F# - SETS

A setin F# is a data structure that acts as a collection of items without preserving the order in
which items are inserted. Sets do not allow duplicate entries to be inserted into the collection.

Creating Sets
Sets can be created in the following ways —

e By creating an empty set using Set.empty and adding items using the add function.

e Converting sequences and lists to sets.

The following program demonstrates the techniques —

(* creating sets *)
let setl = Set.empty.Add(3).Add(5).Add(7). Add(9)
printfn"The new set: %A" setl

let weekdays = Set.ofList ["mon"; "tues"; "wed"; "thurs"; "fri"]
printfn "The list set: %A" weekdays

let set2 = Set.ofSeq [1 .. 2.. 10]
printfn "The sequence set: %A" set2

When you compile and execute the program, it yields the following output —

The new set: set [3; 5; 7; 9]
The list set: set ["fri"; "mon"; "thurs"; "tues"; "wed"]
The sequence set: set [1; 3; 5; 7; 9]

Basic Operations on Sets

The following table shows the basic operations on sets —

Value Description

add : 'T -» Set<'T> - Set<'T> Returns a new set with an element added to the
set. No exception is raised if the set already
contains the given element.

contains : 'T - Set<'T> - bool Evaluates to true if the given elementis in the
given set.
count: Set<'T> - int Returns the number of elements in the set.

difference : Set<'T> - Set<'T> - Set<'T> Returns a new set with the elements of the
second set removed from the first.

empty : Set<'T> The empty set for the specified type.

exists : 'T - bool » Set<'T> - bool Tests if any element of the collection satisfies
the given predicate. If the input function is
predicate and the elements are i0...iN, then this
function computes predicate i0 or ... or predicate
iN.

filter : 'T - bool -» Set<'T> - Set<'T> Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

fold : 'State —» T — State = 'State —» Set<'T> —» Applies the given accumulating function to all

http://www.tutorialspoint.com/fsharp/fsharp_sets.htm

'State

foldBack : 'T - 'State — 'State - Set<'T> -
'State — 'State

forall : 'T - bool » Set<'T> - bool

intersect : Set<'T> - Set<'T> - Set<'T>

intersectMany : seq<Set<'T>> - Set<'T>
iSEmpty : Set<'T> - bool

isProperSubset : Set<'T> - Set<'T> - bool

isProperSuperset : Set<'T> - Set<'T> -»
bool

isSubset : Set<'T> - Set<'T> - bool
isSuperset : Set<'T> - Set<'T> - bool

iter : 'T = unit » Set<'T> - unit

map : T - U - Set<'T> - Set<'U>

maxElement: Set<'T> - 'T
minElement : Set<'T> - 'T
ofArray : 'T array - Set<'T>
ofList: 'T list » Set<'T>
ofSeq : seq<'T> - Set<'T>

partition : 'T - bool - Set<'T> - Set<'T> *
Set<'T>

remove : 'T - Set<'T> - Set<'T>

singleton : 'T -» Set<'T>

toArray : Set<'T> - 'T array

the elements of the set.

Applies the given accumulating function to all
the elements of the set.

Tests if all elements of the collection satisfy the
given predicate. If the input function is p and the
elements are i0...iN, then this function computes
pi0 && ... && piiN.

Computes the intersection of the two sets.

Computes the intersection of a sequence of sets.
The sequence must be non-empty.

Returns true if the set is empty.

Evaluates to true if all elements of the first set
are in the second, and at least one element of
the second is not in the first.

Evaluates to true if all elements of the second
set are in the first, and at least one element of
the first is not in the second.

Evaluates to true if all elements of the first set
are in the second.

Evaluates to true if all elements of the second
set are in the first.

Applies the given function to each element of
the set, in order according to the comparison
function.

Returns a new collection containing the results
of applying the given function to each element
of the input set.

Returns the highest elementin the set according
to the ordering being used for the set.

Returns the lowest element in the set according
to the ordering being used for the set.

Creates a set that contains the same elements
as the given array.

Creates a set that contains the same elements
as the given list.

Creates a new collection from the given
enumerable object.

Splits the set into two sets containing the
elements for which the given predicate returns
true and false respectively.

Returns a new set with the given element
removed. No exception is raised if the set
doesn't contain the given element.

The set containing the given element.

Creates an array that contains the elements of
the setin order.

toList : Set<'T> - 'T list

toSeq : Set<'T> - seq<'T>

union : Set<'T> - Set<'T> - Set<'T>

unionMany : seg<Set<'T>> - Set<'T>

Creates a list that contains the elements of the
setin order.

Returns an ordered view of the collection as an
enumerable object.

Computes the union of the two sets.

Computes the union of a sequence of sets.

The following example demonstrates the uses of some of the above functionalities —

Example

let a = Set.ofSeq [1 ..2.. 20 |
let b = Set.ofSeq [1 ..3 .. 20]|
let ¢ = Set.intersect a b

let d = Set.union a b

let e = Set.difference a b

printfn "Set a: "
Set.iter (fun x -> printf "%0 " x) a
printfn""

printfn "Set b: "
Set.iter (fun x -> printf "%0 " x) b
printfn""

printfn "Set ¢ = set intersect of a and b

Set.iter (fun x -> printf "%0 " x) c
printfn""

printfn "Set d = set union of a and b : "
Set.iter (fun x -> printf "%0 " x) d
printfn""

printfn "Set e = set difference of a and b

Set.iter (fun x -> printf "%0 " x) e
printfn""

When you compile and execute the program, it yields the following output —

Set a:

1357 9 11 13 15 17 19

Set b:

14 7 10 13 16 19

Set ¢ = set intersect of a and b
17 13 19

Set d = set union of a and b
13457 9 10 11 13 15 16 17 19
Set e = set difference of a and b

2 5 0 11 1K 17
Loading [Mathjax]/jax/output/HTML-CSS/jax.js

