


SIMPLY EASY LEARNING







# **ELECTRICAL ENGINEERING**

Subject Code: EE
Course Structure

| Sections/Units | Topics                                 |
|----------------|----------------------------------------|
| Section A      | Engineering Mathematics                |
| Unit 1         | Linear Algebra                         |
| Unit 2         | Calculus                               |
| Unit 3         | Differential Equations                 |
| Unit 4         | Complex Variables                      |
| Unit 5         | Probability and Statistics             |
| Unit 6         | Numerical Methods                      |
| Unit 7         | Transform Theory                       |
| Section B      | Electric Circuits                      |
| Section C      | Electromagnetic Fields                 |
| Section D      | Signals and Systems                    |
| Section E      | Algorithms                             |
| Section F      | Electrical Machines                    |
| Section G      | Power Systems                          |
| Section H      | Control Systems                        |
| Section I      | Electrical and Electronic Measurements |
| Section J      | Analog and Digital Electronics         |
| Section K      | Power Electronics                      |



## **Course Syllabus**

# **Section A: Engineering Mathematics**

## **Unit 1: Linear Algebra**

- > Matrix Algebra
- > Systems of linear equations
- Eigenvalues
- Eigenvectors

## **Unit 2: Calculus**

- Mean value theorems
- > Theorems of integral calculus
- Evaluation of definite and improper integrals
- Partial Derivatives
- Maxima and minima
- Multiple integrals
- Fourier series
- Vector identities
- > Directional derivatives
- Line integral
- Surface integral
- > Volume integral
- > Stokes's theorem
- Gauss's theorem
- > Green's theorem

## **Unit 3: Differential equations**

- > First order equations (linear and nonlinear)
- > Higher order linear differential equations with constant coefficients
- Method of variation of parameters
- Cauchy's equation
- > Euler's equation
- > Initial and boundary value problems
- Partial Differential Equations
- Method of separation of variables



## **Unit 4: Complex variables**

- Analytic functions
- Cauchy's integral theorem
- Cauchy's integral formula
- Taylor series
- > Laurent series
- > Residue theorem
- Solution integrals

# **Unit 5: Probability and Statistics**

- > Sampling theorems
- > Conditional probability
- Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions
- Poisson distribution
- Normal distribution
- > Binomial distribution
- Correlation analysis,
- Regression analysis

#### **Unit 6: Numerical Methods**

- Solutions of nonlinear algebraic equations
- > Single and Multi-step methods for differential equations

## **Unit 7: Transform Theory**

- Fourier Transform
- Laplace Transform
- > z-Transform

#### **Section B: Electric Circuits**

- Network graph
- > KCL, KVL, Node and Mesh analysis
- > Transient response of dc and ac networks
- Sinusoidal steady-state analysis
- Resonance
- > Passive filter, Ideal current and voltage sources
- > Thevenin's theorem



- Norton's theorem
- Superposition theorem
- Maximum power transfer theorem
- > Two-port networks
- > Three phase circuits
- > Power and power factor in ac circuits

## **Section C: Electromagnetic Fields**

- Coulomb's Law
- Electric Field Intensity
- Electric Flux Density
- ➤ Gauss's Law
- Divergence, Electric field and potential due to point, line, plane and spherical charge distributions
- > Effect of dielectric medium
- > Capacitance of simple configurations
- Biot-Savart's law
- > Ampere's law
- > Curl
- > Faraday's law
- Lorentz force
- > Inductance
- Magnetomotive force
- Reluctance
- Magnetic circuits
- Self and Mutual inductance of simple configurations

## **Section D: Signals and Systems**

- Representation of continuous and discrete-time signals
- Shifting and scaling operations
- Linear Time Invariant and Causal systems
- > Fourier series representation of continuous periodic signals
- Sampling theorem
- Applications of Fourier Transform
- ➤ Laplace Transform and z-Transform



#### **Section E: Electrical Machines**

- Single phase transformer:
  - Equivalent circuit
  - Phasor diagram
  - Open circuit and short circuit tests
  - Regulation and efficiency
- > Three phase transformers:
  - Connections
  - Parallel operation
- Auto-transformer
- Electromechanical energy conversion principles
- > DC machines:
  - Separately excited
  - Series and shunt
  - Motoring and generating mode of operation and their characteristics
  - Starting and speed control of dc motors
- Three phase induction motors:
  - Principle of operation
  - Types
  - Performance
  - Torque-speed characteristics
  - No-load and blocked rotor tests
  - Equivalent circuit
  - Starting and speed control
- > Operating principle of single phase induction motors
- > Synchronous machines:
  - Cylindrical and salient pole machines
  - Performance
  - Regulation and parallel operation of generators
  - Starting of synchronous motor
  - Characteristics
- Types of losses and efficiency calculations of electric machines

# **Section F: Power Systems**

- Power generation concepts
- > ac and dc transmission concepts
- > Models and performance of transmission lines and cables
- Series and shunt compensation
- > Electric field distribution and insulators
- Distribution systems
- Per-unit quantities



- Bus admittance matrix
- GaussSeidel and Newton-Raphson load flow methods
- Voltage and Frequency control
- Power factor correction
- > Symmetrical components
- Symmetrical and unsymmetrical fault analysis
- Principles of over-current
- > Differential and distance protection
- Circuit breakers
- System stability concepts
- > Equal area criterion

## **Section G: Control Systems**

- Mathematical modeling and representation of systems
- > Feedback principle
- > Transfer function
- Block diagrams and Signal flow graphs
- Transient and Steady-state analysis of linear time invariant systems
- Routh-Hurwitz and Nyquist criteria
- Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators
- > P, PI and PID controllers
- > State space model
- State transition matrix

#### **Section H: Electrical and Electronic Measurements**

- Bridges and Potentiometers
- > Measurement of voltage, current, power, energy and power factor
- Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement
- Oscilloscopes
- > Error analysis

# **Section I: Analog and Digital Electronics**

- Characteristics of diodes, BJT, MOSFET
- Simple diode circuits: clipping, clamping, rectifiers
- Amplifiers: Biasing, Equivalent circuit and Frequency response
- > Oscillators and Feedback amplifiers



- Operational amplifiers: Characteristics and applications
- > Simple active filters
- VCOs and Timers
- Combinational and Sequential logic circuits
- Multiplexer
- Demultiplexer
- Schmitt trigger
- Sample and hold circuits
- ➤ A/D and D/A converters
- > 8085Microprocessor:
  - Architecture
  - Programming
  - Interfacing

## **Section H: Power Electronics**

- > Characteristics of semiconductor power devices:
  - Diode
  - Thyristor
  - Triac
  - GTO
  - MOSFET
  - IGBT
- DC to DC conversion:
  - Buck
  - Boost
  - Buck-Boost converters
- Single and three phase configuration of uncontrolled rectifiers
- Line commutated thyristor based converters
- > Bidirectional ac to dc voltage source converters
- > Issues of line current harmonics
- Power factor
- Distortion factor of ac to dc converters
- Single phase and three phase inverters
- Sinusoidal pulse width modulation

