arc welding
- Welding metallurgy, problems associated with welding of steels and aluminium alloys, defects in welded joints
- Powder metallurgy:
 - Production of powders
 - Compaction
 - Sintering
- NDT using dye penetrant, ultrasonic, radiography, eddy current, acoustic emission and magnetic particle methods