F# - QUICK GUIDE

F# - OVERVIEW

F# is a functional programming language. To understand F# constructs, you need to read a
couple of lines about the programming paradigm named Functional Programming.

Functional programming treats computer programs as mathematical functions. In functional
programming, the focus would be on constants and functions, instead of variables and states.
Because functions and constants are things that don’t change.

In functional programming, you will write modular programes, i.e., the programs would consist of
functions that will take other functions as input.

Programs written in functional programming language tend to be concise.

About F#
Following are the basic information about F# —

e It was developed in 2005 at Microsoft Research.

e Itis a part of Microsoft’s family of .Net language.

e Itis a functional programming language.

e |tis based on the functional programming language OCaml.
Features of F#

e Itis .Netimplementation of OCaml.

e It compiles .Net CLI (Common Language Interface) byte code or MSIL (Microsoft Intermediate
Language) that runs on CLR (Common Language Runtime).

e It provides type inference.

e It provides rich pattern matching constructs.

e It has interactive scripting and debugging capabilities.
¢ It allows writing higher order functions.

¢ It provides well developed object model.

Use of F#

F# is normally used in the following areas —

e Making scientific model

e Mathematical problem solving

¢ Artificial intelligence research work
e Financial modelling

e Graphic design

¢ CPU design

e Compiler programming

e Telecommunications

Itis also used in CRUD apps, web pages, GUl games and other general purpose programs.

http://www.tutorialspoint.com/fsharp/fsharp_quick_guide.htm

F# - ENVIRONMENT SETUP

The tools required for F# programming are discussed in this chapter.

Integrated Development Environment(IDE) for F#

Microsoft provides Visual Studio 2013 for F# programming.

The free Visual Studio 2013 Community Edition is available from Microsoft’s official website. Visual
Studio 2013 Community and above comes with the Visual F# Tools. The Visual F# Tools include
the command-line compiler (fsc.exe) and F# Interactive (fsi.exe).

Using these tools, you can write all kinds of F# programs from simple command-line applications
to more complex applications. You can also write F# source code files using a basic text editor,
like Notepad, and compile the code into assemblies using the command-line compiler.

You can download it from Microsoft Visual Studio. It gets automatically installed in your machine.
Writing F# Programs On Links

Please visit the F# official website for the latest instructions on getting the tools as a Debian
package or compiling them directly from the source — http://fsharp.org/use/linux/.

Try it Option Online

We have set up the F# Programming environment online. You can easily compile and
execute all the available examples online along with doing your theory work. It gives
you confidence in what you are reading and to check the result with different options.
Feel free to modify any example and execute it online.

Try the following example using the Try it option or use the url —
http://www.compileonline.com/.

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

For most of the examples given in this tutorial, you will find a Try it option in our
website code sections at the top right corner that will take you to the online compiler.
So just make use of it and enjoy your learning.

F# - PROGRAM STRUCTURE

F# is a Functional Programming language.

In F#, functions work like data types. You can declare and use a function in the same way like any
other variable.

In general, an F# application does not have any specific entry point. The compiler executes all top-
level statements in the file from top to bottom.

However, to follow procedural programming style, many applications keep a single top level
statement that calls the main loop.

The following code shows a simple F# program —

open System
(* This is a multi-line comment *)
// This is a single-1line comment

let sign num =
if num > © then "positive"

http://fsharp.org/use/linux/
http://www.compileonline.com/

elif num < O then "negative"
else "zero"

let main() =
Console.WritelLine("sign 5: {0}", (sign 5))

main()

When you compile and execute the program, it yields the following output —
sign 5: positive

Please note that —

e An F# code file might begin with a number of open statements that is used to import
namespaces.

¢ The body of the files includes other functions that implement the business logic of the
application.

e The main loop contains the top executable statements.

F# - BASIC SYNTAX

You have seen the basic structure of an F# program, so it will be easy to understand other basic
building blocks of the F# programming language.

Tokens in F#

An F# program consists of various tokens. A token could be a keyword, an identifier, a constant, a
string literal, or a symbol. We can categorize F# tokens into two types —

¢ Keywords

¢ Symbol and Operators

F# Keywords

The following table shows the keywords and brief descriptions of the keywords. We will discuss the
use of these keywords in subsequent chapters.

Keyword Description

abstract Indicates a method that either has no implementation in the type in which itis
declared or thatis virtual and has a default implementation.

and Used in mutually recursive bindings, in property declarations, and with multiple
constraints on generic parameters.

as Used to give the current class object an object name. Also used to give a name to
a whole pattern within a pattern match.

assert Used to verify code during debugging.

base Used as the name of the base class object.

begin In verbose syntax, indicates the start of a code block.

class In verbose syntax, indicates the start of a class definition.

default Indicates an implementation of an abstract method; used together with an

abstract method declaration to create a virtual method.

delegate Used to declare a delegate.

do

done
downcast
downto
elif

else

end

exception

extern

false

finally

for
fun

function

global
if

in

inherit

inline

interface
internal

lazy

let

let!

match
member

module

Used in looping constructs or to execute imperative code.

In verbose syntax, indicates the end of a block of code in a looping expression.
Used to convert to a type that is lower in the inheritance chain.

In a for expression, used when counting in reverse.

Used in conditional branching. A short form of else if.

Used in conditional branching.

In type definitions and type extensions, indicates the end of a section of member
definitions.

In verbose syntax, used to specify the end of a code block that starts with the
begin keyword.

Used to declare an exception type.

Indicates that a declared program element is defined in another binary or
assembly.

Used as a Boolean literal.

Used together with try to introduce a block of code that executes regardless of
whether an exception occurs.

Used in looping constructs.
Used in lambda expressions, also known as anonymous functions.

Used as a shorter alternative to the fun keyword and a match expression in a
lambda expression that has pattern matching on a single argument.

Used to reference the top-level .NET namespace.
Used in conditional branching constructs.

Used for sequence expressions and, in verbose syntax, to separate expressions
from bindings.

Used to specify a base class or base interface.

Used to indicate a function that should be integrated directly into the caller's
code.

Used to declare and implement interfaces.
Used to specify that a member is visible inside an assembly but not outside it.

Used to specify a computation thatis to be performed only when a resultis
needed.

Used to associate, or bind, a name to a value or function.

Used in asynchronous workflows to bind a name to the result of an asynchronous
computation, or, in other computation expressions, used to bind a name to a
result, which is of the computation type.

Used to branch by comparing a value to a pattern.

Used to declare a property or method in an object type.

Used to associate a name with a group of related types, values, and functions, to
logically separate it from other code.

mutable

namespace

new

not

null

of

open

or

override

private
public
rec
return

return!

select

static

struct

then

Used to declare a variable, that is, a value that can be changed.

Used to associate a name with a group of related types and modules, to logically
separate it from other code.

Used to declare, define, or invoke a constructor that creates or that can create an
object.

Also used in generic parameter constraints to indicate that a type must have a

certain constructor.

Not actually a keyword. However, not struct in combination is used as a generic
parameter constraint.

Indicates the absence of an object.

Also used in generic parameter constraints.

Used in discriminated unions to indicate the type of categories of values, and in
delegate and exception declarations.

Used to make the contents of a namespace or module available without
qualification.

Used with Boolean conditions as a Boolean or operator. Equivalent to ||.

Also used in member constraints.

Used to implement a version of an abstract or virtual method that differs from the
base version.

Restricts access to a member to code in the same type or module.

Allows access to a member from outside the type.

Used to indicate that a function is recursive.

Used to indicate a value to provide as the result of a computation expression.

Used to indicate a computation expression that, when evaluated, provides the
result of the containing computation expression.

Used in query expressions to specify what fields or columns to extract. Note that
this is a contextual keyword, which means thatitis not actually a reserved word
and it only acts like a keyword in appropriate context.

Used to indicate a method or property that can be called without an instance of a
type, or a value member that is shared among all instances of a type.

Used to declare a structure type.

Also used in generic parameter constraints.

Used for OCaml compatibility in module definitions.

Used in conditional expressions.

Also used to perform side effects after object construction.

to
true

try

type

upcast
use

use!

val

void

when
while

with

yield
yield!

Used in for loops to indicate a range.
Used as a Boolean literal.

Used to introduce a block of code that might generate an exception. Used
together with with or finally.

Used to declare a class, record, structure, discriminated union, enumeration type,
unit of measure, or type abbreviation.

Used to convert to a type that is higher in the inheritance chain.
Used instead of let for values that require Dispose to be called to free resources.

Used instead of let! in asynchronous workflows and other computation
expressions for values that require Dispose to be called to free resources.

Used in a signature to indicate a value, or in a type to declare a member, in
limited situations.

Indicates the .NET void type. Used when interoperating with other .NET languages.

Used for Boolean conditions (when guards) on pattern matches and to introduce
a constraint clause for a generic type parameter.

Introduces a looping construct.

Used together with the match keyword in pattern matching expressions. Also
used in object expressions, record copying expressions, and type extensions to
introduce member definitions, and to introduce exception handlers.

Used in a sequence expression to produce a value for a sequence.

Used in a computation expression to append the result of a given computation
expression to a collection of results for the containing computation expression.

Some reserved keywords came from the OCaml language —

asr land

lor Isl Isr Ixor mod sig

Some other reserved keywords are kept for future expansion of F#.

atomic
continue
method

sealed

break checked component const constraint constructor
eager event external fixed functor include
mixin object parallel process protected pure
tailcall trait virtual volatile

Comments in F#

F# provides two types of comments —

¢ One line comment starts with // symbol.

e Multi line comment starts with (* and ends with *).

A Basic Program and Application Entry Point in F#

Generally, you don’t have any explicit entry point for F# programs. When you compile an F#

application, the last file provided to the compiler becomes the entry point and all top level
statements in that file are executed from top to bottom.

A well-written program should have a single top-level statement that would call the main loop of
the program.

A very minimalistic F# program that would display ‘Hello World’ on the screen —

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

When you compile and execute the program, it yields the following output —

Hello World!

F# - DATA TYPES

The data types in F# can be classified as follows —

e Integral types

e Floating point types
o Texttypes

e Other types

Integral Data Type

The following table provides the integral data types of F#. These are basically integer data types.

F# Size Range Example Remarks

Type

sbyte 1 byte -128 to 127 8-bit signed
42y integer
-11y

byte 1 byte 0 to 255 8-bit
42uy unsigned

integer

200uy

intl6 2 bytes -32768 to 32767 16-bit signed
42s integer
-11s

uintl6 2 bytes 0 to 65,535 16-bit
42us unsigned

integer

200us

int/int32 4 bytes -2,147,483,648 to 2,147,483,647 32-bit signed
42 integer
-11

uint32 4 bytes 0 to 4,294,967,295 32-bit

42u unsigned

int64

uint64

bigint

8 bytes

8 bytes

At least 4 bytes

Example

(* single byte integer *)

let x
let vy
let z

printfn
printfn
printfn

(* unsigned

let p
let q
let r

printfn
printfn
printfn

268.97f
312.58f
X ty

"xi %f" x

Ily: %-f:ll y
"z %f" z

2uy

4uy

p +q

Ilp: %ill p
Ilq: %ill q
"r: %i" r

(* signed 16-bit integer *)

let a
let b
let c

printfn
printfn
printfn

12s
24s
a-+b

"a: %1i" a
"b: %1i" b
"c: %i" c

(* signed 32-bit integer *)

let d
let e
let f

printfn

2121
5041
d +e

"d: %i" d

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0 to 18,446,744,073,709,551,615

any integer

8-bit natural number *)

200u

42L
-11L

42UL
200UL

42|
1499999
9999999
9999999
9999999
9999I

integer

64-bit signed
integer

64-bit
unsigned
integer

arbitrary
precision
integer

printfn "e:
printfn "f: %i" f

%1" e

When you compile and execute the program, it yields the following output —

DB NWNE

12
1 24
: 36
1 212
: 504
: 716

D Q0T Y SO T N X

Floating Point Data Types

The following table provides the floating point data types of F#.

F# Type

float32

float

decimal

BigRational

Example

Size

4 bytes

8 bytes

16 bytes

At least 4 bytes

Range

+1.5e-45 to +3.4e38

+5.0e-324 to +1.7e308

+1.0e-28 to £7.9e28

Any rational number.

(* 32-bit signed floating point number *)
(* 7 significant digits *)

let d
let e
let f

printfn
printfn
printfn

212.098f
504 .768f
d +e

"d:
"e:
0 =

%" d
%" e
%f" f

(* 64-bit signed floating point number *)

(* 15-16 significant digits *)

let x
let y

21290.098
50446.768

Example Remarks

42.0F
-11.0F

42.0
-11.0

42.0M
-11.0M

42N
-11N

32-bit signed floating
point number (7
significant digits)

64-bit signed floating
point number (15-16
significant digits)

128-bit signed floating
point number (28-29
significant digits)

Arbitrary precision
rational number. Using
this type requires a
reference to
FSharp.PowerPack.dll.

let z = x +vy

printfn "x: %g" x
printfn "y: %g" y
printfn "z: %g" z

When you compile and execute the program, it yields the following output —

1 212.098000
: 504.768000
1 716.866000
1 21290.1
: 50446.8
1 71736.9

N X D Q

Text Data Types

The following table provides the text data types of F#.

F# Type Size

char 2 bytes

string 20 + (2 * string's length)
bytes

Example

let choice = 'y'

let name = "Zara Ali"

let org = "Tutorials Point"

printfn "Choice: %c'" choice
printfn "Name: %s" name
printfn "Organisation: %s" org

Range

U+0000 to U+ffff

0 to about 2 billion
characters

Example Remarks

Single unicode

X' characters
I\tl

Unicode text
"Hello"
"World"

When you compile and execute the program, it yields the following output —

Choice: y
Name: Zara Ali
Organisation: Tutorials Point

Other Data Types

The following table provides some other data types of F#.

F# Type Size Range
bool 1 byte Only two possible values, true or
false

Example Remarks

Stores boolean
true values

false

Example

let trueval = true
let falsevVal = false

printfn "True Value: %b" (trueval)
printfn "False Value: %b" (falseVal)

When you compile and execute the program, it yields the following output —

True Value: true
False Value: false

F# - VARIABLES

A variable is a name given to a storage area that our programs can manipulate. Each variable has
a specific type, which determines the size and layout of the variable's memory; the range of values
that can be stored within that memory; and the set of operations that can be applied to the
variable.

Variable Declaration in F#
The let keyword is used for variable declaration —

For example,

let x = 10

It declares a variable x and assigns the value 10 to it.

You can also assign an expression to a variable —

let x = 10
let y = 20
let z = x +y

The following example illustrates the concept —

Example
let x = 10
let y = 20
let z = x +y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it yields the following output —

x: 10
y: 20
z: 30

Variables in F# are immutable, which means once a variable is bound to a value, it can’t be
changed. They are actually compiled as static read-only properties.

The following example demonstrates this.
Example

10
20

let x
let y

let z = x +vy

printfn "x: %i" x

printfn "y: %i" vy
printfn "z: %i" z
let x = 15

let y = 20

let z = x +vy

printfn "x: %i" x
printfn "y: %i" vy
printfn "z: %i" z

When you compile and execute the program, it shows the following error message —

Duplicate definition of value 'x'
Duplicate definition of value 'Y'
Duplicate definition of value 'Z'

Variable Definition With Type Declaration

A variable definition tells the compiler where and how much storage for the variable should be
created. A variable definition may specify a data type and contains a list of one or more variables
of that type as shown in the following example.

Example

let x:int32 = 10
let y:int32 = 20
let z:int32 = x + vy

printfn "x: %d" x
printfn "y: %d" y
printfn "z: %d" z

let p:float = 15.99
let g:float = 20.78
let r:float = p + q

printfn "p: %g" p
printfn "qg: %g" q
printfn "r: %g" r

When you compile and execute the program, it shows the following error message —

;10
: 20
1 30
: 15.99
1 20.78
. 36.77

SO T N X

Mutable Variables

At times you need to change the values stored in a variable. To specify that there could be a
change in the value of a declared and assigned variable, in later part of a program, F# provides
the mutable keyword. You can declare and assign mutable variables using this keyword, whose
values you will change.

The mutable keyword allows you to declare and assign values in a mutable variable.

You can assign some initial value to a mutable variable using the let keyword. However, to assign
new subsequent value to it, you need to use the « operator.

For example,

let mutable x = 10
X « 15

The following example will clear the concept —

Example

let mutable x = 10
let y = 20

let mutable z = x + vy

printfn "Original Vvalues:"
printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

printfn "Let us change the value of x"
printfn "Value of z will change too."

X <- 15
Z <- X +y

printfn "New Values:"
printfn "x: %i" x
printfn "y: %i" vy
printfn "z: %i" z

When you compile and execute the program, it yields the following output —

Original Values:

X: 10

y: 20

z: 30

Let us change the value of X
Value of z will change too.
New Values:

x: 15

y: 20

z: 35

F# - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. F# is rich in built-in operators and provides the following types of operators —

Arithmetic Operators

Comparison Operators

Boolean Operators

Bitwise Operators
Arithmetic Operators

The following table shows all the arithmetic operators supported by F# language. Assume variable
A holds 10 and variable B holds 20 then —

Operator Description Example
+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

ok Exponentiation Operator, raises an operand to the power of gxxa will give 2010
another

Example

let a : int32 = 21

let b : int32 = 10

let mutable ¢ = a + b

printfn "Line 1 - Value of c¢ is %d" c

cC <-a-b;
printfn "Line 2 - Value of c is %d" c

c <-a?* b;
printfn "Line 3 - Value of c¢ is %d" c

c <-a/ b;
printfn "Line 4 - Value of c is %d" c

c <-a%b;
printfn "Line 5 - Value of c is %d" c

When you compile and execute the program, it yields the following output —

Line 1 - Value of c¢ is 31
Line 2 - Value of c¢ is 11
Line 3 - Value of c is 210
Line 4 - Value of ¢ is 2
Line 5 - Value of ¢ is 1

Comparison Operators

The following table shows all the comparison operators supported by F# language. These binary
comparison operators are available for integral and floating-point types. These operators return
values of type bool.

Assume variable A holds 10 and variable B holds 20, then —

Operator Description Example

= Checks if the values of two operands are equal or not, if yes (A == B) is not true.
then condition becomes true.

<> Checks if the values of two operands are equal or not, if (A <> B)is true.
values are not equal then condition becomes true.

> Checks if the value of left operand is greater than the value (A > B) is not true.
of right operand, if yes then condition becomes true.

< Checks if the value of left operand is less than the value of (A < B)is true.
right operand, if yes then condition becomes true.

>= Checks if the value of left operand is greater than or equal (A >= B) is not true.
to the value of right operand, if yes then condition becomes
true.

<= Checks if the value of left operand is less than or equal to (A <= B)is true.

the value of right operand, if yes then condition becomes
true.

Example

let mutable a : int32 = 21
let mutable b : int32 = 10

if (a = b) then

printfn "Line 1 - a is equal to b"
else

printfn "Line 1 - a is not equal to b"

if (a < b) then

printfn "Line 2 - a is less than b"
else

printfn "Line 2 - a is not less than b"

if (a > b) then

printfn "Line 3 - a is greater than b"
else

printfn "Line 3 - a is not greater than b"

(* Lets change value of a and b *)
a<->5
b <- 20

if (a <= b) then

printfn "Line 4 - a is either less than or equal to b"
else

printfn "Line4 - a is a is greater than b"

When you compile and execute the program, it yields the following output —

Line 1 - a is not equal to b
Line 2 - a is not less than b
Line 3 - a is greater than b
Line 4 - a is either less than or equal to b

Boolean Operators

The following table shows all the Boolean operators supported by F# language. Assume variable A
holds true and variable B holds false, then —

Operator Description Example

&& Called Boolean AND operator. If both the operands are (A && B) is false.
non-zero, then condition becomes true.

[Called Boolean OR Operator. If any of the two operands is (A || B) is true.
non-zero, then condition becomes true.

not Called Boolean NOT Operator. Use to reverses the logical not (A && B) is true.
state of its operand. If a condition is true then Logical NOT
operator will make false.

Example
let mutable a : bool = true;
let mutable b : bool = true;

if (a & b) then

printfn "Line 1

else

printfn "Line 1

if (a || b) then
printfn "Line 2

else

printfn "Line 2

(* lets change the

a <- false
if (a & b) then

printfn "Line 3

else

printfn "Line 3

if (a || b) then

printfn "Line 4

else

printfn "Line 4

When you compile and execute the program, it yields the following output —

Line
Line
Line
Line

A WNR
"

- Condition is

- Condition is

- Condition is
- Condition is

value of a *)

- Condition is

- Condition is

- Condition is

- Condition is

Condition is true

Condition

is true

Condition is not true
Condition is true

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &&& (bitwise
AND), ||| (bitwise OR), and ™~~~ (bitwise exclusive OR) are as follows —

ANANAN

P g p&&&q pllla p q
0 0O 0 0
01 0 1 1
11 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows —

A =00111100

B =00001101

A&&&B = 0000 1100

Al[|B = 0011 1101

A~~7B = 0011 0001

~~~A=11000011

The Bitwise operators supported by F# language are listed in the following table. Assume variable

true"

not true"

true"

not true"

true"

not true"

true"

not true"

A holds 60 and variable B holds 13, then —

Operator

Description

Example



&&&

<<

>>>

Example

let a : int32
let b : int32

Binary AND Operator copies a bit to the result if it
exists in both operands.

Binary OR Operator copies a bit if it exists in either
operand.

Binary XOR Operator copies the bitif itis setin one
operand but not both.

Binary Ones Complement Operator is unary and has
the effect of 'flipping' bits.

Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the
right operand.

Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by the
right operand.

60 // 60
13 // 13

0011 1100
0000 1101

let mutable c : int32 = 0

C <- a&&b // 12 = 0000 1100
printfn "Line 1 - Value of c is %d"

c <-all||lb// 61 =0011 1101
printfn "Line 2 - Value of c is %d"

cC <- a ANb // 49 = 0011 0001
printfn "Line 3 - Value of c is %d"

c = ~~a // -61 = 1100 0011
printfn "Line 4 - Value of c is %d"

C <- a<<< 2 // 240 = 1111 0000
printfn "Line 5 - Value of c is %d"

cC <- a>>2// 15 = 0000 1111
printfn "Line 6 - Value of c is %d"

(A &&& B) will give 12, which
is 0000 1100

(A |[] B) will give 61, which is
0011 1101

(A~~~ B) will give 49,
which is 0011 0001

(~~~A) will give -61, which
is 1100 0011 in 2's
complement form.

A <<< 2 will give 240 which
is1111 0000

A >>> 2 will give 15 which
is0000 1111

When you compile and execute the program, it yields the following output —

Line 1 - Value of c is 12
Line 2 - Value of c¢ is 61
Line 3 - Value of c is 49
Line 4 - Value of c is 49
Line 5 - Value of c is 240
Line 6 - Value of c¢ is 15

Operators Precedence

The following table shows the order of precedence of operators and other expression keywords in
the F# language, from lowest precedence to the highest precedence.

Operator

as

Associativity

Right



when

| (pipe)

let

function, fun, match, try
if

-

or, ||
&, &&

< op, >op, =, |op, &op

&&& ’ |||r AAA, ~~, <<<, >>>

~ op
7>,

- op, +op, (binary)

*op, /op, %op

** 0p

f x (function application)

| (pattern match)

prefix operators (&plus;op, -op, %, %%, &, &&,

f(x)

f<types>
Example

let a : int32 = 20
let b : int32 = 10
let ¢ : int32 = 15
let d : int32 = 5

let mutable e : int32 = 0
e<-(a+b)*c/d// (30 * 15 ) /5
printfn "Value of (a + b) * ¢ / d is :

e <- ((a+b)*c)/d// (306 * 15 ) / 5
printfn "Value of ((a + b) * c) / d is :

e<-(a+b)* (¢c/d)// (30) *
printfn "Value of (a + b) *

lop, ~op)

(c /7 d) is :

Right

Left

Right

Non associative
Non associative
Non associative
Right

Right

Non associative
Left

Left

Left

Left

Right

Right

Non associative
Left

Left

Right

Left

Right

Left

Left

Left

Left



e<-a+(b*c)/d// 20 + (150/5)
printfn "Value of a + (b * ¢c) / d is : %d" e

When you compile and execute the program, it yields the following output —

Value of (a +b) * ¢c / d is : 90
Value of ((a +b) * ¢c) / d is : 90
Value of (a + b) * (c /7 d) is : 90
Value of a+ (b * ¢) / d is : 50

F# - DECISION MAKING

Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program. It should be along with a statement or statements to be
executed if the condition is determined to be true, and optionally, other statements to be executed
if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages —

If condition If condition
is true is false

conditional '
code

F# programming language provides the following types of decision making statements.

Statement Description

if /then statement An if/fthen statement consists of a Boolean expression followed
by one or more statements.

if/fthen/ else statement An if/fthen statement can be followed by an optional else
statement, which executes when the Boolean expression is
false.

if/fthen/elif/else statement An if/then/elif/else statement allows you to have multiple else
branches.

nested if statements You can use one if or else if statementinside another if or else

if statement(s).



F #-if/fthen Statement
An if/then statement consists of a Boolean expression followed by one or more statements.
Syntax
The if/then construct in F# has the following syntax —
(* simple if *)

if expr then
expr

Flow diagram

If condition
is true

condition

If condition
is false

conditional code

Example

let a : int32 = 10
(* check the boolean condition using if statement *)
if (a < 20) then

printfn "a is less than 20\n"
printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output —

a is less than 20

Value of a is: 10

F#-if/then/else Statement

An if/then statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax

The syntax of an if/then/else statement in F# programming language is —



if expr then
expr

else
expr

Flow Diagram

If condition
is true

If condition
is false

O

Example

let a : int32 = 100
(* check the boolean condition using if statement *)

if (a < 20) then
printfn "a is less than 20\n"
else
printfn "a is not less than 20\n"
printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output —

a is not less than 20

Value of a is: 100
F#-if/then/elif/else Statement
An if/then/elif/else construct has multiple else branches.

Syntax

The syntax of an if/then/elif/else statement in F# programming language is —

if expr then
expr

elif expr then
expr

elif expr then
expr



else
expr

Example

let a : int32 = 100

(* check the boolean condition using if statement *)

if (a = 10) then
printfn "Value of a is 10\n"
elif (a = 20) then
printfn " Value of a is 20\n"
elif (a = 30) then
printfn " Value of a is 30\n"
else
printfn " None of the values are matching\n"
printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output —

None of the values are matching

Value of a is: 100

F#-Nested if Statements

Itis always legal in F# programming to nest if/then or if/then/else statements, which means you
can use one if or else if statementinside another if or else if statement(s).

Syntax

if expr then
expr
if expr then
expr
else
expr
else
expr

Example

let a : int32 = 100
let b : int32 = 200
(* check the boolean condition using if statement *)

if (a = 100) then
(* if condition is true then check the following *)

if (b = 200) then
printfn "Value of a is 100 and b is 200\n"

printfn "Exact value of a is: %d" a
printfn "Exact value of b is: %d" b

When you compile and execute the program, it yields the following output —

Value of a is 100 and b is 200

Exact value of a is: 100
Exact value of b is: 200



F# - LOOPS

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages —

Conditional Code

If condition
is true

is false

\J

If condition

F# provides the following types of loops to handle the looping requirements.

Loop Type

for... to and for... downto expressions

for ... in expression

While...do loop

nested loops

Description

The for...to expression is used to iterate in a loop
over a range of values of a loop variable. The for...
downto expression reduces the value of loop
variable.

This form of for loop is used to iterate over
collections of items i.e., loops over collections and
sequences

Repeats a statement or group of statements while a
given condition is true. It tests the condition before
executing the loop body.

You can use one or more loop inside any other for
or while loop.

F#-for...to and for...downto Expressions

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to

execute a specific number of times.

Syntax



The syntax of a for...to loop in F# programming language is —

for var = start-expr to end-expr do
. // loop body

The syntax of a for...downto loop in F# programming language is —

for var = start-expr downto end-expr do
. // loop body

Example 1
The following program prints out the numbers 1 -20 —

let main() =
for i = 1 to 20 do
printfn "i: %i" i
main()

When you compile and execute the program, it yields the following output —

O©CoO~NOOUTLDh WNRE

T S S N T 1 o1 T ST Sy Ay Ry ay
=
=

Example 2
The following program counts in reverse and prints out the numbers 20-1 —

let main() =
for i = 20 downto 1 do
printfn "i: %i" i
main()

When you compile and execute the program, it yields the following output —

20
19
18
17
16
15
14
13
12
11
10

N N N N SR S



N N SN R S
FNWDUO~N®O

F#-for...in Expressions

This looping construct is used to iterate over the matches of a pattern in an enumerable collection
such as a range expression, sequence, list, array, or other construct that supports enumeration.

Syntax

for pattern in enumerable-expression do
body-expression

Example
The following program illustrates the concept —

// Looping over a list.
let listl = [ 10; 25; 34; 45; 78 ]
for i in listl do

printfn "%d" i

// Looping over a sequence.
let seql = seq { for i in 1 .. 10 -> (i, i*i) }
for (a, asqr) in seql do

printfn "%d squared is %d" a asqr

When you compile and execute the program, it yields the following output —

10

25

34

45

78

1 squared is 1
2 squared is 4

3 squared is 9

4 squared is 16

5 squared is 25

6 squared is 36

7 squared is 49

8 squared is 64

9 squared is 81
10 squared is 100

F#-While...do Expressions

The while...do expression is used to perform iterative execution while a specified test condition is
true.

Syntax

while test-expression do
body-expression

The test-expression is evaluated first; if itis true, the body-expression is executed and the test
expression is evaluated again. The body-expression must have type unit, i.e., it should not return



any value. If the test expression is false, the iteration ends.
Example

let mutable a = 10

while (a < 20) do
printfn "value of a: %d" a
a<-a+l1

When you compile and execute the program, it yields the following output —

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

F#-Nested Loops

F# programming language allows to use one loop inside another loop.
Syntax
The syntax for a nested for loop statement could be as follows —

for varl = start-exprl to end-exprl do
for var2 = start-expr2 to end-expr2 do
. // loop body

The syntax for a nested while loop statement could be as follows —

while test-expressionl do
while test-expression2 do
body-expression

Example

let main() =
for i = 1 to 5 do

printf "\n"
for j =1 to 3 do
printf "*"
main()

When you compile and execute the program, it yields the following output —

* % %
* % %
* % %
* % %

* % %

F# - FUNCTIONS

In F#, functions work like data types. You can declare and use a function in the same way like any
other variable.

Since functions can be used like any other variables, you can —



Create a function, with a name and associate that name with a type.

Assign it a value.

Perform some calculation on that value.

Pass it as a parameter to another function or sub-routine.

Return a function as the result of another function.

Defining a Function

Functions are defined by using the let keyword. A function definition has the following syntax —

let [inline] function-name parameter-list [ : return-type ]
= function-body

Where,
o function-name is an identifier that represents the function.
¢ parameter-list gives the list of parameters separated by spaces. You can also specify an
explicit type for each parameter and if not specified compiler tends to deduce it from the
function body (like variables).

¢ function-body consists of an expression, or a compound expression consisting of a number
of expressions. The final expression in the function body is the return value.

e return-type is a colon followed by a type and is optional. If the return type is not specified,
then the compiler determines it from the final expression in the function body.

Parameters of a Function

You list the names of parameters right after the function name. You can specify the type of a
parameter. The type of the parameter should follow the name of the parameter separated by a
colon.

If no parameter type is specified, it is inferred by the compiler.

For example —

let doubleIt (x : int) = 2 * x

Calling a Function

A function is called by specifying the function name followed by a space and then any arguments
separated by spaces.

For example —

let vol = cylinderVolume 3.0 5.0

The following programs illustrate the concepts.
Example 1

The following program calculates the volume of a cylinder when the radius and length are given as
parameters.

// the function calculates the volume of
// a cylinder with radius and length as parameters

let cylinderVolume radius length : float =

// function body



let pi = 3.14159
length * pi * radius * radius

let vol = cylinderVolume 3.0 5.0
printfn " Volume: %g " vol

When you compile and execute the program, it yields the following output —

Volume: 141.372

Example 2
The following program returns the larger value of two given parameters —

// the function returns the larger value between two
// arguments

let max numl num2 : int32 =
// function body
if (num1>num2)then
numi
else
num2

let res = max 39 52
printfn " Max Value: %d " res

When you compile and execute the program, it yields the following output —

Max Value: 52

Example 3

let doubleIt (x : int) = 2 * x
printfn "Double 19: %d" ( doubleIt(19))

When you compile and execute the program, it yields the following output —

Double 19: 38

Recursive Functions
Recursive functions are functions that call themselves.
You define a recursive using the let rec keyword combination.

Syntax for defining a recursive function is —

//Recursive function definition
let rec function-name parameter-list = recursive-function-body

For example —

let rec fib n = if n < 2 then 1 else fib (n - 1) &plus; fib (n - 2)

Example 1
The following program returns Fibonacci 1 to 10 —
let rec fib n = if n < 2 then 1 else fib (n - 1) &plus; fib (n - 2)

for i = 1 to 10 do
printfn "Fibonacci %d: %d" i (fib 1)



When you compile and execute the program, it yields the following output —

Fibonacci 1: 1
Fibonacci 2: 2
Fibonacci 3: 3
Fibonacci 4: 5
Fibonacci 5: 8
Fibonacci 6: 13
Fibonacci 7: 21
Fibonacci 8: 34
Fibonacci 9: 55
Fibonacci 10: 89
Example 2

The following program returns factorial 8 —

open System
let rec fact x =

if x < 1 then 1

else x * fact (x - 1)
Console.WritelLine(fact 8)

When you compile and execute the program, it yields the following output —

40320

Arrow Notations in F#

F# reports about data type in functions and values, using a chained arrow notation. Let us take an
example of a function that takes one intinput, and returns a string. In arrow notation, it is written
as —

int -> string

Data types are read from left to right.

Let us take another hypothetical function that takes two int data inputs and returns a string.
let mydivfunction x y = (x / y).ToString();;

F# reports the data type using chained arrow notation as —

val mydivfunction : x:int -> y:int -> string

The return type is represented by the rightmost data type in chained arrow notation.

Some more examples —

Notation Meaning
float —» float -» float The function takes two float inputs, returns another float.

int » string —» float The function takes an int and a string input, returns a float.

Lambda Expressions
A lambda expression is an unnamed function.

Let us take an example of two functions —



let applyFunction ( f: int -> int -> int) x y = f x y
let mul xy = x * vy

let res = applyFunction mul 5 7

printfn "%d" res

When you compile and execute the program, it yields the following output —

35

Now in the above example, if instead of defining the function mul, we could have used lambda
expressions as —

let applyFunction ( f: int -> int -> int) x y = f x y
let res = applyFunction (fun X y -> x * vy ) 5 7
printfn "%d" res

When you compile and execute the program, it yields the following output —

35

Function Composition and Pipelining
In F#, one function can be composed from other functions.

The following example shows the composition of a function named f, from two functions functionl
and function2 —

let functionl Xx

+
let function2 x *

1
5

X
X
let f = functionl >> function2

let res = f 10
printfn "%d" res

When you compile and execute the program, it yields the following output —
55

F# also provides a feature called pipelining of functions. Pipelining allows function calls to be
chained together as successive operations.

The following example shows that —

let functionl x

+
let function2 x *

1
5

X
X
let res = 10 |> functionl |> function2
printfn "%d" res

When you compile and execute the program, it yields the following output —

55

F# - STRINGS

In F#, the string type represents immutable text as a sequence of Unicode characters.

String Literals
String literals are delimited by the quotation mark (") character.

Some special characters are there for special uses like newline, tab, etc. They are encoded using



backslash (\) character. The backslash character and the related character make the escape
sequence. The following table shows the escape sequence supported by F#.

Character Escape sequence
Backspace \b
Newline \n
Carriage return \r
Tab \t
Backslash \\
Quotation mark \"
Apostrophe \'

Unicode character \uXXXX or \UXXXXXXXX (where X indicates a hexadecimal digit)

Ways of Ignoring the Escape Sequence
The following two ways makes the compiler ignore the escape sequence —

e Using the @ symbol.

e Enclosing the string in triple quotes.

When a string literal is preceded by the @ symbol, it is called a verbatim string. In that way, all
escape sequences in the string are ignored, except that two quotation mark characters are
interpreted as one quotation mark character.

When a string is enclosed by triple quotes, then also all escape sequences are ignored, including
double quotation mark characters.

Example

The following example demonstrates this technique showing how to work with XML or other
structures that include embedded quotation marks —

// Using a verbatim string
let xmldata = @"<book author=""Lewis, C.S"" title=""Narnia"">"
printfn "%s" xmldata

When you compile and execute the program, it yields the following output —

<book author="Lewis, C.S" title="Narnia">

Basic Operators on Strings

The following table shows the basic operations on strings —

Value Description

collect: (char - string) — string — string Creates a new string whose characters are the
results of applying a specified function to each
of the characters of the input string and
concatenating the resulting strings.

concat: string - seg<string> - string Returns a new string made by concatenating
the given strings with a separator.



exists : (char - bool) - string - bool Tests if any character of the string satisfies the
given predicate.

forall : (char - bool) - string - bool Tests if all characters in the string satisfy the
given predicate.

init : int = (int - string) - string Creates a new string whose characters are the
results of applying a specified function to each
index and concatenating the resulting strings.

iter : (char - unit) - string - unit Applies a specified function to each character
in the string.

iteri : (int » char - unit) -» string - unit Applies a specified function to the index of each
character in the string and the character itself.

length : string = int Returns the length of the string.

map : (char - char) = string — string Creates a new string whose characters are the

results of applying a specified function to each
of the characters of the input string.

mapi : (int = char - char) - string - string Creates a new string whose characters are the
results of applying a specified function to each
character and index of the input string.

replicate : int - string - string Returns a string by concatenating a specified
number of instances of a string.
The following examples demonstrate the uses of some of the above functionalities —
Example 1

The String.collect function builds a new string whose characters are the results of applying a
specified function to each of the characters of the input string and concatenating the resulting
strings.

let collectTesting inputS =
String.collect (fun ¢ -> sprintf "%c " c) inputS
printfn "%s" (collectTesting "Happy New Year!")

When you compile and execute the program, it yields the following output —

HappyNewYear !

Example 2

The String.concat function concatenates a given sequence of strings with a separator and returns
a new string.

let strings = [ "Tutorials Point"; "Coding Ground"; "Absolute Classes" ]
let ourProducts = String.concat "\n" strings
printfn "%s" ourProducts

When you compile and execute the program, it yields the following output —

Tutorials Point
Coding Ground
Absolute Classes

Example 3



The String.replicate method returns a string by concatenating a specified number of instances of a
string.

printfn "%s" <| String.replicate 10 "*! "

When you compile and execute the program, it yields the following output —

W o W W[ W[ W W[ W[ W[ @

F# - OPTIONS

The option type in F# is used in calculations when there may or may not exist a value for a
variable or function. Option types are used for representing optional values in calculations. They
can have two possible values — Some(x) or None.

For example, a function performing a division will return a value in normal situation, but will throw
exceptions in case of a zero denominator. Using options here will help to indicate whether the
function has succeeded or failed.

An option has an underlying type and can hold a value of that type, or it might not have a value.
Using Options

Let us take the example of division function. The following program explains this —

Let us write a function div, and send two arguments to it 20 and 5 —

let div x y = x / vy
let res = div 20 5
printfn "Result: %d" res

When you compile and execute the program, it yields the following output —

Result: 4

If the second argument is zero, then the program throws an exception —

let div x y = x / vy
let res = div 20 0
printfn "Result: %d" res

When you compile and execute the program, it yields the following output —

Unhandled Exception:
System.DivideByZeroException: Division by zero

In such cases, we can use option types to return Some (value) when the operation is successful or
None if the operation fails.

The following example demonstrates the use of options —

Example

let div x y =
match y with
| © -> None
| _ -> Some(x/y)

let res : int option = div 20 4
printfn "Result: %A " res

When you compile and execute the program, it yields the following output —



Result: Some 5

Option Properties and Methods

The option type supports the following properties and methods —

Property or method Type Description

None 'T option A static property that enables you to create an
option value that has the None value.

IsNone bool Returns true if the option has the None value.

IsSome bool Returns true if the option has a value thatis not
None.

Some 'T option A static member that creates an option that has a

value thatis not None.

Value T Returns the underlying value, or throws a
NullReferenceException if the value is None.

Example 1

let checkPositive (a : int) =
if a > 0 then
Some(a)
else
None

let res : int option = checkPositive(-31)
printfn "Result: %A " res

When you compile and execute the program, it yields the following output —

Result: <null>

Example 2

let div x y =
match y with
| © -> None
| _ -> Some(x/y)

let res : int option = div 20 4

printfn "Result: %A " res
printfn "Result: %A " res.Value

When you compile and execute the program, it yields the following output —

Result: Some 5
Result: 5

Example 3

let isHundred = function
| Some(100) -> true
| Some(_) | None -> false

printfn "%A" (isHundred (Some(45)))
printfn "%A" (isHundred (Some(100)))



printfn "%A" (isHundred None)

When you compile and execute the program, it yields the following output —

false
true
false

F# - TUPLES

A tuple is a comma-separated collection of values. These are used for creating ad hoc data
structures, which group together related values.

For example, (“Zara Ali”, “Hyderabad”, 10) is a 3-tuple with two string values and an int value, it
has the type (string * string * int).

Tuples could be pairs, triples, and so on, of the same or different types.

Some examples are provided here —

// Tuple of two integers.
(4,5)

// Triple of strings.
( IloneII, "t\l\lO", Ilthreell )

// Tuple of unknown types.
(a b)

// Tuple that has mixed types.
( "Absolute Classes", 1, 2.0 )

// Tuple of integer expressions.
(a* 4, b+7)

Example
This program has a function that takes a tuple of four float values and returns the average —

let averageFour (a, b, c, d) =
let sum = a +b +c +d
sum / 4.0

let avg:float = averageFour (4.0, 5.1, 8.0, 12.0)
printfn "Avg of four numbers: %f" avg

When you compile and execute the program, it yields the following output —

Avg of four numbers: 7.275000

Accessing Individual Tuple Members
The individual members of a tuple could be assessed and printed using pattern matching.

The following example illustrates the concept —

Example

let display tuplel =
match tuplel with
| (a, b, ¢c) -> printfn "Detail Info: %A %A %A" a b c

display ("Zara Ali", "Hyderabad", 10 )



When you compile and execute the program, it yields the following output —

Detail Info: "Zara Ali" "Hyderabad" 10

F# has two built-in functions, fst and snd, which return the first and second items in a 2-tuple.

The following example illustrates the concept —

Example

printfn "First member: %A" (fst(23, 30))
printfn "Second member: %A" (snd(23, 30))

printfn "First member: %A" (fst("Hello", "wWorld!"))
printfn "Second member: %A" (snd("Hello", "world!"))

let nameTuple = ("Zara", "Ali")

printfn "First Name: %A" (fst nameTuple)
printfn "Second Name: %A" (snd nameTuple)

When you compile and execute the program, it yields the following output —

First member: 23

Second member: 30

First member: "Hello"
Second member: "World!"
First Name: "Zara"
Second Name: "Ali"

F# - RECORDS

A record is similar to a tuple, however it contains named fields. For example,
type website =

{ title : string;
url : string }

Defining Record

A record is defined as a type using the type keyword, and the fields of the record are defined as a
semicolon-separated list.

Syntax for defining a record is —

type recordName =
{ [ fieldName : dataType ] + }

Creating a Record

You can create a record by specifying the record's fields. For example, let us create a website
record named homepage —

let homepage = { Title = "TutorialsPoint"; Url = "www.tutorialspoint.com" }
The following examples will explain the concepts —

Example 1

This program defines a record type named website. Then it creates some records of type website
and prints the records.

(* defining a record type named website *)



type website =
{ Title : string;
Url : string }

(* creating some records *)

let homepage = { Title = "TutorialsPoint"; Url = "www.tutorialspoint.com" }

let cpage = { Title = "Learn C"; Url = "www.tutorialspoint.com/cprogramming/index.htm" }
let fsharppage = { Title = "Learn F#"; Url = "www.tutorialspoint.com/fsharp/index.htm" }
let csharppage = { Title = "Learn C#"; Url = "www.tutorialspoint.com/csharp/index.htm" }

(*printing records *)

(printfn "Home Page: Title: %A \n \t URL: %A") homepage.Title homepage.Url
(printfn "C Page: Title: %A \n \t URL: %A") cpage.Title cpage.Url

(printfn "F# Page: Title: %A \n \t URL: %A") fsharppage.Title fsharppage.Url
(printfn "C# Page: Title: %A \n \t URL: %A") csharppage.Title csharppage.Url

When you compile and execute the program, it yields the following output —

Home Page: Title: "TutorialsPoint"
URL: "www.tutorialspoint.com"

C Page: Title: "Learn C"

URL: "www.tutorialspoint.com/cprogramming/index.htm"
F# Page: Title: "Learn F#"

URL: "www.tutorialspoint.com/fsharp/index.htm"
C# Page: Title: "Learn C#"

URL: "www.tutorialspoint.com/csharp/index.htm"

Example 2

type student =
{ Name : string;
ID : int;
RegistrationText : string;
IsRegistered : bool }

let getStudent name id =
{ Name = name; ID = id; RegistrationText = null; IsRegistered = false }

let registerStudent st =
{ st with
RegistrationText = "Registered";
IsRegistered = true }

let printStudent msg st =
printfn "%s: %A" msg st

let main() =
let preRegisteredStudent = getStudent "Zara" 10
let postRegisteredStudent = registerStudent preRegisteredStudent

printStudent "Before Registration: " preRegisteredStudent
printStudent "After Registration: " postRegisteredStudent

main()

When you compile and execute the program, it yields the following output —

Before Registration: : {Name = "Zara";
ID = 10;
RegistrationText = null;
IsRegistered = false;}

After Registration: : {Name = "Zara";
ID = 10;
RegistrationText = "Registered";

IsRegistered = true;}



F# - LISTS

In F#, a listis an ordered, immutable series of elements of the same type. It is to some extent
equivalent to a linked list data structure.

The F# module, Microsoft.FSharp.Collections.List, has the common operations on lists.
However F# imports this module automatically and makes it accessible to every F# application.

Creating and Initializing a List
Following are the various ways of creating lists —

e Using list literals.

e Using cons (::) operator.

e Using the List.init method of List module.

e Using some syntactic constructs called List Comprehensions.
List Literals

In this method, you just specify a semicolon-delimited sequence of values in square brackets. For
example:

let listl = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

The cons (::) Operator

With this method, you can add some values by prepending or cons-ing it to an existing list using
the :: operator. For example —

let listl = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

[] denotes an empty list.

List init Method

The List.init method of the List module is often used for creating lists. This method has the type —
val init : int -> (int -> 'T) -> 'T list

The first argument is the desired length of the new list, and the second argument is an initializer
function, which generates items in the list.

For example,
let 1ist5 = List.init 5 (fun index -> (index, index * index, index * index * index))
Here, the index function generates the list.

List Comprehensions

List comprehensions are special syntactic constructs used for generating lists.
F# list comprehension syntax comes in two forms — ranges and generators.
Ranges have the constructs — [start .. end] and [start .. step .. end]

For example,

let 1list3 = [1 .. 10]



Generators have the construct — [for x in collection do ... yield expr]

For example,

let list6 = [ for a in 1 .. 10 do yield (a * a) ]

As the yield keyword pushes a single value into a list, the keyword, yield!, pushes a collection of
values into the list.

The following function demonstrates the above methods —

Example

(* using list literals *)
let listl = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
printfn "The list: %A" listl

(*using cons operator *)
let 1ist2 =1 :: 2 :: 3 :: []
printfn "The list: %A" 1list2

(* using range constructs*)
let list3 = [1 .. 10]
printfn "The list: %A" 1ist3

(* using range constructs *)
let 1list4 = ['a' .. 'm']
printfn "The list: %A" list4

(* using init method *)
let list5 = List.init 5 (fun index -> (index, index * index, index * index * index))
printfn "The list: %A" 1list5

(* using yield operator *)
let 1list6 = [ for a in 1 .. 10 do yield (a * a) ]
printfn "The list: %A" 1ist6

(* using yield operator *)
let 1list7 = [ for a in 1 .. 100 do if a % 3 = 0 & a % 5 = 0 then yield a]
printfn "The list: %A" 1list7

(* using yield! operator *)
let 1ist8 = [for a in 1 .. 3 do yield! [ a .. a + 3 ] ]
printfn "The list: %A" 1ist8

When you compile and execute the program, it yields the following output —

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

The list: [1; 2; 3]

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

The list: [Ial; |b|,. ICI; |d|; |e|,. |1:|; |g|; |h|; |i|; |J'|; |k|; |l|,. |m|]
The list: [(0, O, 0); (1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64)]

The list: [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

The list: [15; 30; 45; 60; 75; 90]

The list: [1; 2; 3; 4; 2; 3; 4; 5; 3; 4; 5; 6]

Properties of List Data Type

The following table shows various properties of list data type —

Property Type Description

Head T The first element.



Empty ‘T list A static property that returns an empty list of the appropriate type.

ISEmpty bool trueifthe list has no elements.

ltem T The element at the specified index (zero-based).
Length int The number of elements.
Tail 'T list The list without the first element.

The following example shows the use of these properties —

Example

let listl = [ 2; 4; 6; 8; 10; 12; 14; 16 ]

// Use of Properties

printfn "listl.IsEmpty is %b" (listl.ISEmpty)

printfn "listl.Length is %d" (listil.Length)
printfn "listl.Head is %d" (listl.Head)

printfn "listl.Tail.Head is %d" (listi1.Tail.Head)
printfn "listl.Tail.Tail.Head is %d" (listl.Tail.Tail.Head)
printfn "listl.Item(1) is %d" (listl.Item(1))

When you compile and execute the program, it yields the following output —

listl.IsEmpty is false
listl.Length is 8
listl.Head is 2
listl.Tail.Head is 4
listl.Tail.Tail.Head is 6
listl.Item(1) is 4

Basic Operators on List

The following table shows the basic operations on list data type —

Value

append : 'T list = 'T list » 'T list

average : 'T list-» T

averageBy : ('T-» ~U) » 'Tlist» ~U

choose : ('T = 'U option) = 'T list = 'U list

collect: ('T -» 'Ulist) » 'T list = 'U list

concat: seq<'T list> - 'T list

empty : 'T list

exists : ('T - bool) » 'T list -» bool

Description

Returns a new list that contains the elements of
the first list followed by elements of the second.

Returns the average of the elements in the list.

Returns the average of the elements generated
by applying the function to each element of the
list.

Applies the given function to each element of
the list. Returns the list comprised of the results
for each element where the function returns
Some.

For each element of the list, applies the given
function. Concatenates all the results and return
the combined list.

Returns a new list that contains the elements of
each the lists in order.

Returns an empty list of the given type.

Tests if any element of the list satisfies the given
predicate.



exists2 : ('T1 » 'T2 -» bool) » 'T1 list » 'T2 list
- bool

filter : ('T —» bool) -» 'T list » 'T list

find : ('T -» bool) » 'T list> 'T

findIndex : ('T = bool) -» 'T list -» int

fold : ('State —» 'T - 'State) —» 'State » 'T list »
'State

fold2 : (‘'State » 'T1 —» 'T2 - 'State) —» 'State
- 'T1 list » 'T2 list -» 'State

foldBack : ('T - 'State - 'State) -» 'T list »
'State — 'State

foldBack2 : ('T1 -» 'T2 - 'State — 'State) »
'T1 list » 'T2 list -» 'State — 'State

forall : (‘T —» bool) = 'T list » bool

forall2 : (‘\T1 » 'T2 -» bool) » 'T1 list » 'T2 list
- bool

head : 'T list->'T

init: int - (int > 'T) » 'T list

isEmpty : 'T list = bool

iter : ('T = unit) » 'T list » unit

iter2 : ('T1 » 'T2 » unit) » 'T1 list » 'T2 list »
unit

Tests if any pair of corresponding elements of
the lists satisfies the given predicate.

Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

Returns the first element for which the given
function returns true.

Returns the index of the first elementin the list
that satisfies the given predicate.

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function takes the
second argument, and applies the function to it
and the first element of the list. Then, it passes
this result into the function along with the second
element, and so on. Finally, it returns the final
result. If the input function is f and the elements
are i0...iN, then this function computes f (... (fs
i0)il...)iN.

Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and
jO...jN, then this function computes f (... (fsi0
jO)...) iNjN.

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function isf
and the elements are i0...iN then computes f i0
(...(fiN s)).

Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and
jO...jN, then this function computes fi0 jO (...(fiN
jN s)).

Tests if all elements of the collection satisfy the
given predicate.

Tests if all corresponding elements of the
collection satisfy the given predicate pairwise.

Returns the first element of the list.

Creates a list by calling the given generator on
each index.

Returns true if the list contains no elements,
false otherwise.

Applies the given function to each element of
the collection.

Applies the given function to two collections
simultaneously. The collections must have
identical size.



iteri : (int » 'T - unit) » 'T list » unit

iteri2 : (int>'T1 » 'T2 » unit) » 'T1 list » 'T2
list = unit

length : 'T list = int
map : ('T - 'U) » 'T list » 'U list

map2 : ('T1->'T2 - 'U)-» 'T1 list » 'T2 list »
'U list

map3:('Tl-'T2->"'T3-"'U)—= Tl list> 'T2
list » 'T3 list » 'U list

mapi: (int = 'T = 'U) = 'T list = 'U list

mapi2 : (int->'T1 > 'T2 » 'U) » 'T1 list » 'T2
list = 'U list
max: 'Tlist>'T

maxBy : ('T = 'U)-» 'Tlist»'T

min: 'T list=>'T

minBy : (T - "'U) - 'Tlist>'T

nth:'Tlist->int->"'T

ofArray : 'T[]—- 'T list

ofSeq : seq<'T> - 'T list

partition : ('T - bool) = 'T list * 'T list

permute : (int = int) » 'T list » 'T list

pick : ('T = 'U option) » 'T list » 'U

Applies the given function to each element of
the collection. The integer passed to the function
indicates the index of element.

Applies the given function to two collections
simultaneously. The collections must have
identical size. The integer passed to the function
indicates the index of element.

Returns the length of the list.

Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection.

Creates a new collection whose elements are the
results of applying the given function to the
corresponding elements of the two collections
pairwise.

Creates a new collection whose elements are the
results of applying the given function to the
corresponding elements of the three collections
simultaneously.

Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The integer index
passed to the function indicates the index (from
0) of element being transformed.

Like List.mapi, but mapping corresponding
elements from two lists of equal length.

Returns the greatest of all elements of the list,
compared by using Operators.max.

Returns the greatest of all elements of the list,
compared by using Operators.max on the
function result.

Returns the lowest of all elements of the list,
compared by using Operators.min.

Returns the lowest of all elements of the list,
compared by using Operators.min on the
function result

Indexes into the list. The first element has index
0.

Creates a list from the given array.

Creates a new list from the given enumerable
object.

Splits the collection into two collections,
containing the elements for which the given
predicate returns true and false respectively.

Returns a list with all elements permuted
according to the specified permutation.

Applies the given function to successive
elements, returning the first result where
function returns Some for some value.



reduce: ('T>'T->'T)- 'Tlist>'T

reduceBack : (T-»'T > 'T)-» 'Tlist>'T

replicate : (int—» 'T = 'T list)

rev:'T list » 'T list

scan : ('State » 'T - 'State) - 'State —» 'T list
— 'State list

scanBack : ('T —» 'State - 'State) » 'T list »
'State — 'State list

sort: 'T list » 'T list

sortBy : (‘T - 'Key) » 'T list » 'T list

sortWith : ('T = 'T -» int) » 'T list » 'T list

sum: ~Tlist» T

sumBy : (T - ~U) - Tlist- ~U

tail : 'T list » 'T list
toArray : 'T list » 'T []
toSeq : 'T list » seq<'T>

tryFind : ('T = bool) = 'T list = 'T option

tryFindIndex : ('T - bool) = 'T list » int option

tryPick : ('T = 'U option) = 'T list » 'U option

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function applies
the specified function to the first two elements of
the list. It then passes this result into the function
along with the third element, and so on. Finally, it
returns the final result. If the input function is f
and the elements are i0...iN, then this function
computes f (... (fi0il)i2 ...)iN.

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function isf
and the elements are i0...iN, then this function
computes fiO (...(f iN-1 iN)).

Creates a list by calling the given generator on
each index.

Returns a new list with the elements in reverse
order.

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function takes the
second argument, and applies the specified
function to it and the first element of the list.
Then, it passes this result into the function along
with the second element and so on. Finally, it
returns the list of intermediate results and the
final result.

Like foldBack, but returns both the intermediate
and final results

Sorts the given list using Operators.compare.

Sorts the given list using keys given by the given
projection. Keys are compared using
Operators.compare.

Sorts the given list using the given comparison
function.

Returns the sum of the elements in the list.

Returns the sum of the results generated by
applying the function to each element of the list.

Returns the input list without the first element.
Creates an array from the given list.
Views the given list as a sequence.

Returns the first element for which the given
function returns true. Return None if no such
element exists.

Returns the index of the first elementin the list
that satisfies the given predicate. Return None if
no such element exists.

Applies the given function to successive
elements, returning the first result where
function returns Some for some value. If no such
element exists then return None.



unzip : ('T1 *'T2) list » 'T1 list * 'T2 list Splits a list of pairs into two lists.

unzip3: ('T1*'T2 *'T3) list » 'T1 list * 'T2 list  Splits a list of triples into three lists.
*'T3 list

zip : 'T1l list » 'T2 list » ('T1 * 'T2) list Combines the two lists into a list of pairs. The two
lists must have equal lengths.

zip3 : 'Tllist» 'T2 list » 'T3 list» ('T1 *'T2 * Combines the three lists into a list of triples. The
'T3) list lists must have equal lengths.

The following examples demonstrate the uses of the above functionalities —

Example 1

This program shows reversing a list recursively —

let listl = [ 2; 4; 6; 8; 10; 12; 14; 16 ]
printfn "The original list: %A" listl

let reverse 1t =
let rec loop acc = function

| [] -> acc
| hd :: tl -> loop (hd :: acc) tl
loop [] 1t

printfn "The reversed list: %A" (reverse listl)

When you compile and execute the program, it yields the following output —

The original list: [2; 4; 6; 8; 10; 12; 14; 16]
The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]

However, you can use the rev function of the module for the same purpose —
let listl = [ 2; 4; 6; 8; 10; 12; 14; 16 ]

printfn "The original list: %A" listl
printfn "The reversed list: %A" (List.rev list1l)

When you compile and execute the program, it yields the following output —

The original list: [2; 4; 6; 8; 10; 12; 14; 16]
The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]

Example 2

This program shows filtering a list using the List.filter method —
let listl = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

printfn "The list: %A" listl

let list2 = listl |> List.filter (fun x -> X % 2 = 0);;
printfn "The Filtered list: %A" list2

When you compile and execute the program, it yields the following output —

The list: [1; 2; 3; 4; 5; 6; 7;
The Filtered list: [2; 4; 6; 8;

Example 3

The List.map method maps a list from one type to another —



let listl = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

printfn "The list: %A" listl

let 1list2 = listl |> List.map (fun x -> (x * x).ToString());;
printfn "The Mapped list: %A" list2

When you compile and execute the program, it yields the following output —

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The Mapped llSt: [Illll; II4II; II9II; II16II; II25II; II36II; II49II; II64II; II81II; "100"]

Example 4

The List.append method and the @ operator appends one list to another —

let listl = [1; 2; 3; 4; 5 ]
let 1list2 = [6; 7; 8; 9; 10]
let 1ist3 = List.append listl 1list2

printfn "The first list: %A" listl
printfn "The second list: %A" list2
printfn "The appened list: %A" 1list3

let 1t1 = ['a'; 'b';'c' ]
let 1t2 = ['e'; 'f';'9g"' ]
let 1t3 = 1t1 @ 1t2

printfn "The first list: %A" 1ltl
printfn "The second list: %A" 1t2
printfn "The appened list: %A" 1t3

When you compile and execute the program, it yields the following output —

The first list: [1; 2; 3; 4; 5]

The second list: [6; 7; 8; 9; 10]

The appened list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The first list: ['a'; 'b'; 'c']

The second list: ['e'; 'f'; '0']

The appened list: ['a'; 'b'; 'c'; 'e'; 'f'; 'g']

Example 5

The List.sort method sorts a list. The List.sum method gives the sum of elements in the list and
the List.average method gives the average of elements in the list —

let listl = [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0]
printfn "The list: %A" listl

let 1ist2 = List.sort listl
printfn "The sorted list: %A" list2

let s = List.sum listl

let avg = List.average listl
printfn "The sum: %f" s
printfn "The average: %f" avg

When you compile and execute the program, it yields the following output —

The list: [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0]

The sorted list: [-10.0; -4.5; 0.0; 2.0; 8.0; 9.0; 11.2]
The sum: 15.700000

The average: 2.242857

A "fold" operation applies a function to each elementin a list, aggregates the result of the function



in an accumulator variable, and returns the accumulator as the result of the fold operation.

Example 6

The List.fold method applies a function to each element from left to right, while List.foldBack
applies a function to each element from right to left.

let sumList list = List.fold (fun acc elem -> acc + elem) O list
printfn "Sum of the elements of list %A is %d." [ 1 .. 10 ] (sumList [ 1 .. 10 ])

When you compile and execute the program, it yields the following output —

Sum of the elements of list [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] is 55.

F# - SEQUENCES

Sequences, like lists also represent an ordered collection of values. However, the elementsin a
seguence or sequence expression are computed when required. They are not computed at once,
and for this reason they are used to represent infinite data structures.

Defining Sequences

Sequences are defined using the following syntax —

seq { expr }

For example,

let seql = seq { 1 .. 10 }

Creating Sequences and Sequences Expressions
Similar to lists, you can create sequences using ranges and comprehensions.

Sequence expressions are the expressions you can write for creating sequences. These can be
done —

By specifying the range.

By specifying the range with increment or decrement.

By using the yield keyword to produce values that become part of the sequence.

By using the - operator.

The following examples demonstrate the concept —

Example 1

(* Sequences *)
let seql = seq { 1 .. 10 }

(* ascending order and increment*)
printfn "The Sequence: %A" seql
let seq2 = seq { 1 .. 5 .. 50 }

(* descending order and decrement*)
printfn "The Sequence: %A" seq2
let seq3 = seq {50 .. -5 .. 0}
printfn "The Sequence: %A" seq3

(* using yield *)
let seq4 = seq { for a in 1 .. 10 do yield a, a*a, a*a*a }
printfn "The Sequence: %A" seq4



When you compile and execute the program, it yields the following output —

The Sequence: seq [1; 2; 3; 4; ...]

The Sequence: seq [1; 6; 11; 16; ...]
The Sequence: seq [50; 45; 40; 35; ...]
The Sequence: seq [(1, 1, 1); (2, 4, 8);

Example 2

(3, 9, 27); (4, 16, 64); ...]

The following program prints the prime numbers from 1 to 50 —

(* Recursive isprime function. *)
let isprime n =
let rec check i =

i>n/2 || (n% i<>0 & & check (i + 1))

check 2

let primeIn50 = seq { for n in 1..50 do if isprime n then yield n }

for x in primeIn50 do
printfn "%d" x

When you compile and execute the program, it yields the following output —

~NOoTwWwN R

11
13
17
19
23
29
31
87/
41
43
47

Basic Operations on Sequence

The following table shows the basic operations on sequence data type —

Value

append : seq<'T> - seq<'T> - seq<'T>

average :seq<”"T>->"T

averageBy : ('T » ~U) » seq<'T> -» ~U

cache : seq<'T> - seq<'T>

cast: IEnumerable - seq<'T>

choose : ('T -» 'U option) - seq<'T> -
seq<'U>

Description

Wraps the two given enumerations as a single
concatenated enumeration.

Returns the average of the elements in the
sequence.

Returns the average of the results generated by
applying the function to each element of the
sequence.

Returns a sequence that corresponds to a
cached version of the input sequence.

Wraps a loosely-typed System. Collections
sequence as a typed sequence.

Applies the given function to each element of
the list. Return the list comprised of the results



collect: ('T - 'Collection) - seq<'T> -
seq<'U>

compareWith : ('T = 'T - int) - seq<'T> -»
seq<'T> - int

concat: seq<'Collection> - seq<'T>

countBy : ('T — 'Key) - seq<'T> - seq<'Key
*int>

delay : (unit » seq<'T>) - seq<'T>

distinct: seq<'T> - seq<'T>

distinctBy : ('T - 'Key) » seq<'T> - seq<'T>

empty : seq<'T>
exactlyOne : seq<'T> > 'T

exists : ('T = bool) = seq<'T> - bool

exists2 : ('T1 » 'T2 - bool) » seq<'T1l> -
seq<'T2> - bool

filter : ('T — bool) » seq<'T> - seq<'T>

find : ('T - bool) » seq<'T> - 'T

findIndex : (‘T - bool) » seq<'T> = int

fold : (‘'State » 'T - 'State) - 'State —»

seq<'T> - 'State

forall : ('T - bool) » seq<'T> - bool

forall2 : ("T1 - 'T2 - bool) » seq<'T1> -
seq<'T2> - bool

for each element where the function returns
Some.

Applies the given function to each element of
the sequence and concatenates all the results.

Compares two sequences using the given
comparison function, element by element.

Combines the given enumeration-of-
enumerations as a single concatenated
enumeration.

Applies a key-generating function to each
element of a sequence and return a sequence
yielding unique keys and their number of
occurrences in the original sequence.

Returns a sequence that is built from the given
delayed specification of a sequence.

Returns a sequence that contains no duplicate
entries according to generic hash and equality
comparisons on the entries. If an element occurs
multiple times in the sequence then the later
occurrences are discarded.

Returns a sequence that contains no duplicate
entries according to the generic hash and
equality comparisons on the keys returned by
the given key-generating function. If an element
occurs multiple times in the sequence then the
later occurrences are discarded.

Creates an empty sequence.
Returns the only element of the sequence.

Tests if any element of the sequence satisfies
the given predicate.

Tests if any pair of corresponding elements of
the input sequences satisfies the given
predicate.

Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

Returns the first element for which the given
function returns true.

Returns the index of the first element for which
the given function returns true.

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function is f
and the elements are i0...iN, then this function
computes f (... (fsi0)...)iN.

Tests if all elements of the sequence satisfy the
given predicate.

Tests the all pairs of elements drawn from the
two sequences satisfy the given predicate. If one
sequence is shorter than the other then the



groupBy : ('T = 'Key) —» seq<'T> - seq<'Key
*seq<'T>>

head : seq<'T>->'T

init:int - (int-> 'T) » seq<'T>

initinfinite : (int » 'T) » seq<'T>

iISEmpty : seq<'T> - bool

iter : ('T = unit) » seq<'T> - unit

iter2 : ('T1 -» 'T2 - unit) » seq<'T1> -

seq<'T2> - unit

iteri : (int = 'T - unit) » seq<'T> - unit

last: seq<'T> - 'T

length : seq<'T> = int

map : ('T = 'U) » seq<'T> - seq<'U>

map2: ('T1 - 'T2 » 'U) » seq<'T1l> -
seq<'T2> - seq<'U>

mapi: (int = 'T - 'U) » seq<'T> - seq<'U>

max: seq<'T>->'T

remaining elements of the longer sequence are
ignored.

Applies a key-generating function to each
element of a sequence and yields a sequence of
unique keys. Each unique key has also contains
a sequence of all elements that match to this
key.

Returns the first element of the sequence.

Generates a new sequence which, when iterated,
returns successive elements by calling the given
function, up to the given count. The results of
calling the function are not saved, that s, the
function is reapplied as necessary to regenerate
the elements. The function is passed the index of
the item being generated.

Generates a new sequence which, when iterated,
will return successive elements by calling the
given function. The results of calling the function
are not saved, that s, the function will be
reapplied as necessary to regenerate the
elements. The function is passed the index of the
item being generated.

Tests whether a sequence has any elements.

Applies the given function to each element of
the collection.

Applies the given function to two collections
simultaneously. If one sequence is shorter than
the other then the remaining elements of the
longer sequence are ignored.

Applies the given function to each element of
the collection. The integer passed to the function
indicates the index of element.

Returns the last element of the sequence.
Returns the length of the sequence.

Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The given
function will be applied as elements are
demanded using the MoveNext method on
enumerators retrieved from the object.

Creates a new collection whose elements are the
results of applying the given function to the
corresponding pairs of elements from the two
sequences. If one input sequence is shorter than
the other then the remaining elements of the
longer sequence are ignored.

Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The integer index
passed to the function indicates the index (from
0) of element being transformed.

Returns the greatest of all elements of the
sequence, compared by using Operators.max.



maxBy : ('T - 'U) » seq<'T>->'T

min : seq<'T>->'T

minBy : ('T - 'U) » seq<'T> - 'T

nth : int - seq<'T> - 'T

ofArray : 'T array - seq<'T>

ofList: 'T list » seq<'T>

pairwise : seq<'T> - seq<'T * 'T>

pick : ('T = 'U option) » seq<'T> - 'U

readonly : seq<'T> - seq<'T>

reduce : ('T—-'T > 'T) »seq<'T>->'T

scan : ('State » 'T - 'State) —» 'State -»
seq<'T> - seq<'State>

singleton : 'T -» seq<'T>

skip : int - seq<'T> - seq<'T>

skipWhile : ('T = bool) -» seq<'T> - seq<'T>

sort: seq<'T> - seq<'T>

sortBy : (‘T - 'Key) » seq<'T> - seq<'T>

Returns the greatest of all elements of the
sequence, compared by using Operators.max on
the function result.

Returns the lowest of all elements of the
sequence, compared by using Operators.min.

Returns the lowest of all elements of the
sequence, compared by using Operators.min on
the function result.

Computes the nth elementin the collection.
Views the given array as a sequence.
Views the given list as a sequence.

Returns a sequence of each elementin the input
sequence and its predecessor, with the
exception of the first element which is only
returned as the predecessor of the second
element.

Applies the given function to successive
elements, returning the first value where the
function returns a Some value.

Creates a new sequence object that delegates to
the given sequence object. This ensures the
original sequence cannot be rediscovered and
mutated by a type cast. For example, if given an
array the returned sequence will return the
elements of the array, but you cannot cast the
returned sequence object to an array.

Applies a function to each element of the
sequence, threading an accumulator argument
through the computation. Begin by applying the
function to the first two elements. Then feed this
result into the function along with the third
element and so on. Return the final result.

Like Seq.fold, but computes on-demand and
returns the sequence of intermediary and final
results.

Returns a sequence that yields one item only.

Returns a sequence that skips a specified
number of elements of the underlying sequence
and then yields the remaining elements of the
sequence.

Returns a sequence that, when iterated, skips
elements of the underlying sequence while the
given predicate returns true, and then yields the
remaining elements of the sequence.

Yields a sequence ordered by keys.

Applies a key-generating function to each
element of a sequence and yield a sequence
ordered by keys. The keys are compared using
generic comparison as implemented by
Operators.compare.



sum:seq<”"T>->"T

sumBy

take : int -» seq<'T> - seq<'T>

takeWhile : ('T - bool) » seq<'T> -
seq<'T>

toArray : seq<'T> - 'T[]
toList : seq<'T> - 'T list

truncate : int » seq<'T> - seq<'T>

tryFind : ('T - bool) » seq<'T> - 'T option

tryFindIndex : (‘T = bool) » seq<'T> - int
option

tryPick : ('T - 'U option) » seq<'T> - 'U
option

unfold : ('State —» 'T * 'State option) - 'State
- seq<'T>

where : ('T = bool) -» seq<'T> - seq<'T>

windowed : int » seq<'T> - seq<'T []>

zip : seq<'T1l> -» seq<'T2> - seq<'T1 *
'T2>

zip3 : seq<'T1> —» seq<'T2> - seq<'T3> -
seq<'T1*'T2 *'T3>

Returns the sum of the elements in the
seguence.

Returns the sum of the results generated by
applying the function to each element of the
segquence.

Returns the first elements of the sequence up to
a specified count.

Returns a sequence that, when iterated, yields
elements of the underlying sequence while the
given predicate returns true, and then returns
no further elements.

Creates an array from the given collection.
Creates a list from the given collection.

Returns a sequence that when enumerated
returns no more than a specified number of
elements.

Returns the first element for which the given
function returns true, or None if no such
element exists.

Returns the index of the first element in the
sequence that satisfies the given predicate, or
None if no such element exists.

Applies the given function to successive
elements, returning the first value where the
function returns a Some value.

Returns a sequence that contains the elements
generated by the given computation.

Returns a new collection containing only the
elements of the collection for which the given
predicate returns true. A synonym for Seq_ filter.

Returns a sequence that yields sliding windows
of containing elements drawn from the input
sequence. Each window is returned as a fresh
array.

Combines the two sequences into a list of pairs.
The two sequences need not have equal lengths
— when one sequence is exhausted any
remaining elements in the other sequence are
ignored.

Combines the three sequences into a list of
triples. The sequences need not have equal
lengths — when one sequence is exhausted any
remaining elements in the other sequences are
ignored.

The following examples demonstrate the uses of some of the above functionalities —

Example 1

This program creates an empty sequence and fills it up later —



(* Creating sequences *)
let emptySeq = Seq.empty
let seql = Seq.singleton 20

printfn"The singleton sequence:"
printfn "%A " seql
printfn"The init sequence:"

let seq2 = Seq.init 5 (fun n -> n * 3)
Seq.iter (fun i -> printf "%d " i) seq2
printfn""

(* converting an array to sequence by using cast *)
printfn"The array sequence 1:"

let seg3 = [| 1 .. 10 |] :> seg<int>

Seq.iter (fun i -> printf "%d " i) seq3

printfn""

(* converting an array to sequence by using Seq.ofArray *)
printfn"The array sequence 2:"

let seqd4 = [| 2..2.. 20 |] |> Seq.ofArray

Seq.iter (fun i -> printf "%d " i) seq4

printfn""

When you compile and execute the program, it yields the following output —

The singleton sequence:
seq [20]

The init sequence:

© 369 12

The array sequence 1:
1234567829 10

The array sequence 2:
246 8 10 12 14 16 18 20

Please note that —
¢ The Seq.empty method creates an empty sequence.
e The Seq.singleton method creates a sequence of just one specified element.

e The Seq.init method creates a sequence for which the elements are created by using a given
function.

e The Seq.ofArray and Seq.ofList<'T> methods create sequences from arrays and lists.

¢ The Seq.iter method allows iterating through a sequence.
Example 2

The Seq.unfold method generates a sequence from a computation function that takes a state and
transforms it to produce each subsequent element in the sequence.

The following function produces the first 20 natural numbers —

let seql = Seq.unfold (fun state -> if (state > 20) then None else Some(state, state + 1))
0

printfn "The sequence seql contains numbers from @ to 20."

for x in seql do printf "%d " X

printfn" "

When you compile and execute the program, it yields the following output —

The sequence seql contains numbers from 0 to 20.
01234567 89 10 11 12 13 14 15 16 17 18 19 20



Example 3

The Seq.truncate method creates a sequence from another sequence, but limits the sequence to a
specified number of elements.

The Seq.take method creates a new sequence that contains a specified number of elements from
the start of a sequence.

let mySeq = seq { for i in 1 .. 10 -> 3*i }
let truncatedSeq = Seq.truncate 5 mySeq
let takeSeq = Seq.take 5 mySeq

printfn"The original sequence"
Seq.iter (fun i -> printf "%d " i) mySeq
printfn""

printfn"The truncated sequence"
Seq.iter (fun i -> printf "%d " i) truncatedSeq
printfn""

printfn"The take sequence"
Seq.iter (fun i -> printf "%d " i) takeSeq
printfn""

When you compile and execute the program, it yields the following output —

The original sequence

3 6 9 12 15 18 21 24 27 30
The truncated sequence

36 9 12 15

The take sequence

36 9 12 15

F# - SETS

A setin F# is a data structure that acts as a collection of items without preserving the order in
which items are inserted. Sets do not allow duplicate entries to be inserted into the collection.

Creating Sets
Sets can be created in the following ways —

¢ By creating an empty set using Set.empty and adding items using the add function.

e Converting sequences and lists to sets.

The following program demonstrates the techniques —

(* creating sets *)
let setl = Set.empty.Add(3).Add(5).Add (7). Add(9)
printfn"The new set: %A" setl

let weekdays = Set.ofList ["mon"; "tues"; "wed"; "thurs"; "fri"]
printfn "The list set: %A" weekdays

let set2 = Set.ofSeq [ 1 .. 2.. 10 |
printfn "The sequence set: %A" set2

When you compile and execute the program, it yields the following output —
The new set: set [3; 5; 7; 9]

The list set: set ["fri"; "mon"; "thurs"; "tues"; "wed"]
The sequence set: set [1; 3; 5; 7; 9]

Basic Operations on Sets



The following table shows the basic operations on sets —

Value

add : 'T » Set<'T> - Set<'T>

contains : 'T - Set<'T> - bool

count: Set<'T> —» int

difference : Set<'T> - Set<'T> - Set<'T>

empty : Set<'T>

exists : (‘T - bool) » Set<'T> - bool

filter : ('T —» bool) -» Set<'T> - Set<'T>

fold : (‘'State » 'T —» 'State) - 'State —»
Set<'T> - 'State

foldBack : ('T - 'State — 'State) -» Set<'T> -
'State — 'State

forall : (‘T - bool) » Set<'T> - bool

intersect : Set<'T> - Set<'T> - Set<'T>

intersectMany : seq<Set<'T>> - Set<'T>
isEmpty : Set<'T> - bool

isProperSubset : Set<'T> - Set<'T> - bool

isProperSuperset : Set<'T> - Set<'T> -
bool

isSubset : Set<'T> - Set<'T> - bool

isSuperset : Set<'T> - Set<'T> - bool

iter : ('T - unit) » Set<'T> - unit

map : ('T - 'U) » Set<'T> - Set<'U>

Description

Returns a new set with an element added to the
set. No exception is raised if the set already
contains the given element.

Evaluates to true if the given elementis in the
given set.

Returns the number of elements in the set.

Returns a new set with the elements of the
second set removed from the first.

The empty set for the specified type.

Tests if any element of the collection satisfies
the given predicate. If the input function is
predicate and the elements are i0...iN, then this
function computes predicate i0 or ... or predicate
iN.

Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

Applies the given accumulating function to all
the elements of the set.

Applies the given accumulating function to all
the elements of the set.

Tests if all elements of the collection satisfy the
given predicate. If the input function is p and the
elements are i0...iN, then this function computes
pi0 && ... && piN.

Computes the intersection of the two sets.

Computes the intersection of a sequence of sets.
The sequence must be non-empty.

Returns true if the set is empty.

Evaluates to true if all elements of the first set
are in the second, and at least one element of
the second is not in the first.

Evaluates to true if all elements of the second
set are in the first, and at least one element of
the first is notin the second.

Evaluates to true if all elements of the first set
are in the second.

Evaluates to true if all elements of the second
set are in the first.

Applies the given function to each element of
the set, in order according to the comparison
function.

Returns a new collection containing the results
of applying the given function to each element



maxElement: Set<'T> - 'T

minElement : Set<'T> - 'T

ofArray : 'T array - Set<'T>

ofList : 'T list » Set<'T>

ofSeq : seq<'T> - Set<'T>

partition : ('T —» bool) » Set<'T> - Set<'T> *
Set<'T>

remove : 'T -» Set<'T> - Set<'T>

singleton : 'T -» Set<'T>

toArray : Set<'T> - 'T array

toList: Set<'T> - 'T list

toSeq : Set<'T> - seq<'T>

union : Set<'T> - Set<'T> - Set<'T>

unionMany : seg<Set<'T>> - Set<'T>

of the input set.

Returns the highest elementin the set according
to the ordering being used for the set.

Returns the lowest element in the set according
to the ordering being used for the set.

Creates a set that contains the same elements
as the given array.

Creates a set that contains the same elements
as the given list.

Creates a new collection from the given
enumerable object.

Splits the set into two sets containing the
elements for which the given predicate returns
true and false respectively.

Returns a new set with the given element
removed. No exception is raised if the set
doesn't contain the given element.

The set containing the given element.

Creates an array that contains the elements of
the setin order.

Creates a list that contains the elements of the
setin order.

Returns an ordered view of the collection as an
enumerable object.

Computes the union of the two sets.

Computes the union of a sequence of sets.

The following example demonstrates the uses of some of the above functionalities —

Example

let a = Set.ofSeq [ 1 ..2.. 20 ]
let b = Set.ofSeq [ 1 ..3 .. 20 ]
let ¢ = Set.intersect a b

let d = Set.union a b

let e = Set.difference a b

printfn "Set a: "
Set.iter (fun x -> printf "%0 " x) a
printfn""

printfn "Set b: "
Set.iter (fun x -> printf "%0 " x) b
printfn""

printfn "Set ¢ = set intersect of a and b
Set.iter (fun x -> printf "%0 " x) c
printfn""

printfn "Set d = set union of a and b : "
Set.iter (fun x -> printf "%0 " x) d
printfn""



printfn "Set e = set difference of a and b
Set.iter (fun x -> printf "%0 " x) e
printfn""

When you compile and execute the program, it yields the following output —

Set a:
1357 9 11 13 15 17 19

Set b:

14 7 10 13 16 19

Set ¢ = set intersect of a and b
17 1
Set d = set union of a and b
13457 9 160 11 13 15 16 17 19
Set e = set difference of a and b
3509

F# - MAPS

In F#, a map is a special kind of set that associates the values with key. A map is created in a
similar way as sets are created.

Creating Maps

Maps are created by creating an empty map using Map.empty and adding items using the Add
function. The following example demonstrates this —

Example

(* Create an empty Map *)
let students =
Map.empty. (* Creating an empty Map *)

Add("zara Ali", "1501").
Add("Rishita Gupta", "1502").
Add("Robin Sahoo", "1503").
Add("Gillian Megan", "1504");;

printfn "Map - students: %A" students

(* Convert a list to Map *)
let capitals =
[ "Argentina", "Buenos Aires";

"France ", "Paris";

"Chili", "Santiago";
"Malaysia", " Kuala Lumpur";
"Switzerland", "Bern" ]

[> Map.ofList;;
printfn '"Map capitals : %A" capitals

When you compile and execute the program, it yields the following output —

Map - students: map

[("Gillian Megan", "1504"); ("Rishita Gupta", "1502"); ("Robin Sahoo", "1503
")

("zara Ali", "1501")]

Map capitals : map

[("Argentina", "Buenos Aires"); ("Chili", "Santiago"); ("France ", "Paris");
("Malaysia", " Kuala Lumpur"); ("Switzerland", "Bern")]

You can access individual elements in the map using the key.
Example

(* Create an empty Map *)
let students =
Map.empty. (* Creating an empty Map *)



Add("zara Ali", "1501").
Add("Rishita Gupta", "1502").
Add("Robin Sahoo", "1503").
Add("Gillian Megan", "1504");;
printfn "Map - students: %A" students

(*Accessing an element using key *)
printfn "%A" students.["Zara Ali"]

When you compile and execute the program, it yields the following output —

Map - students: map

E("Gillian Megan', "1504"); ("Rishita Gupta", "1502"); ("Robin Sahoo", "1503
('?éara Ali", "1501")]
"1501"
Basic Operations on Maps
Add module name
The following table shows the basic operations on maps —
Member Description
Add Returns a new map with the binding added to the given map.
ContainsKey Testsif an elementis in the domain of the map.
Count The number of bindings in the map.
ISEmpty Returns true if there are no bindings in the map.
ltem Lookup an element in the map. Raises KeyNotFoundException if no binding exists
in the map.
Remove Removes an element from the domain of the map. No exception is raised if the
elementis not present.
TryFind Lookup an elementin the map, returning a Some value if the elementis in the

domain of the map and None if not.

The following example demonstrates the uses of some of the above functionalities —

Example

(* Create an empty Map *)
let students =
Map.empty. (* Creating an empty Map *)

Add("zara Ali", "1501").
Add("Rishita Gupta", "1502").
Add("Robin Sahoo", "1503").
Add("Gillian Megan", "1504").
Add("Shraddha Dubey", "1505").
Add("Novonil Sarker", "1506").
Add("Joan Paul", "1507");;

printfn "Map - students: %A" students

printfn "Map - number of students: %d" students.Count

(* finding the registration number of a student*)

let found = students.TryFind "Rishita Gupta"

match found with

| Some x -> printfn "Found %s." X

| None -> printfn "Did not find the specified value."



When you compile and execute the program, it yields the following output —

Map - students: map

[("Gillian Megan", "1564"); ("Joan Paul", "1507"); ("Novonil Sarker", "1506"
)

("Rishita Gupta", "1502"); ("Robin Sahoo", "1503");

("Shraddha Dubey", "1505"); ("Zara Ali", "1501")]

Map - number of students: 7

Found 1502.

F# - DISCRIMINATED UNIONS

Unions, or discriminated unions allows you to build up complex data structures representing well-
defined set of choices. For example, you need to build an implementation of a choice variable,
which has two values yes and no. Using the Unions tool, you can design this.

Syntax

Discriminated unions are defined using the following syntax —

type type-name =
| case-identifierl [of [ fieldnamel : ] typel [ * [ fieldname2 : ]

type2 ...]
| case-identifier2 [of [fieldname3 : ]Jtype3 [ * [ fieldname4 : ]Jtyped ...]

Our simple implementation of ,choice, will look like the following —

type choice =
| Yes
| No

The following example uses the type choice —

type choice =
| Yes
| No

let x Yes (* creates an instance of choice *)
let y No (* creates another instance of choice *)
let main() =
printfn "x: %A" X
printfn "y: %A" y
main()

When you compile and execute the program, it yields the following output —

X: Yes
y: No

Example 1

The following example shows the implementation of the voltage states that sets a bit on high or
low —

type VoltageState =
| High
| Low

let toggleSwitch = function (* pattern matching input *)
| High -> Low
| Low -> High



let main() =
let on = High
let off = Low
let change = toggleSwitch off

printfn "Switch on state: %A" on

printfn "Switch off state: %A" off

printfn "Toggle off: %A" change

printfn "Toggle the Changed state: %A" (toggleSwitch change)

main()

When you compile and execute the program, it yields the following output —

Switch on state: High

Switch off state: Low

Toggle off: High

Toggle the Changed state: Low

Example 2

type Shape =
// here we store the radius of a circle
| Circle of float

// here we store the side length.
| Square of float

// here we store the height and width.
| Rectangle of float * float

let pi = 3.141592654

let area myShape =
match myShape with
| Circle radius -> pi * radius * radius
| Square s -> s * s
| Rectangle (h, w) -> h * w

let radius = 12.0
let myCircle = Circle(radius)
printfn "Area of circle with radius %g: %g" radius (area myCircle)

let side = 15.0
let mySquare = Square(side)
printfn "Area of square that has side %g: %g" side (area mySquare)

let height, width = 5.0, 8.0

let myRectangle = Rectangle(height, width)

printfn "Area of rectangle with height %g and width %g is %g" height width (area
myRectangle)

When you compile and execute the program, it yields the following output —

Area of circle with radius 12: 452.389
Area of square that has side 15: 225
Area of rectangle with height 5 and width 8 is 40

F# - MUTABLE DATA

Variables in F# are immutable, which means once a variable is bound to a value, it can’t be
changed. They are actually compiled as static read-only properties.

The following example demonstrates this.

Example



let x = 10
let y = 20
let z = x +y

printfn "x: %i" x
printfn "y: %i"
printfn "z: %i"

N <

let x
let y
let z

15
20
X t+y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it shows the following error message —

Duplicate definition of value 'x'
Duplicate definition of value 'Y'
Duplicate definition of value 'Z'

Mutable Variables

At times you need to change the values stored in a variable. To specify that there could be a
change in the value of a declared and assigned variable in later part of a program, F# provides
the mutable keyword. You can declare and assign mutable variables using this keyword, whose
values you will change.

The mutable keyword allows you to declare and assign values in a mutable variable.

You can assign some initial value to a mutable variable using the let keyword. However, to assign
new subsequent value to it, you need to use the <- operator.

For example,

let mutable x = 10
X <- 15

The following example will clear the concept —
Example

let mutable x = 10
let y = 20
let mutable z = x + vy

printfn "Original Values:"
printfn "x: %i" X
printfn "y: %i" y
printfn "z: %i" z

printfn "Let us change the value of x"
printfn "Value of z will change too."

X <- 15
Z <- X t+ty

printfn '"New Values:"
printfn "x: %i" x
printfn "y: %i" vy
printfn "z: %i" z

When you compile and execute the program, it yields the following output —



Original Values:

x: 10
y: 20
z: 30

Let us change the value of X
Value of z will change too.

New Values:
X: 15
y: 20
z: 35

Uses of Mutable Data

Mutable data is often required and used in data processing, particularly with record data structure.
The following example demonstrates this —

open System

type studentData =
{ ID : int;
mutable IsRegistered : bool;
mutable RegisteredText : string; }

let getStudent id =
{ ID = id;
IsRegistered = false;
RegisteredText = null; }

let registerStudents (students : studentData list) =
students |> List.iter(fun st ->
st.IsRegistered <- true
st.RegisteredText <- sprintf "Registered %s" (DateTime.Now.ToString("hh:mm:ss'"))

Threading.Thread.Sleep(1000) (* Putting thread to sleep for 1 second to simulate
processing overhead. *))

let printData (students : studentData list) =
students |> List.iter (fun x -> printfn "%A" Xx)

let main() =
let students = List.init 3 getStudent

printfn "Before Process:"
printData students

printfn "After process:"
registerStudents students
printData students

Console.ReadKey(true) |> ignore

main()

When you compile and execute the program, it yields the following output —

Before Process:

{ID = 0;

IsRegistered = false;
RegisteredText = null;}
{ID = 1;

IsRegistered = false;
RegisteredText = null;}
{ID = 2;

IsRegistered = false;
RegisteredText = null;}
After process:

{ID = 0;

IsRegistered = true;



RegisteredText = "Registered 05:39:15";}
{ID = 1;

IsRegistered = true;

RegisteredText = "Registered 05:39:16";}
{ID = 2;

IsRegistered = true;

RegisteredText = "Registered 05:39:17";}

F# - ARRAYS

Arrays are fixed-size, zero-based, mutable collections of consecutive data elements that are all of
the same type.

Creating Arrays

You can create arrays using various syntaxes and ways or by using the functions from the Array
module. In this section, we will discuss creating arrays without using the module functions.

There are three syntactical ways of creating arrays without functions —

e By listing consecutive values between [| and |] and separated by semicolons.

¢ By putting each element on a separate line, in which case the semicolon separator is
optional.

e By using sequence expressions.
You can access array elements by using a dot operator (.) and brackets ([ and ]).

The following example demonstrates creating arrays —

//using semicolon separator

let arrayl = [| 1; 2; 3; 4; 5; 6 |]

for i in © .. arrayl.Length - 1 do
printf "%d " arrayl.[1i]

printfn" "

// without semicolon separator
let array2 =

[l

abhwnNBRE

]
for i in ©® .. array2.Length - 1 do

printf "%d " array2.[i]
printfn" "

//using sequence
let array3 = [| for i in 1 .. 10 -> i * i |[]
for i in @ .. array3.Length - 1 do
printf "%d " array3.[1i]
printfn" "

When you compile and execute the program, it yields the following output —
123456

1234

149 16 25 36 49 64 81 100
Basic Operations on Arrays

The library module Microsoft.FSharp.Collections.Array supports operations on one-dimensional
arrays.



The following table shows the basic operations on Arrays —

Value

append : 'T[]-'T[l-"'TI[]

average: "T[]-"T

averageBy: (T-> "~U)->'T[]>» "~U

blit: 'T[]-=int->"'T[]—-int- int- unit

choose : ('T » U option) » 'T[]1-"'U[]

collect: (T='U[)->TI[l-"UIl]

concat: seq<'T[]> - 'T[]

copy:'T-"'T[]

create:int-»'T - 'T ]

empty : 'T[]

exists : (‘T - bool) » 'T [] = bool

exists2 : ('T1 »'T2 » bool) = 'T1[]- 'T2[]~

bool

fill :'T[]1- int->int->"'T - unit

filter : (‘'T » bool) = 'T[1-'T[]

find : (‘T » bool) = 'T[]=>'T

findIndex : ('T - bool) » 'T [] - int

fold : ('State » 'T - 'State) - 'State » ‘T[] -

'State

Description

Creates an array that contains the elements of
one array followed by the elements of another
array.

Returns the average of the elementsin an array.

Returns the average of the elements generated
by applying a function to each element of an
array.

Reads a range of elements from one array and
writes them into another.

Applies a supplied function to each element of
an array. Returns an array that contains the
results x for each element for which the function
returns Some(x).

Applies the supplied function to each element of
an array, concatenates the results, and returns
the combined array.

Creates an array that contains the elements of
each of the supplied sequence of arrays.

Creates an array that contains the elements of
the supplied array.

Creates an array whose elements are all initially
the supplied value.

Returns an empty array of the given type.

Tests whether any element of an array satisfies
the supplied predicate.

Tests whether any pair of corresponding
elements of two arrays satisfy the supplied
condition.

Fills a range of elements of an array with the
supplied value.

Returns a collection that contains only the
elements of the supplied array for which the
supplied condition returns true.

Returns the first element for which the supplied
function returns true. Raises
KeyNotFoundException if no such element exists.

Returns the index of the first elementin an array
that satisfies the supplied condition. Raises
KeyNotFoundException if none of the elements
satisfy the condition.

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
f(...(fsi0)...)iN.



fold2 : (‘State -» 'T1 - 'T2 - 'State) —» 'State
- 'T1[]- 'T2[] - 'State

foldBack : ('T - 'State - 'State) » 'T[] »
'State - 'State

foldBack2 : ('T1 —» 'T2 - 'State — 'State) »
'"T1[]1- 'T2[] -~ 'State —» 'State

forall : (‘T —» bool) » 'T [] - bool

forall2: ('T1 »'T2 » bool)» 'T1[]1-»'T2[]~

bool
get: ' T[]=int->'T

init: int = (int="'T) » 'T[]

isEmpty : 'T [] - bool

iter : ('T = unit) » 'T [] = unit
iter2 : ('T1>'T2 > unit) - '"T1[1-'T2[]~
unit)

iteri : (int > 'T = unit) - 'T []1 > unit

iteri2 : (int>'T1 > 'T2 » unit) » 'T1[]1 - 'T2
[1- unit

length : 'T[] - int

map : (T-"'U)->'T[1-"U[]

map2: (Tl-'"T2->"'U)->"'T1[1-'T2[]->'U
(1

mapi: (int-'T->"'U) > "'T[1-"'U[]

Applies a function to pairs of elements from two
supplied arrays, left-to-right, threading an
accumulator argument through the
computation. The two input arrays must have the
same lengths; otherwise, ArgumentException is
raised.

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
fi0 (...(FiN s)).

Applies a function to pairs of elements from two
supplied arrays, right-to-left, threading an
accumulator argument through the
computation. The two input arrays must have the
same lengths; otherwise, ArgumentException is
raised.

Tests whether all elements of an array satisfy the
supplied condition.

Tests whether all corresponding elements of two
supplied arrays satisfy a supplied condition.

Gets an element from an array.

Uses a supplied function to create an array of
the supplied dimension.

Tests whether an array has any elements.

Applies the supplied function to each element of
an array.

Applies the supplied function to a pair of
elements from matching indexes in two arrays.
The two arrays must have the same lengths;
otherwise, ArgumentException is raised.

Applies the supplied function to each element of
an array. The integer passed to the function
indicates the index of the element.

Applies the supplied function to a pair of
elements from matching indexes in two arrays,
also passing the index of the elements. The two
arrays must have the same lengths; otherwise,
an ArgumentException is raised.

Returns the length of an array. The Length
property does the same thing.

Creates an array whose elements are the results
of applying the supplied function to each of the
elements of a supplied array.

Creates an array whose elements are the results
of applying the supplied function to the
corresponding elements of two supplied arrays.
The two input arrays must have the same
lengths; otherwise, ArgumentException is raised.

Creates an array whose elements are the results
of applying the supplied function to each of the
elements of a supplied array. An integer index



mapi2 : (int-> Tl > 'T2->'U)-> 'T1[]-> 'T2[]
- 'Ul]

max:'T[]1-'T

maxBy : (T->'U)-»'T[]1->'T

min: (T[1-="'T

mMinBy : (T->'U)->'T[]->'T

ofList: 'T list - 'T []

ofSeq : seq<'T> - 'T[]

partition : (‘T » bool) » 'T[1-="T[]1*'TI]

permute : (int = int) » 'T []-> T[]

pick : ('T = 'Uoption) - 'T[]-="'U

reduce : (T->'T->"T)=>'T[]>'T

reduceBack : (T->'T->'T)>'T[]-»'T

rev:'T[]-'TI]

scan : ('State » 'T - 'State) -» 'State » 'T[]1 »
‘State [])

scanBack: ('T - 'State - 'State) » 'T[] -
'State — 'State []

set:'T[]-=int—'T - unit

passed to the function indicates the index of the
element being transformed.

Creates an array whose elements are the results
of applying the supplied function to the
corresponding elements of the two collections
pairwise, also passing the index of the elements.
The two input arrays must have the same
lengths; otherwise, ArgumentException is raised.

Returns the largest of all elements of an array.
Operators.max is used to compare the elements.

Returns the largest of all elements of an array,
compared via Operators.max on the function
result.

Returns the smallest of all elements of an array.
Operators.min is used to compare the elements.

Returns the smallest of all elements of an array.
Operators.min is used to compare the elements.

Creates an array from the supplied list.

Creates an array from the supplied enumerable
object.

Splits an array into two arrays, one containing
the elements for which the supplied condition
returns true, and the other containing those for
which it returns false.

Permutes the elements of an array according to
the specified permutation.

Applies the supplied function to successive
elements of a supplied array, returning the first
result where the function returns Some(x) for
some X. If the function never returns Some(x),
KeyNotFoundException is raised.

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
f(...(fi0 i1)...) iN. If the array has size zero,
ArgumentException is raised.

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
elements are i0...iN, this function computes fi0
(...(fiN-1 iN)). If the array has size zero,
ArgumentException is raised.

Reverses the order of the elements in a supplied
array.

Behaves like fold, but returns the intermediate
results together with the final results.

Behaves like foldBack, but returns the
intermediary results together with the final
results.

Sets an element of an array.



sort: 'T[] - 'T ]

sortBy : ('T - 'Key) » 'T[]1- T[]

sortinPlace : 'T [] = unit

sortinPlaceBy : ('T - 'Key) = 'T [] = unit

sortinPlaceWith : (‘T = 'T = int) » 'T [] = unit

sortWith: (‘'T>'T = int)> 'T[]1->'T[]

sub:'T[]=int->int-'T[]

sum:'T[]1-"T

sumBy : (T- "U)-»'T[]-» "~U

toList: 'T [] = 'T list
toSeq: 'T[] - seq<'T>
tryFind : ('T - bool) » 'T [] - 'T option

tryFindindex : ('T = bool) = 'T [] = int option

tryPick : ('T -» 'U option) = 'T [] = 'U option

unzip : (‘"TL*T2)[1-"T1[]*'T2[]
unzip3 : ("T1*'T2*'T3)[]->"T1[1*'T2[]*
T3]

zeroCreate : int—- 'T[]

Zip: T1[]='"T2[]-(T1*'T2)[]

Sorts the elements of an array and returns a new
array. Operators.compare is used to compare
the elements.

Sorts the elements of an array by using the
supplied function to transform the elements to
the type on which the sort operation is based,
and returns a new array. Operators.compare is
used to compare the elements.

Sorts the elements of an array by changing the
array in place, using the supplied comparison
function. Operators.compare is used to compare
the elements.

Sorts the elements of an array by changing the
array in place, using the supplied projection for
the keys. Operators.compare is used to compare
the elements.

Sorts the elements of an array by using the
supplied comparison function to change the
array in place.

Sorts the elements of an array by using the
supplied comparison function, and returns a new
array.

Creates an array that contains the supplied
subrange, which is specified by starting index
and length.

Returns the sum of the elements in the array.

Returns the sum of the results generated by
applying a function to each element of an array.

Converts the supplied array to a list.
Views the supplied array as a sequence.

Returns the first elementin the supplied array
for which the supplied function returns true.
Returns None if no such element exists.

Returns the index of the first elementin an array
that satisfies the supplied condition.

Applies the supplied function to successive
elements of the supplied array, and returns the
first result where the function returns Some(x)
for some x. If the function never returns Some(x),
None is returned.

Splits an array of tuple pairs into a tuple of two
arrays.

Splits an array of tuples of three elements into a
tuple of three arrays.

Creates an array whose elements are initially set
to the default value Unchecked.defaultof<'T>.

Combines two arrays into an array of tuples that
have two elements. The two arrays must have
equal lengths; otherwise, ArgumentException is
raised.



zZip3:'T1[]="T2[]1="T3[]1=(T1*'T2*113 Combines three arrays into an array of tuples

T3)[] that have three elements. The three arrays must
have equal lengths; otherwise,
ArgumentException is raised.

In the following section, we will see the uses of some of these functionalities.

Creating Arrays Using Functions

The Array module provides several functions that create an array from scratch.
e The Array.empty function creates a new empty array.

¢ The Array.create function creates an array of a specified size and sets all the elements to
given values.

¢ The Array.init function creates an array, given a dimension and a function to generate the
elements.

e The Array.zeroCreate function creates an array in which all the elements are initialized to
the zero value.

e The Array.copy function creates a new array that contains elements that are copied from an
existing array.

¢ The Array.sub function generates a new array from a subrange of an array.
¢ The Array.append function creates a new array by combining two existing arrays.
e The Array.choose function selects elements of an array to include in a new array.

e The Array.collect function runs a specified function on each array element of an existing
array and then collects the elements generated by the function and combines them into a
new array.

¢ The Array.concat function takes a sequence of arrays and combines them into a single
array.

¢ The Array.filter function takes a Boolean condition function and generates a new array that
contains only those elements from the input array for which the condition is true.

e The Array.rev function generates a new array by reversing the order of an existing array.

The following examples demonstrate these functions —

Example 1

(* using create and set *)

let arrayl = Array.create 10 ""

for i in @ .. arrayl.Length - 1 do
Array.set arrayl i (i.ToString())

for i in © .. arrayl.Length - 1 do
printf "%s " (Array.get arrayl i)

printfn " "

(* empty array *)
let array2 = Array.empty
printfn "Length of empty array: %d" array2.Length

let array3 = Array.create 10 7.0
printfn "Float Array: %A" array3

(* using the init and zeroCreate *)
let array4 = Array.init 10 (fun index -> index * index)
printfn "Array of squares: %A" array4



let array5 : float array = Array.zeroCreate 10
let (myZeroArray : float array) = Array.zeroCreate 10
printfn "Float Array: %A" arrayb

When you compile and execute the program, it yields the following output —

01234567289

Length of empty array: 0

Float Array: [|7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0]]
Array of squares: [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81]|]

Float Array: [|0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0]]

Example 2

(* creating subarray from element 5 *)
(* containing 15 elements thereon *)

let arrayl = [| @ .. 50 |]

let array2 = Array.sub arrayl 5 15
printfn "Sub Array:"

printfn "%A" array2

(* appending two arrays *)

let array3 = [| 1; 2; 3; 4]]

let array4d = [| 5 .. 9 |]

printfn "Appended Array:"

let array5 = Array.append array3 array4
printfn "%A" array5

(* using the Choose function *)
let array6 = [| 1 .. 20 |]
let array7 = Array.choose (fun elem -> if elem % 3 = 0 then
Some(float (elem))
else
None) array6
printfn "Array with Chosen elements:"
printfn "%A" array7

(*using the Collect function *)

let array8 = [| 2 .. 5 |]

let array9 = Array.collect (fun elem -> [| @ .. elem - 1 |]) array8
printfn "Array with collected elements:"

printfn "%A" array9

When you compile and execute the program, it yields the following output —

Sub Array:

[I5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19]]
Appended Array:

[I1; 2; 3; 4; 5; 6; 7; 8; 9]]

Array with Chosen elements:

[|3.0; 6.0; 9.0; 12.0; 15.0; 18.0]]

Array with collected elements:

[le; 1; 6; 1; 2; 0; 1; 2; 3; 0; 1; 2; 3; 4]]

Searching Arrays

The Array.find function takes a Boolean function and returns the first element for which the
function returns true, else raises a KeyNotFoundException.

The Array.findIndex function works similarly except that it returns the index of the element
instead of the element itself.

The following example demonstrates this.



Microsoft provides this interesting program example, which finds the first elementin the range of a
given number that is both a perfect square as well as a perfect cube —

let arrayl = [| 2 .. 100 |]

let delta = 1.0e-10

let isPerfectSquare (x:int) =
let y = sqrt (float x)
abs(y - round y) < delta

let isPerfectCube (x:int) =
let y = System.Math.Pow(float x, 1.0/3.0)
abs(y - round y) < delta

let element = Array.find (fun elem -> isPerfectSquare elem && isPerfectCube elem)
arrayl

let index = Array.findIndex (fun elem -> isPerfectSquare elem && isPerfectCube elem)
arrayl

printfn "The first element that is both a square and a cube is %d and its index is %d."
element index

When you compile and execute the program, it yields the following output —

The first element that is both a square and a cube is 64 and its index is 62.

F# - MUTABLE LISTS

The List<'T> class represents a strongly typed list of objects that can be accessed by index.

Itis a mutable counterpart of the List class. It is similar to arrays, as it can be accessed by an index,
however, unlike arrays, lists can be resized. Therefore you need not specify a size during
declaration.

Creating a Mutable List

Lists are created using the new keyword and calling the list's constructor. The following example
demonstrates this —

(* Creating a List *)
open System.Collections.Generic

let booksList = new List<string>()
booksList.Add("Gone with the Wind")
booksList.Add("Atlas Shrugged")
booksList.Add("Fountainhead")
booksList.Add("Thornbirds")
booksList.Add("Rebecca")
booksList.Add("Narnia")

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])

When you compile and execute the program, it yields the following output —

: Gone with the wind
: Atlas Shrugged
Fountainhead

: Thornbirds

: Rebecca

: Narnia

abhwWNRO

The List(T) Class

The List(T) class represents a strongly typed list of objects that can be accessed by index. It provide
methods to search, sort, and manipulate lists.



The following tables provide the properties, constructors and the methods of the List(T) class —

Properties

Property Description

Capacity  Gets or sets the total number of elements the internal data structure can hold
without resizing.
Count Gets the number of elements contained in the List(T).
Iltem Gets or sets the element at the specified index.
Constructors
Constructor Description
List(T)() Initializes a new instance of the List(T) class that is empty and has

List(T)(IEnumerable(T))

List(T)(Int32)

Method

Methods
Add
AddRange

AsReadOnly

BinarySearch(T)

the default initial capacity.

Initializes a new instance of the List(T) class that contains elements
copied from the specified collection and has sufficient capacity to
accommodate the number of elements copied.

Initializes a new instance of the List(T) class that is empty and has
the specified initial capacity.

BinarySearch(T, IComparer(T))

BinarySearch(Int32, Int32, T,

IComparer(T))

Clear
Contains

ConvertAll(TOutput)

CopyTo(T[])

Description
Adds an object to the end of the List(T).

Adds the elements of the specified collection to the
end of the List(T).

Returns a read-only IList(T) wrapper for the current
collection.

Searches the entire sorted List(T) for an element
using the default comparer and returns the zero-
based index of the element.

Searches the entire sorted List(T) for an element
using the specified comparer and returns the zero-
based index of the element.

Searches a range of elements in the sorted List(T)
for an element using the specified comparer and
returns the zero-based index of the element.

Removes all elements from the List(T).
Determines whether an elementis in the List(T).
Converts the elements in the current List(T) to
another type, and returns a list containing the
converted elements.

Copies the entire List(T) to a compatible one-



CopyTo(TI], Int32)

CopyTo(Int32, T[], Int32, Int32)

Equals(Object)

Exists

Finalize

Find

FindAll

FindIndex(Predicate(T))

FindIndex(Int32, Predicate(T))

FindIndex(Int32, Int32, Predicate(T))

FindLast

FindLastindex(Predicate(T))

FindLastindex(Int32, Predicate(T))

FindLastindex(Int32, Int32, Predicate(T))

dimensional array, starting at the beginning of the
target array.

Copies the entire List(T) to a compatible one-
dimensional array, starting at the specified index of
the target array.

Copies a range of elements from the List(T) to a
compatible one-dimensional array, starting at the
specified index of the target array.

Determines whether the specified objectis equal to
the current object. (Inherited from Object.)

Determines whether the List(T) contains elements
that match the conditions defined by the specified
predicate.

Allows an object to try to free resources and
perform other cleanup operations before itis
reclaimed by garbage collection (Inherited from
Object).

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the first occurrence within the entire List(T).

Retrieves all the elements that match the
conditions defined by the specified predicate.

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the entire List(T).

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the range of elements in the List(T) that
extends from the specified index to the last
element.

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the range of elements in the List(T) that starts
at the specified index and contains the specified
number of elements.

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the last occurrence within the entire List(T).

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the last occurrence
within the entire List(T).

Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the last occurrence
within the range of elements in the List(T) that
extends from the first element to the specified
index.

Searches for an element that matches the
conditions defined by the specified predicate, and



ForEach

GetEnumerator

GetHashCode

GetRange

GetType

IndexOf(T)

IndexOf(T, Int32)

IndexOf(T, Int32, Int32)

Insert

InsertRange

LastindexOf(T)

LastindexOf(T, Int32)

LastindexOf(T, Int32, Int32)

MemberwiseClone

Remove

RemoveAll

RemoveAt

returns the zero-based index of the last occurrence
within the range of elements in the List(T) that
contains the specified number of elements and
ends at the specified index.

Performs the specified action on each element of
the List(T).

Returns an enumerator that iterates through the
List(T).

Serves as the default hash function. (Inherited from
Object.)

Creates a shallow copy of a range of elements in
the source List(T).

Gets the Type of the currentinstance. (Inherited
from Object.)

Searches for the specified object and returns the
zero-based index of the first occurrence within the
entire List(T).

Searches for the specified object and returns the
zero-based index of the first occurrence within the
range of elements in the List(T) that extends from
the specified index to the last element.

Searches for the specified object and returns the
zero-based index of the first occurrence within the
range of elements in the List(T) that starts at the
specified index and contains the specified number
of elements.

Inserts an element into the List(T) at the specified
index.

Inserts the elements of a collection into the List(T)
at the specified index.

Searches for the specified object and returns the
zero-based index of the last occurrence within the
entire List(T).

Searches for the specified object and returns the
zero-based index of the last occurrence within the
range of elements in the List(T) that extends from
the first element to the specified index.

Searches for the specified object and returns the
zero-based index of the last occurrence within the
range of elements in the List(T) that contains the
specified number of elements and ends at the
specified index.

Creates a shallow copy of the current Object.
(Inherited from Object.)

Removes the first occurrence of a specific object
from the List(T).

Removes all the elements that match the conditions
defined by the specified predicate.

Removes the element at the specified index of the
List(T).



RemoveRange Removes a range of elements from the List(T).

Reverse() Reverses the order of the elements in the entire
List(T).

Reverse(Int32, Int32) Reverses the order of the elements in the specified
range.

Sort() Sorts the elements in the entire List(T) using the
default comparer.

Sort(Comparison(T)) Sorts the elements in the entire List(T) using the
specified System. Comparison(T).

Sort(IComparer(T)) Sorts the elements in the entire List(T) using the
specified comparer.

Sort(Int32, Int32, IComparer(T)) Sorts the elements in a range of elements in List(T)
using the specified comparer.

ToArray Copies the elements of the List(T) to a new array.

ToString Returns a string that represents the current object.
(Inherited from Object.)

TrimExcess Sets the capacity to the actual number of elements
in the List(T), if that number is less than a threshold
value.

TrueForAll Determines whether every element in the List(T)
matches the conditions defined by the specified
predicate.

Example

(* Creating a List *)
open System.Collections.Generic

let booksList = new List<string>()
booksList.Add("Gone with the Wind")
booksList.Add("Atlas Shrugged")
booksList.Add("Fountainhead")
booksList.Add("Thornbirds")
booksList.Add("Rebecca")
booksList.Add("Narnia")

printfn"Total %d books" booksList.Count
booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])
booksList.Insert(2, "Roots")

printfn("after inserting at index 2")
printfn"Total %d books" booksList.Count

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])
booksList.RemoveAt(3)

printfn("after removing from index 3")
printfn"Total %d books" booksList.Count

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])
When you compile and execute the program, it yields the following output —

Total 6 books
0: Gone with the wind



: Atlas Shrugged
Fountainhead

: Thornbirds

: Rebecca

: Narnia

after inserting at index 2
Total 7 books

: Gone with the wind
: Atlas Shrugged
Roots

: Fountainhead

: Thornbirds
Rebecca

: Narnia

after removing from index 3
Total 6 books

: Gone with the wind
: Atlas Shrugged
Roots

: Thornbirds

: Rebecca

: Narnia

abh wdNPRE

OO~ WNREO

OabhwWNRERO

F# - MUTABLE DICTIONARY

The Dictionary<'TKey, 'TValue> class is the mutable analog of the F# map data structure and
contains many of the same functions.

Recapitulating from the Map chapter in F#, a map is a special kind of set that associates the values
with key.

Creating of a Mutable Dictionary

Mutable dictionaries are created using the new keyword and calling the list's constructor. The
following example demonstrates this —

open System.Collections.Generic

let dict = new Dictionary<string, string>()
dict.Add("1501", "zara Ali")
dict.Add("1502", "Rishita Gupta")
dict.Add("1503", "Robin Sahoo")
dict.Add("1504","Gillian Megan")

printfn "Dictionary - students: %A" dict

When you compile and execute the program, it yields the following output —

Dictionary - students: seq
[[1501, Zara Ali]; [1502, Rishita Gupta]; [1503, Robin Sahoo];
[1504, Gillian Megan]]

The Dictionary(TKey,TValue) Class
The Dictionary(TKey, TValue) Class represents a collection of keys and values.

The following tables provide the properties, constructors and the methods of the List(T) class —

Properties

Property Description

Comparer Gets the IEqualityComparer(T) that is used to determine equality of keys for the
dictionary.

Count Gets the number of key/value pairs contained in the Dictionary(TKey, TValue).



ltem
Keys

Values

Constructors

Constructors

Dictionary(TKey, TValue)()

Dictionary(TKey,
TValue)(IDictionary(TKey,
TValue))

Dictionary(TKey,
TValue)(lEqualityComparer(TKey))

Dictionary(TKey, TValue)(Int32)

Dictionary(TKey,
TValue)(IDictionary(TKey,
TValue),
IEqualityComparer(TKey))

Dictionary(TKey, TValue)(Int32,
IEqualityComparer(TKey))

Dictionary(TKey,
TValue)(SerializationInfo,
StreamingContext)

Methods

Method Description
Add
Clear

ContainsKey
key.

ContainsValue

Equals(Object)

Gets or sets the value associated with the specified key.
Gets a collection containing the keys in the Dictionary(TKey, TValue).

Gets a collection containing the values in the Dictionary(TKey, TValue).

Description

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the default initial capacity, and uses
the default equality comparer for the key type.

Initializes a new instance of the Dictionary(TKey, TValue)
class that contains elements copied from the specified
IDictionary(TKey, TValue) and uses the default equality
comparer for the key type.

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the default initial capacity, and uses
the specified IEqualityComparer(T).

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the specified initial capacity, and
uses the default equality comparer for the key type.

Initializes a new instance of the Dictionary(TKey, TValue)
class that contains elements copied from the specified
IDictionary(TKey, TValue) and uses the specified
IEqualityComparer(T).

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the specified initial capacity, and
uses the specified IEqualityComparer(T).

Initializes a new instance of the ictionary(TKey, TValue)
class with serialized data.

Adds the specified key and value to the dictionary.
Removes all keys and values from the Dictionary(TKey, TValue).

Determines whether the Dictionary(TKey, TValue) contains the specified

Determines whether the Dictionary(TKey, TValue) contains a specific value.

Determines whether the specified object is equal to the current object.

(Inherited from Object.)

Finalize

Allows an object to try to free resources and perform other cleanup

operations before it is reclaimed by garbage collection. (Inherited from

Object.)

GetEnumerator

Returns an enumerator that iterates through the Dictionary(TKey, TValue).



GetHashCode Serves as the default hash function. (Inherited from Object.)

GetObjectData Implements the System.Runtime.Serialization.ISerializable interface and
returns the data needed to serialize the Dictionary(TKey, TValue)instance.

GetType Gets the Type of the currentinstance. (Inherited from Object.)
MemberwiseClone Creates a shallow copy of the current Object. (Inherited from Object.)

OnDeserialization  Implements the System.Runtime.Serialization.ISerializable interface and
raises the deserialization event when the deserialization is complete.

Remove Removes the value with the specified key from the Dictionary(TKey,
TValue).
ToString Returns a string that represents the current object. (Inherited from Object.)
TryGetValue Gets the value associated with the specified key.
Example

open System.Collections.Generic
let dict = new Dictionary<string, string>()

dict.Add("1501", "Zzara Ali")
dict.Add("1502", "Rishita Gupta")
dict.Add("1503", "Robin Sahoo")

dict.Add("1504","Gillian Megan")

printfn "Dictionary - students: %A" dict

printfn "Total Number of Students: %d" dict.Count
printfn "The keys: %A" dict.Keys

printf"The Values: %A" dict.Values

When you compile and execute the program, it yields the following output —

Dictionary - students: seq

[[1501, Zara Ali]; [1502, Rishita Gupta]; [1503, Robin Sahoo];

[1504, Gillian Megan]]

Total Number of Students: 4

The keys: seq ["1501"; "1502"; "1503"; "1504"]

The Values: seq ["Zara Ali"; "Rishita Gupta"; "Robin Sahoo"; "Gillian Megan"]

F# - BASIC IO

Basic Input Output includes —
¢ Reading from and writing into console.
e Reading from and writing into file.

Core.Printf Module

We have used the printf and the printfn functions for writing into the console. In this section, we will
look into the details of the Printf module of F#.

Apart from the above functions, the Core.Printf module of F# has various other methods for
printing and formatting using % markers as placeholders. The following table shows the methods
with brief description —

Value Description

bprintf : StringBuilder -» BuilderFormat<'T> —»  Prints to a StringBuilder.
T



eprintf : TextWriterFormat<'T> - 'T

eprintfn : TextWriterFormat<'T> - 'T
failwithf : StringFormat<'T,'Result> - 'T
fprintf : TextWriter - TextWriterFormat<'T> -
T

fprintfn : TextWriter » TextWriterFormat<'T>
- 'T

kbprintf : (unit » 'Result) —» StringBuilder —»
BuilderFormat<'T,'Result> - 'T

kfprintf : (unit » 'Result) » TextWriter »
TextWriterFormat<'T,'Result> - 'T

kprintf : (string - 'Result) »
StringFormat<'T,'Result> - 'T

ksprintf : (string - 'Result) —»
StringFormat<'T,'Result> - 'T

printf : TextWriterFormat<'T> - 'T

printfn : TextWriterFormat<'T> - 'T

sprintf : StringFormat<'T> - 'T

Format Specifications

Prints formatted output to stderr.

Prints formatted output to stderr, adding a
newline.

Prints to a string buffer and raises an exception
with the given result.

Prints to a text writer.

Prints to a text writer, adding a newline.

Like bprintf, but calls the specified function to
generate the result.

Like fprintf, but calls the specified function to
generate the result.

Like printf, but calls the specified function to
generate the result. For example, these let the
printing force a flush after all output has been
entered onto the channel, but not before.

Like sprintf, but calls the specified function to
generate the result.

Prints formatted output to stdout.

Prints formatted output to stdout, adding a
newline.

Prints to a string by using an internal string
buffer and returns the result as a string.

Format specifications are used for formatting the input or output, according to the programmers’

need.

These are strings with % markers indicating format placeholders.

The syntax of a Format placeholders is —
%[flags] [width][.precision][type]

The type is interpreted as —

Type Description

%b Formats a bool, formatted as true or false.

%cC Formats a character.

%S Formats a string, formatted as its contents, without interpreting any
escape characters.

%d, %i Formats any basic integer type formatted as a decimal integer,
signed if the basic integer type is signed.

%u Formats any basic integer type formatted as an unsigned decimal

integer.



%X

%X

%0

%e, %E, %f, %F, %qg, %G

%e, %E

Y%of

%9, %G

%M
%0

%A, %+A

%a

Yot

Formats any basic integer type formatted as an unsigned
hexadecimal integer, using lowercase letters a through f.

Formats any basic integer type formatted as an unsigned
hexadecimal integer, using uppercase letters A through F.

Formats any basic integer type formatted as an unsigned octal
integer.

Formats any basic floating point type (float, float32) formatted
using a C-style floating point format specifications.

Formats a signed value having the form [-]d.dddde[sign]ddd where d
is a single decimal digit, dddd is one or more decimal digits, ddd is
exactly three decimal digits, and sign is + or -.

Formats a signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits. The number of digits before the decimal
point depends on the magnitude of the number, and the number of
digits after the decimal point depends on the requested precision.

Formats a signed value printed in f or e format, whichever is more
compact for the given value and precision.

Formats a Decimal value.

Formats any value, printed by boxing the object and using its
ToString method.

Formats any value, printed with the default layout settings. Use %+A
to print the structure of discriminated unions with internal and
private representations.

A general format specifier, requires two arguments. The first
argumentis a function which accepts two arguments: first, a context
parameter of the appropriate type for the given formatting function
(for example, a TextWriter), and second, a value to print and which
either outputs or returns appropriate text.

The second argument is the particular value to print.

A general format specifier, requires one argument: a function which
accepts a context parameter of the appropriate type for the given
formatting function (aTextWriter) and which either outputs or returns
appropriate text. Basic integer types are byte, sbyte, intl6,
uintle, int32, uint32, int64, uint64, nativeint, and unativeint.
Basic floating point types are float and float32.

The width is an optional parameter. It is an integer that indicates the minimal width of the result.
For example, %5d prints an integer with at least spaces of 5 characters.

Valid flags are described in the following table —

Value Description

0 Specifies to add zeros instead of spaces to make up the required width.

- Specifies to left-justify the result within the width specified.

+ Specifies to add a + character if the number is positive (to match a - sign for negative

numbers).

" Specifies to add an extra space if the number is positive (to match a - sign for



(space)

# Invalid.

Example

printf "Hello "
printf "world"
printfn ""
printfn "Hello "
printfn "world"

negative numbers).

printf "Hi, I'm %s and I'm a %s" "Rohit" "Medical Student"

printfn "d: %f" 212.098f

printfn "e: %f" 504.768f

printfn "x: %g" 212.098f

printfn "y: %g" 504.768f

printfn "x: %e" 212.098f

printfn "y: %e" 504.768f

printfn "True: %b" true

When you compile and execute the program, it yields the following output —

Hello World
Hello
World

Hi, I'm Rohit and I'm a Medical Studentd: 212.098000

e: 504.768000
212.098
504.768
2.120980e+002
5.047680e+002
rue: true

H< X< X

The Console Class

This class is a part of the .NET framework. It represents the standard input, output, and error
streams for console applications.

It provides various methods for reading from and writing into the console. The following table

shows the methods —

Method
Beep()
Beep(Int32, Int32)

Clear

MoveBufferArea(Int32,
Int32, Int32, Int32, Int32,
Int32)

MoveBufferArea(Int32,
Int32, Int32, Int32, Int32,
Int32, Char, ConsoleColor,
ConsoleColor)

OpenStandardError()

Description
Plays the sound of a beep through the console speaker.

Plays the sound of a beep of a specified frequency and duration
through the console speaker.

Clears the console buffer and corresponding console window of
display information.

Copies a specified source area of the screen buffer to a specified
destination area.

Copies a specified source area of the screen buffer to a specified
destination area.

Acquires the standard error stream.



OpenStandardError(Int32)

OpenStandardinput()
OpenStandardinput(int32)

OpenStandardOutput()
OpenStandardOutput(Int32)

Read
ReadKey()

ReadKey(Boolean)

ReadLine

ResetColor

SetBufferSize

SetCursorPosition
SetError

Setln

SetOut

SetWindowPosition

SetWindowSize

Write(Boolean)

Write(Char)

Write(Charl])

Write(Decimal)

Write(Double)

Write(Int32)

Write(Int64)

Write(Object)

Acquires the standard error stream, which is set to a specified
buffer size.

Acquires the standard input stream.

Acquires the standard input stream, which is set to a specified
buffer size.

Acquires the standard output stream.

Acquires the standard output stream, which is set to a specified
buffer size.

Reads the next character from the standard input stream.

Obtains the next character or function key pressed by the user.
The pressed key is displayed in the console window.

Obtains the next character or function key pressed by the user.
The pressed key is optionally displayed in the console window.

Reads the next line of characters from the standard input stream.

Sets the foreground and background console colors to their
defaults.

Sets the height and width of the screen buffer area to the
specified values.

Sets the position of the cursor.

Sets the Error property to the specified TextWriter object.
Sets the In property to the specified TextReader object.
Sets the Out property to the specified TextWriter object.

Sets the position of the console window relative to the screen
buffer.

Sets the height and width of the console window to the specified
values.

Writes the text representation of the specified Boolean value to
the standard output stream.

Writes the specified Unicode character value to the standard
output stream.

Writes the specified array of Unicode characters to the standard
output stream.

Writes the text representation of the specified Decimal value to
the standard output stream.

Writes the text representation of the specified double-precision
floating-point value to the standard output stream.

Writes the text representation of the specified 32-bit signed
integer value to the standard output stream.

Writes the text representation of the specified 64-bit signed
integer value to the standard output stream.

Writes the text representation of the specified object to the
standard output stream.


http://msdn.microsoft.com/en-us/library/system.io.textwriter.aspx
http://msdn.microsoft.com/en-us/library/system.io.textreader.aspx
http://msdn.microsoft.com/en-us/library/system.io.textwriter.aspx

Write(Single)

Write(String)
Write(UInt32)

Write(UInt64)

Write(String, Object)

Write(String, Object[])

Write(Charf], Int32, Int32)
Write(String, Object, Object)
Write(String, Object, Object,
Object)

Write(String, Object, Object,
Object, Object)

WriteLine()
WriteLine(Boolean)
WriteLine(Char)

WriteLine(Charl])

WriteLine(Decimal)

WriteLine(Double)

WriteLine(Int32)

WriteLine(Int64)

WriteLine(Object)

WriteLine(Single)

WriteLine(String)

Writes the text representation of the specified single-precision
floating-point value to the standard output stream.

Writes the specified string value to the standard output stream.

Writes the text representation of the specified 32-bit unsigned
integer value to the standard output stream.

Writes the text representation of the specified 64-bit unsigned
integer value to the standard output stream.

Writes the text representation of the specified object to the
standard output stream using the specified format information.

Writes the text representation of the specified array of objects to
the standard output stream using the specified format
information.

Writes the specified subarray of Unicode characters to the
standard output stream.

Writes the text representation of the specified objects to the
standard output stream using the specified format information.

Writes the text representation of the specified objects to the
standard output stream using the specified format information.

Writes the text representation of the specified objects and
variable-length parameter list to the standard output stream
using the specified format information.

Writes the current line terminator to the standard output stream.

Writes the text representation of the specified Boolean value,
followed by the current line terminator, to the standard output
stream.

Writes the specified Unicode character, followed by the current
line terminator, value to the standard output stream.

Writes the specified array of Unicode characters, followed by the
current line terminator, to the standard output stream.

Writes the text representation of the specified Decimal value,
followed by the current line terminator, to the standard output
stream.

Writes the text representation of the specified double-precision
floating-point value, followed by the current line terminator, to
the standard output stream.

Writes the text representation of the specified 32-bit signed
integer value, followed by the current line terminator, to the
standard output stream.

Writes the text representation of the specified 64-bit signed
integer value, followed by the current line terminator, to the
standard output stream.

Writes the text representation of the specified object, followed by
the current line terminator, to the standard output stream.

Writes the text representation of the specified single-precision
floating-point value, followed by the current line terminator, to
the standard output stream.

Writes the specified string value, followed by the current line



WriteLine(UInt32)

WriteLine(UInt64)

WriteLine(String, Object)

WriteLine(String, Object[])

WriteLine(Char[], Int32,
Int32)

WriteLine(String, Object,
Object)

WriteLine(String, Object,
Object, Object)

WriteLine(String, Object,
Object, Object, Object)

terminator, to the standard output stream.

Writes the text representation of the specified 32-bit unsigned
integer value, followed by the current line terminator, to the
standard output stream.

Writes the text representation of the specified 64-bit unsigned
integer value, followed by the current line terminator, to the
standard output stream.

Writes the text representation of the specified object, followed by
the current line terminator, to the standard output stream using
the specified format information.

Writes the text representation of the specified array of objects,
followed by the current line terminator, to the standard output
stream using the specified format information.

Writes the specified subarray of Unicode characters, followed by
the current line terminator, to the standard output stream.

Writes the text representation of the specified objects, followed
by the current line terminator, to the standard output stream
using the specified format information.

Writes the text representation of the specified objects, followed
by the current line terminator, to the standard output stream
using the specified format information.

Writes the text representation of the specified objects and
variable-length parameter list, followed by the currentline
terminator, to the standard output stream using the specified
format information.

The following example demonstrates reading from console and writing into it —

Example

open System
let main() =

Console.Write("What's your name? ")
let name = Console.ReadlLine()

Console.Write("Hello,

{0I\n", name)

Console.WritelLine(System.String.Format("Big Greetings from {0} and {1}",
"TutorialsPoint", "Absoulte Classes"))
Console.WritelLine(System.String.Format("|{0:yyyy-MMM-dd}|", System.DateTime.Now))

main()

When you compile and execute the program, it yields the following output —

What's your name? Kabir
Hello, Kabir

Big Greetings from TutorialsPoint and Absoulte Classes

[2015-Jan-05|

The System.lO Namespace

The System.lO namespace contains a variety of useful classes for performing basic 1/O.

It contains types or classes that allow reading and writing to files and data streams and types that
provide basic file and directory support.

Classes useful for working with the file system —

e The System.IO.File class is used for creating, appending, and deleting files.



¢ System.lO.Directory class is used for creating, moving, and deleting directories.

e System.lO.Path class performs operations on strings, which represent file paths.

¢ System.lO.FileSystemWatcher class allows users to listen to a directory for changes.

Classes useful for working with the streams (sequence of bytes) —

¢ System.lO.StreamReader class is used to read characters from a stream.

o System.lO.StreamWriter class is used to write characters to a stream.

e System.lO.MemoryStream class creates an in-memory stream of bytes.

The following table shows all the classes provided in the namespace along with a brief description

Class

BinaryReader

BinaryWriter

BufferedStream

Directory

Directorylnfo

DirectoryNotFoundException

Drivelnfo

DriveNotFoundException

EndOfStreamException

ErrorEventArgs

File

FileFormatException

FileInfo

FileLoadException

FileNotFoundException

FileStream

Description

Reads primitive data types as binary values in a specific
encoding.

Writes primitive types in binary to a stream and supports
writing strings in a specific encoding.

Adds a buffering layer to read and write operations on
another stream.

Exposes static methods for creating, moving, and
enumerating through directories and subdirectories.

Exposes instance methods for creating, moving, and
enumerating through directories and subdirectories.

The exception that is thrown when part of a file or
directory cannot be found.

Provides access to information on a drive.

The exception that is thrown when trying to access a drive
or share thatis not available.

The exception that is thrown when reading is attempted
past the end of a stream.

Provides data for the FileSystemWatcher.Error event.

Provides static methods for the creation, copying,
deletion, moving, and opening of a single file, and aids in
the creation of FileStream objects.

The exception that is thrown when an input file or a data
stream that is supposed to conform to a certain file
format specification is malformed.

Provides properties and instance methods for the
creation, copying, deletion, moving, and opening of files,
and aids in the creation of FileStream objects.

The exception that is thrown when a managed assembly
is found but cannot be loaded.

The exception that is thrown when an attempt to access a
file that does not exist on disk fails.

Exposes a Stream around a file, supporting both
synchronous and asynchronous read and write



FileSystemEventArgs

FileSystemInfo

FileSystemWatcher

InternalBufferOverflowException

InvalidDataException

IODescriptionAttribute

IOException
MemoryStream
Path

PathTooLongException

PipeException
RenamedEventArgs

Stream

StreamReader

StreamWriter

StringReader

StringWriter

TextReader

TextWriter

UnmanagedMemoryAccessor

UnmanagedMemoryStream

WindowsRuntimeStorageExtensions

WindowsRuntimeStreamExtensions

operations.

Provides data for the directory events — Changed,
Created, Deleted.

Provides the base class for both FileInfo and Directoryinfo
objects.

Listens to the file system change notifications and raises
events when a directory, or file in a directory, changes.

The exception thrown when the internal buffer overflows.

The exception that is thrown when a data stream isin an
invalid format.

Sets the description visual designers can display when
referencing an event, extender, or property.

The exception that is thrown when an I/O error occurs.
Creates a stream whose backing store is memory.

Performs operations on String instances that contain file
or directory path information. These operations are
performed in a cross-platform manner.

The exception that is thrown when a path or file name is
longer than the system-defined maximum length.

Thrown when an error occurs within a named pipe.
Provides data for the Renamed event.

Provides a generic view of a sequence of bytes. This is an
abstract class.

Implements a TextReader that reads characters from a
byte stream in a particular encoding.

Implements a TextWriter for writing characters to a
stream in a particular encoding. To browse the .NET
Framework source code for this type, see the Reference
Source.

Implements a TextReader that reads from a string.
Implements a TextWriter for writing information to a
string. The information is stored in an underlying
StringBuilder.

Represents a reader that can read a sequential series of
characters.

Represents a writer that can write a sequential series of
characters. This class is abstract.

Provides random access to unmanaged blocks of memory
from managed code.

Provides access to unmanaged blocks of memory from
managed code.

Contains extension methods for the IStorageFile and
IStorageFolder interfaces in the Windows Runtime when
developing Windows Store apps.

Contains extension methods for converting between



streams in the Windows Runtime and managed streams
in the .NET for Windows Store apps.

Example

The following example creates a file called test.txt, writes a message there, reads the text from the
file and prints it on the console.

Note — The amount of code needed to do this is surprisingly less!

open System.IO // Name spaces can be opened just as modules

File .WriteAllText("test.txt", "Hello There\n Welcome to:\n Tutorials Point")
let msg = File.ReadAllText("test.txt")

printfn "%s" msg

When you compile and execute the program, it yields the following output —

Hello There
Welcome to:
Tutorials Point

F# - GENERICS

Generics allow you to delay the specification of the data type of programming elements in a class
or a method, until itis actually used in the program. In other words, generics allow you to write a
class or method that can work with any data type.

You write the specifications for the class or the method, with substitute parameters for data types.
When the compiler encounters a constructor for the class or a function call for the method, it
generates code to handle the specific data type.

In F#, function values, methods, properties, and aggregate types such as classes, records, and
discriminated unions can be generic.

Generic constructs contain at least one type parameter. Generic functions and types enable you to
write code that works with a variety of types without repeating the code for each type.

Syntax

Syntax for writing a generic construct is as follows —

// Explicitly generic function.
let function-name<type-parameters> parameter-list =
function-body

// Explicitly generic method.
[ static ] member object-identifer.method-name<type-parameters> parameter-list [ return-
type ] =

method-body

// Explicitly generic class, record, interface, structure,

// or discriminated union.
type type-name<type-parameters> type-definition

Examples

(* Generic Function *)

let printFunc<'T> X y =
printfn "%A, %A" X y

printFunc<float> 10.0 20.0

When you compile and execute the program, it yields the following output —



10.0, 20.0

You can also make a function generic by using the single quotation mark syntax —

(* Generic Function *)
let printFunction (x: 'a) (y: 'a) =
printfn "%A %A" X y

printFunction 10.0 20.0

When you compile and execute the program, it yields the following output —

10.0 20.0

Please note that when you use generic functions or methods, you might not have to specify the
type arguments. However, in case of an ambiguity, you can provide type arguments in angle
brackets as we did in the first example.

If you have more than one type, then you separate multiple type arguments with commas.
Generic Class

Like generic functions, you can also write generic classes. The following example demonstrates
this —

type genericClass<'a> (x: 'a) =
do printfn "%A" x

let gr
let gs

new genericClass<string>("zara"
genericClass( seq { for i in 1 .. 10 -> (i, i*i) } )

When you compile and execute the program, it yields the following output —

"zara"
seq [(1, 1); (2, 4); (3, 9); (4, 16); ...]

F# - DELEGATES

A delegate is a reference type variable that holds the reference to a method. The reference can
be changed at runtime. F# delegates are similar to pointers to functions, in C or C++.

Declaring Delegates

Delegate declaration determines the methods that can be referenced by the delegate. A delegate
can refer to a method, which have the same signature as that of the delegate.

Syntax for delegate declaration is —

type delegate-typename = delegate of typel -> type2

For example, consider the delegates —

// Delegatel works with tuple arguments.

type Delegatel = delegate of (int * int) -> int
// Delegate2 works with curried arguments.

type Delegate2 = delegate of int * int -> int

Both the delegates can be used to reference any method that has two int parameters and returns
an int type variable.

In the syntax —

e typel represents the argument type(s).



o type2 represents the return type.
Please note —
¢ The argument types are automatically curried.
e Delegates can be attached to function values, and static or instance methods.
e F# function values can be passed directly as arguments to delegate constructors.

e For a static method the delegate is called by using the name of the class and the method. For
an instance method, the name of the object instance and method is used.

¢ The Invoke method on the delegate type calls the encapsulated function.

e Also, delegates can be passed as function values by referencing the Invoke method name
without the parentheses.

The following example demonstrates the concept —

Example

type Myclass() =

static member add(a : int, b : int) =
a-+hb

static member sub (a : int) (b : int) =
a-»b

member x.Add(a : int, b : int) =
a-+bhb

member x.Sub(a : int) (b : int) =
a-»b

// Delegatel works with tuple arguments.

type Delegatel = delegate of (int * int) -> int
// Delegate2 works with curried arguments.

type Delegate2 = delegate of int * int -> int

let InvokeDelegatel (dlg : Delegatel) (a : int) (b: int) =
dlg.Invoke(a, b)

let InvokeDelegate2 (dlg : Delegate2) (a : int) (b: int) =
dlg.Invoke(a, b)

// For static methods, use the class name, the dot operator, and the
// name of the static method.

let dell : Delegatel = new Delegatel( Myclass.add )

let del2 : Delegate2 = new Delegate2( Myclass.sub )

let mc = Myclass()

// For instance methods, use the instance value name, the dot operator, and the instance
method name.

let del3 : Delegatel = new Delegatel( mc.Add )
let del4 : Delegate2 = new Delegate2( mc.Sub )

for (a, b) in [ (400, 200); (100, 45) ] do
printfn "%d + %d = %d" a b (InvokeDelegatel dell a b)
printfn "%d - %d %d" a b (InvokeDelegate2 del2 a b)
printfn "%d + %d %d" a b (InvokeDelegatel del3 a b)
printfn "%d - %d %d" a b (InvokeDelegate2 del4 a b)

When you compile and execute the program, it yields the following output —

400 + 200 = 600
400 - 200 = 200
400 + 200 = 600
400 - 200 = 200
100 + 45 = 145



100 - 45 = 55
100 + 45 = 145
100 - 45 = 55

F# - ENUMERATIONS

An enumeration is a set of named integer constants.

In F#, enumerations, also known as enums, are integral types where labels are assigned to a
subset of the values. You can use them in place of literals to make code more readable and
maintainable.

Declaring Enumerations

The general syntax for declaring an enumeration is —

type enum-name =
| valuel = integer-literall
| value2 = integer-literal2

The following example demonstrates the use of enumerations —

Example

// Declaration of an enumeration.
type Days =

| Sun

| Mon
| Tues = 2
| wed = 3
| Thurs =
| Fri = 5
| sat = 6

// Use of an enumeration.

let weekendl : Days = Days.Sat
let weekend2 : Days Days.Sun
let weekDayl : Days Days.Mon

printfn "Monday: %A" weekDayl
printfn "Saturday: %A" weekendl
printfn "Sunday: %A" weekend2

When you compile and execute the program, it yields the following output —

Monday: Mon
Saturday: Sat
Sunday: Sun

F# - PATTERN MATCHING

Pattern matching allows you to “compare data with a logical structure or structures, decompose
data into constituent parts, or extract information from data in various ways”.

In other terms, it provides a more flexible and powerful way of testing data against a series of
conditions and performing some computations based on the condition met.

Conceptually, itis like a series of if... then statements.
Syntax
In high level terms, pattern matching follows this syntax in F# —

match expr with



| patl - resultl

| pat2 -> result2

| pat3 when expr2 -> result3
| -> defaultResult

Where,

e Each | symbol defines a condition.
e The -> symbol means "if the condition is true, return this value...".

e The _symbol provides the default pattern, meaning that it matches all other things like a
wildcard.

Example 1

The following example, calculates the Fibonacci numbers using pattern matching syntax —

let rec fib n =
match n with
| @ -> 0
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
for i = 1 to 10 do
printfn "Fibonacci %d: %d" i (fib 1)

When you compile and execute the program, it yields the following output —

Fibonacci 1
Fibonacci 2
Fibonacci 3
Fibonacci 4:
Fibonacci 5:
Fibonacci 6
Fibonacci 7
Fibonacci 8
Fibonacci 9

1

Fibonacci 10: 55

You can also chain together multiple conditions, which return the same value. For example —
Example 2

let printSeason month =
match month with

| "December" | "January" | "February" -> printfn "winter"

| "March" | "April" -> printfn "Spring"

| "May" | "June" -> printfn "Summer"

| "July" | "August" -> printfn "Rainy"

| "September" | "October" | "November" -> printfn "Autumn"
I

_ -> printfn "Season depends on month!"

printSeason "February"
printSeason "April"
printSeason "November"
printSeason "July"

When you compile and execute the program, it yields the following output —

Winter
Spring
Autumn
Rainy

Pattern Matching Functions



F# allows you to write pattern matching functions using the function keyword —

let getRate = function
| "potato" -> 10.00
| "brinjal" -> 20.50
| "cauliflower" -> 21.00
| "cabbage" -> 8.75
| "carrot" -> 15.00
| _ -> nan (* nan is a special value meaning "not a number'" *)

printfn "%g"(getRate "potato")
printfn "%g"(getRate "brinjal')
printfn "%g"(getRate "cauliflower")
printfn "%g"(getRate "cabbage")
printfn "%g" (getRate "carrot")

When you compile and execute the program, it yields the following output —

10
20.5
21
8.75
15

Adding Filters or Guards to Patterns

You can add filters, or guards, to patterns using the when keyword.

Example 1

let sign = function
| © -> 0
| x when x < 0 -> -1
| x when x > 0 -> 1

printfn "%d" (sign -20)
printfn "%d" (sign 20)
printfn "%d" (sign 0)

When you compile and execute the program, it yields the following output —

-1
1
(0]

Example 2

let comparelnt x =
match x with
| (varl, var2) when varl > var2 -> printfn "%d is greater than %d" varl var2
| (varl, var2) when varl < var2 -> printfn "%d is less than %d" varl var2
| (varl, var2) -> printfn "%d equals %d" varl var2

compareInt (11,25)
comparelInt (72, 10)
compareInt (0, 0)

When you compile and execute the program, it yields the following output —

11 is less than 25
72 is greater than 10
0 equals 0



Pattern Matching with Tuples

The following example demonstrates the pattern matching with tuples —

let greeting (name, subject) =
match (name, subject) with
| ("zara", _) -> "Hello, Zara"
| (name, "English") -> "Hello, " + name + " from the department of English"

| (name, _) when subject.Startswith("Comp") -> "Hello, " + name + " from the
department of Computer Sc."
| (_, "Accounts and Finance") -> "Welcome to the department of Accounts and Finance!"

| _ -> "You are not registered into the system"

printfn "%s" (greeting ("Zzara", "English"))
printfn "%s" (greeting ("Raman", "Computer Science"))
printfn "%s" (greeting ("Ravi'", "Mathematics"))

When you compile and execute the program, it yields the following output —

Hello, Zara
Hello, Raman from the department of Computer Sc.
You are not registered into the system

Pattern Matching with Records

The following example demonstrates pattern matching with records —

type Point = { x: float; y: float }
let evaluatePoint (point: Point) =
match point with
| { x =0.0; vy = 0.0 } -> printfn "Point is at the origin."

| { x = xval; y = 0.0 } -> printfn "Point is on the x-axis. Value is %f." xVal
| { x = 0.0; v =yval } -> printfn "Point is on the y-axis. Value is %f." yval
| { x = xval; y = yval } -> printfn "Point is at (%f, %f)." xVal yVval

evaluatePoint { x = 0.0; y = 0.0 }

evaluatePoint { x = 10.0; y = 0.0 }

evaluatePoint { x = 0.0; y = 10.0 }

evaluatePoint { x = 10.0; y = 10.0 }

When you compile and execute the program, it yields the following output —

Point is at the origin.

Point is on the x-axis. Value is 10.000000.
Point is on the y-axis. Value is 10.000000.
Point is at (10.000000, 10.000000).

F# - EXCEPTION HANDLING

An exception is a problem that arises during the execution of a program. An F# exception is a
response to an exceptional circumstance that arises while a program is running, such as an
attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. F# exception
handling provides the following constructs —

Construct Description
raise expr Raises the given exception.
failwith expr Raises the System.Exception exception.

try expr with rules Catches expressions matching the pattern rules.



try expr finally expr Execution the finally expression both when the computation
is successful and when an exception is raised.

| :? ArgumentException A rule matching the given .NET exception type.

| :? ArgumentException as e A rule matching the given .NET exception type, binding the
name e to the exception object value.

| Failure(msg) = expr A rule matching the given data-carrying F# exception.

| exn - expr A rule matching any exception, binding the name exn to the

exception object value.

| exn when expr - expr A rule matching the exception under the given condition,
binding the name exn to the exception object value.

Let us start with the basic syntax of Exception Handling.

Syntax

Basic syntax for F# exception handling block is —

exception exception-type of argument-type

Where,
 exception-type is the name of a new F# exception type.

e argument-type represents the type of an argument that can be supplied when you raise an
exception of this type.

¢ Multiple arguments can be specified by using a tuple type for argument-type.
The try...with expression is used for exception handling in the F# language.

Syntax for the try ... with expression is —

try
expressioni

with
| patternl -> expression2
| pattern2 -> expression3

The try...finally expression allows you to execute clean-up code even if a block of code throws an
exception.

Syntax for the try ... finally expression is —

try
expressioni

finally
expression2

The raise function is used to indicate that an error or exceptional condition has occurred. It also
captures the information about the error in an exception object.

Syntax for the raise function is —
raise (expression)

The failwith function generates an F# exception.

Syntax for the failwith function is —



failwith error-message-string

The invalidArg function generates an argument exception.

invalidArg parameter-name error-message-string

Example of Exception Handling

Example 1
The following program shows the basic exception handling with a simple try... with block —

let divisionprog x y =
try
Some (x / vy)
with
| :? System.DivideByZeroException -> printfn "Division by zero!"; None

let resultl = divisionprog 100 0

When you compile and execute the program, it yields the following output —

Division by zero!

Example 2

F# provides an exception type for declaring exceptions. You can use an exception type directly in
the filters in a try...with expression.

The following example demonstrates this —

exception Errorl of string
// Using a tuple type as the argument type.
exception Error2 of string * int

let myfunction x y =
try
if x = y then raise (Errori1("Equal Number Error"))
else raise (Error2("Error Not detected", 100))
with
| Errori(str) -> printfn "Errorl %s" str
| Error2(str, i) -> printfn "Error2 %s %d" str i
myfunction 20 10
myfunction 5 5

When you compile and execute the program, it yields the following output —

Error2 Error Not detected 100
Errorl Equal Number Error

Example 3
The following example demonstrates nested exception handling —

exception InnerError of string
exception OuterError of string

let funcl x y =
try
try
if x = y then raise (InnerError("inner error"))
else raise (OuterError("outer error"))



with
| InnerError(str) -> printfn "Error:%s" str
finally
printfn "From the finally block."

let func2 x y =
try
funcl x y
with
| OuterError(str) -> printfn "Error: %s" str

func2 100 150
func2 100 100
func2 100 120

When you compile and execute the program, it yields the following output —

From the finally block.
Error: outer error
Error:inner error

From the finally block.
From the finally block.
Error: outer error

Example 4

The following function demonstrates the failwith function —

let divisionFunc x y =
if (y = 0) then failwith "Divisor cannot be zero."

else
X /'y
let trydivisionFunc x y =
try
divisionFunc x vy
with

| Failure(msg) -> printfn "%s" msg; ©

let resultl trydivisionFunc 100 0
let result2 trydivisionFunc 100 4
printfn "%A" resultl
printfn "%A" result2

When you compile and execute the program, it yields the following output —

Divisor cannot be zero.
0]
25

Example 5

The invalidArg function generates an argument exception. The following program demonstrates
this —

let days = [| "Sunday"; "Monday"; "Tuesday"; "Wednesday"; "Thursday"; "Friday";
"Saturday" |]
let findDay day =
if (day > 7 || day < 1)
then invalidArg "day" (sprintf "You have entered %d." day)
days.[day - 1]

printfn "%s" (findDay 1)
printfn "%s" (findDay 5)
printfn "%s" (findDay 9)



When you compile and execute the program, it yields the following output —

Sunday

Thursday

Unhandled Exception:
System.ArgumentException: You have entered 9.

Some other information about the file and variable causing error in the system will also be
displayed, depending upon the system.

F# - CLASSES

Classes are types that represent objects that can have properties, methods, and events. ‘They are
used to model actions, processes, and any conceptual entities in applications.’

Syntax

Syntax for defining a class type is as follows —

// Class definition:
type [access-modifier] type-name [type-params] [access-modifier] ( parameter-list ) [ as
identifier ] =
[ class ]
[ inherit base-type-name(base-constructor-args) ]
[ let-bindings ]
[ do-bindings ]
member-1list
[ end ]
// Mutually recursive class definitions:

type [access-modifier] type-namel ...
and [access-modifier] type-name2 ...

Where,
e The type-name is any valid identifier. Default access modifier for this is public.
e The type-params describes optional generic type parameters.

¢ The parameter-list describes constructor parameters. Default access modifier for primary
constructor is public.

e The identifier used with the optional as keyword gives a name to the instance variable, or
self-identifier, which can be used in the type definition to refer to the instance of the type.

e The inherit keyword allows you to specify the base class for a class.
e The let bindings allow you to declare fields or function values local to the class.
¢ The do-bindings section includes code to be executed upon object construction.

e The member-list consists of additional constructors, instance and static method
declarations, interface declarations, abstract bindings, and property and event declarations.

e The keywords class and end that mark the start and end of the definition are optional.
Constructor of a Class
The constructor is code that creates an instance of the class type.

In F#, constructors work little differently than other .Net languages. In the class definition, the
arguments of the primary constructor are described as parameter-list.



The body of the constructor consists of the let and do bindings.

You can add additional constructors by using the new keyword to add a member —

new (argument-1list) = constructor-body

The following example illustrates the concept —
Example

The following program creates a line class along with a constructor that calculates the length of
the line while an object of the class is created —

type Line = class
val X1 : float
val Y1 : float
val X2 : float
val Y2 : float

new (x1, y1, x2, y2) as this =
{ X1 = x1; Y1 =vy1; X2 = x2; Y2 = y2;}
then
printfn " Creating Line: {(%g, %9), (%g, %g)}\nLength: %g"
this.X1 this.Y1 this.X2 this.Y2 this.Length

member x.Length =
let sqr x = x * X
sgrt(sgr(x.X1 - x.X2) + sqr(x.Yl - x.Y2) )
end
let aLine = new Line(1.0, 1.0, 4.0, 5.0)

When you compile and execute the program, it yields the following output —

Creating Line: {(1, 1), (4, 5)}
Length: 5

Let Bindings

The let bindings in a class definition allow you to define private fields and private functions for F#
classes.

type Greetings(name) as gr =
let data = name
do
gr .PrintMessage ()
member this.PrintMessage() =
printf "Hello %s\n" data
let gtr = new Greetings("Zara")

When you compile and execute the program, it yields the following output —

Hello Zara

Please note the use of self-identifier gr for the Greetings class.

F# - STRUCTURES

A structure in F# is a value type data type. It helps you to make a single variable, hold related data
of various data types. The struct keyword is used for creating a structure.

Syntax

Syntax for defining a structure is as follows —



[ attributes ]

type [accessibility-modifier] type-name
struct

type-definition-elements

end

// or

[ attributes ]

[<StructAttribute>]

type [accessibility-modifier] type-name
type-definition-elements

There are two syntaxes. The first syntax is mostly used, because, if you use the struct and end
keywords, you can omit the StructAttribute attribute.

The structure definition elements provide —

¢ Member declarations and definitions.
e Constructors and mutable and immutable fields.

e Members and interface implementations.

Unlike classes, structures cannot be inherited and cannot contain let or do bindings. Since,
structures do not have let bindings; you must declare fields in structures by using the val keyword.

When you define a field and its type using val keyword, you cannot initialize the field value,
instead they are initialized to zero or null. So for a structure having an implicit constructor, the val
declarations be annotated with the DefaultValue attribute.

Example

The following program creates a line structure along with a constructor. The program calculates
the length of a line using the structure —

type Line = struct
val X1 : float
val Y1 : float
val X2 : float
val Y2 : float

new (x1, yi1, x2, y2) =
{X1 = x1; Y1 = yl1; X2 = x2; Y2 = y2;}
end
let calclLength(a : Line)=
let sqr a = a * a
sqrt(sqgr(a.X1 - a.X2) + sqr(a.Y1 - a.Y2) )

let aLine = new Line(1.0, 1.0, 4.0, 5.0)

let length = calclLength aLine
printfn "Length of the Line: %g " length

When you compile and execute the program, it yields the following output —

Length of the Line: 5

F# - OPERATOR OVERLOADING

You can redefine or overload most of the built-in operators available in F#. Thus a programmer
can use operators with user-defined types as well.

Operators are functions with special names, enclosed in brackets. They must be defined as static
class members. Like any other function, an overloaded operator has a return type and a
parameter list.

The following example, shows a &plus; operator on complex numbers —



//overloading &plus; operator
static member (&plus;) (a : Complex, b: Complex) =
Complex(a.x &plus; b.x, a.y &plus; b.y)

The above function implements the addition operator (&plus;) for a user-defined class Complex. It
adds the attributes of two objects and returns the resultant Complex object.

Implementation of Operator Overloading

The following program shows the complete implementation —

//implementing a complex class with +, and - operators
//overloaded
type Complex(x: float, y : float) =

member this.x = x

member this.y =y

//overloading + operator

static member (+) (a : Complex, b: Complex) =

Complex(a.x + b.x, a.y + b.y)

//overloading - operator
static member (-) (a : Complex, b: Complex) =
Complex(a.x - b.x, a.y - b.y)

// overriding the ToString method
override this.ToString() =
this.x.ToString() + " " + this.y.ToString()

//Creating two complex numbers
let c1 = Complex(7.0, 5.0)
let c2 = Complex(4.2, 3.1)

// addition and subtraction using the
//overloaded operators

let ¢3 = c1 + c2

let c4 = c1 - c2

//printing the complex numbers
printfn "%s" (cl.ToString())
printfn "%s" (c2.ToString())
printfn "%s" (c3.ToString())
printfn "%s" (c4.ToString())

When you compile and execute the program, it yields the following output —

75

4.2 3.1

11.2 8.1
2.8 1.9

F# - INHERITANCE

One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to create
and maintain an application. This also provides an opportunity to reuse the code functionality and
fast implementation time.

When creating a class, instead of writing completely new data members and member functions,
the programmer can designate that the new class should inherit the members of an existing class.
This existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS A animal, dog
IS-A mammal hence dog IS-A animal as well and so on.

Base Class and Sub Class



A subclass is derived from a base class, which is already defined. A subclass inherits the members
of the base class, as well as has its own members.

A subclass is defined using the inherit keyword as shown below —

type MyDerived(...) =
inherit MyBase(...)

In F#, a class can have at most one direct base class. If you do not specify a base class by using
the inherit keyword, the class implicitly inherits from Object.

Please note —

e The methods and members of the base class are available to users of the derived class like
the direct members of the derived class.

e Letbindings and constructor parameters are private to a class and, therefore, cannot be
accessed from derived classes.

e The keyword base refers to the base class instance. It is used like the self-identifier.

Example

type Person(name) =
member Xx.Name = name
member x.Greet() = printfn "Hi, I'm %s" Xx.Name

type Student(name, studentID : int) =
inherit Person(name)
let mutable _GPA = 0.0
member x.StudentID = studentID
member x.GPA
with get() = _GPA
and set value = _GPA <- value

type Teacher(name, expertise : string) =
inherit Person(name)

let mutable _salary = 0.0
member x.Salary

with get() = _salary

and set value = _salary <- value
member Xx.Expertise = expertise

//using the subclasses
let p = new Person("Mohan")

let st = new Student("Zara", 1234)

let tr = new Teacher("Mariam", "Java")
p.Greet()

st.Greet()

tr.Greet()

When you compile and execute the program, it yields the following output —

Hi, I'm Mohan
Hi, I'm Zara
Hi, I'm Mariam

Overriding Methods

You can override a default behavior of a base class method and implement it differently in the
subclass or the derived class.

Methods in F# are not overridable by default.



To override methods in a derived class, you have to declare your method as overridable using the
abstract and default keywords as follows —

type Person(name)
member x.Name name
abstract Greet : unit -> unit
default x.Greet() = printfn "Hi, I'm %s" x.Name

Now, the Greet method of the Person class can be overridden in derived classes. The following
example demonstrates this —

Example

type Person(name) =
member x.Name = name
abstract Greet : unit -> unit
default x.Greet() = printfn "Hi, I'm %s" x.Name

type Student(name, studentID : int) =
inherit Person(name)

let mutable _GPA = 0.0

member x.StudentID = studentID
member x.GPA
with get() = _GPA
and set value = _GPA <- value
override x.Greet() = printfn "Student %s" x.Name

type Teacher(name, expertise : string) =
inherit Person(name)
let mutable _salary = 0.0
member Xx.Salary
with get() = _salary
and set value = _salary <- value

member Xx.Expertise = expertise
override x.Greet() = printfn "Teacher %s." x.Name

//using the subclasses

let p = new Person("Mohan")

let st new Student("Zara'", 1234)

let tr new Teacher ("Mariam", "Java")

//default Greet
p.Greet()

//0verriden Greet
st.Greet()
tr.Greet()

When you compile and execute the program, it yields the following output —

Hi, I'm Mohan
Student Zara
Teacher Mariam.

Abstract Class

At times you need to provide an incomplete implementation of an object, which should not be
implemented in reality. Later, some other programmer should create subclasses of the abstract
class to a complete implementation.

For example, the Person class will not be needed in a School Management System. However, the
Student or the Teacher class will be needed. In such cases, you can declare the Person class as an
abstract class.



The AbstractClass attribute tells the compiler that the class has some abstract members.
You cannot create an instance of an abstract class because the class is not fully implemented.

The following example demonstrates this —

Example

[<AbstractClass>]

type Person(name)
member x.Name name
abstract Greet : unit -> unit

type Student(name, studentID : int) =
inherit Person(name)
let mutable _GPA = 0.0
member x.StudentID = studentID
member Xx.GPA
with get() = _GPA
and set value = _GPA <- value
override x.Greet() = printfn "Student %s" x.Name

type Teacher (name, expertise : string) =
inherit Person(name)
let mutable _salary = 0.0
member Xx.Salary
with get() = _salary
and set value = _salary <- value
member X.Expertise = expertise
override x.Greet() = printfn "Teacher %s." x.Name

let st
let tr

new Student("zara", 1234)
new Teacher ("Mariam", "Java")

//0verriden Greet
st.Greet()
tr.Greet()

When you compile and execute the program, it yields the following output —

Student Zara
Teacher Mariam.

F# - INTERFACES

Interfaces provide an abstract way of writing up the implementation details of a class. Itis a
template that declares the methods the class must implement and expose publicly.

Syntax

An interface specifies the sets of related members that other classes implement. It has the
following syntax —

// Interface declaration:
[ attributes ]
type interface-name =
[ interface ]
[ inherit base-interface-name ...]
abstract memberl : [ argument-typesl -> ] return-typel
abstract member2 : [ argument-types2 -> ] return-type2

[ end ]
// Implementing, inside a class type definition:

interface interface-name with
member self-identifier.memberl argument-list = method-body1l



member self-identifier.member2 argument-list = method-body2
// Implementing, by using an object expression:
[ attributes ]
let class-name (argument-list) =
{ new interface-name with
member self-identifier.memberl argument-list
member self-identifier.member2 argument-list
[ base-interface-definitions ]

method-body1l
method-body2

3

member-1ist

Please note —
¢ In aninterface declaration the members are not implemented.

e The members are abstract, declared by the abstract keyword. However you may provide a
default implementation using the default keyword.

e You can implement interfaces either by using object expressions or by using class types.

¢ In class or object implementation, you need to provide method bodies for abstract methods
of the interface.

e The keywords interface and end, which mark the start and end of the definition, are
optional.

For example,

type IPerson =
abstract Name : string
abstract Enter : unit -> unit
abstract Leave : unit -> unit

Calling Interface Methods

Interface methods are called through the interface, not through the instance of the class or type
implementing interface. To call an interface method, you up cast to the interface type by using the
:> operator (upcast operator).

For example,

(s :> IPerson).Enter()
(s :> IPerson).Leave()

The following example illustrates the concept —

Example

type IPerson =
abstract Name : string
abstract Enter : unit -> unit
abstract Leave : unit -> unit

type Student(name : string, id : int) =
member this.ID = id
interface IPerson with
member this.Name = name
member this.Enter () printfn "Student entering premises!"
member this.Leave() printfn "Student leaving premises!"

type StuffMember(name : string, id : int, salary : float) =
let mutable _salary = salary

member this.Salary
with get() = _salary
and set(value) = _salary <- value



interface IPerson with
member this.Name = name
member this.Enter() = printfn "Stuff member entering premises!"
member this.Leave() printfn "Stuff member leaving premises!"

let s = new Student("ZzZara", 1234)
let st = new StuffMember("Rohit", 34, 50000.0)

(s :> IPerson).Enter ()
(s :> IPerson).Leave()
(st :> IPerson).Enter()
(st :> IPerson).Leave()

When you compile and execute the program, it yields the following output —

Student entering premises!
Student leaving premises!
Stuff member entering premises!
Stuff member leaving premises!

Interface Inheritance
Interfaces can inherit from one or more base interfaces.

The following example shows the concept —

type Interfacel =
abstract member doubleIt: int -> int

type Interface2 =
abstract member tripleIt: int -> int

type Interface3d =
inherit Interfacel
inherit Interface2
abstract member printIt: int -> string

type multipliercClass() =
interface Interface3 with
member this.doubleIt(a) 2 * a
member this.tripleIt(a) 3 * a
member this.printIt(a) = a.ToString()

let ml = multiplierClass()

printfn "%d" ((ml:>Interface3).doubleIt(5))
printfn "%d" ((ml:>Interface3).tripleIt(5))
printfn "%s" ((ml:>Interface3).printIt(5))

When you compile and execute the program, it yields the following output —

10
15
5

F# - EVENTS

Events allow classes to send and receive messages between one another.

In GUI, events are user actions like key press, clicks, mouse movements, etc., or some occurrence
like system generated notifications. Applications need to respond to events when they occur. For
example, interrupts. Events are used for inter-process communication.

Objects communicate with one another through synchronous message passing.

Events are attached to other functions; objects register callback functions to an event, and these



callbacks are executed when (and if) the eventis triggered by some object.

The Event Class and Event Module
The Control.Event<'T> Class helps in creating an observable object or event.

It has the following instance members to work with the events —

Member Description
Publish Publishes an observation as a first class value.
Trigger Triggers an observation using the given parameters.

The Control.Event Module provides functions for managing event streams —

Value
add : (‘T = unit) » Event<'Del,'T> - unit

choose : ('T - 'U option) = IEvent<'Del,'T> -
I[Event<'U>

filter : ('T - bool) —» IEvent<'Del,'T> -
I[Event<'T>

map : (‘T - 'U) » IEvent<'Del, 'T> -
I[Event<'U>

merge : I[Event<'Dell,'T> -
[Event<'Del2,'T> - |IEvent<'T>

pairwise : I[Event<'Del,'T> - I[Event<'T * 'T>

partition : ('T - bool) » IEvent<'Del,'T> —»
[Event<'T> * |[Event<'T>

scan: ('U-'T - 'U) » 'U - IEvent<'Del,'T>

- |Event<'U>

split: ('T » Choice<'Ul1,'U2>) »
I[Event<'Del,'T> - |IEvent<'Ul> *

Description

Runs the given function each time the given
eventis triggered.

Returns a new event which fires on a selection of
messages from the original event. The selection
function takes an original message to an
optional new message.

Returns a new event that listens to the original
event and triggers the resulting event only when
the argument to the event passes the given
function.

Returns a new event that passes values
transformed by the given function.

Fires the output event when either of the input
events fire.

Returns a new event that triggers on the second
and subsequent triggering of the input event.
The Nth triggering of the input event passes the
arguments from the N-1th and Nth triggering
as a pair. The argument passed to the N-1th
triggering is held in hidden internal state until
the Nth triggering occurs.

Returns a new event that listens to the original
event and triggers the first resulting event if the
application of the predicate to the event
arguments returned true, and the second event
if it returned false.

Returns a new event consisting of the results of
applying the given accumulating function to
successive values triggered on the input event.
An item of internal state records the current
value of the state parameter. The internal state
is not locked during the execution of the
accumulation function, so care should be taken
that the input IEvent not triggered by multiple
threads simultaneously.

Returns a new event that listens to the original
event and triggers the first resulting event if the



[Event<'U2> application of the function to the event
arguments returned a ChoicelOf2, and the
second event if it returns a Choice20f2.

Creating Events

Events are created and used through the Event class. The Event constructor is used for creating
an event.

Example

type Worker(name : string, shift : string) =
let mutable _name = name;
let mutable _shift = shift;
let nameChanged = new Event<unit>() (* creates event *)
let shiftChanged = new Event<unit>() (* creates event *)

member this.Name
with get() = _name
and set(value) = _name <- value

member this.Shift
with get() = _shift
and set(value) = _shift <- value

After this you need to expose the nameChanged field as a public member, so that the listeners can
hook onto the event for which, you use the Publish property of the event —

type Worker(name : string, shift : string) =
let mutable _name = name;
let mutable _shift = shift;

let nameChanged = new Event<unit>() (* creates event *)
let shiftChanged = new Event<unit>() (* creates event *)

member this.NameChanged = nameChanged.Publish (* exposed event handler *)
member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

member this.Name
with get() = _name
and set(value) = _name <- value
nameChanged.Trigger () (* invokes event handler *)

member this.Shift

with get() = _shift

and set(value) = _shift <- value
shiftChanged.Trigger () (* invokes event handler *)

Next, you add callbacks to event handlers. Each event handler has the type IEvent<'T>, which
provides several methods —

Method Description

val Add : event:('T = unit) - unit Connects a listener function to the event. The listener
will be invoked when the eventis fired.

val AddHandler : 'del - unit Connects a handler delegate object to the event. A
handler can be later removed using RemoveHandler.
The listener will be invoked when the event is fired.

val RemoveHandler : 'del = unit Removes a listener delegate from an event listener
store.



The following section provides a complete example.
Example
The following example demonstrates the concept and techniques discussed above —

type Worker(name : string, shift : string) =
let mutable _name = name;
let mutable _shift = shift;

let nameChanged = new Event<unit>() (* creates event *)
let shiftChanged = new Event<unit>() (* creates event *)

member this.NameChanged = nameChanged.Publish (* exposed event handler *)
member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

member this.Name
with get() = _name
and set(value) =
_name <- value
nameChanged.Trigger () (* invokes event handler *)

member this.Shift
with get() = _shift
and set(value) =
_shift <- value
shiftChanged.Trigger () (* invokes event handler *)

let wk = new Worker("wWilson", "Evening")

wk.NameChanged.Add(fun () -> printfn "Worker changed name! New name: %s" wk.Name)
wk.Name <- "william"

wk.NameChanged.Add (fun () -> printfn "-- Another handler attached to NameChanged!")
wk.Name <- "Bill"

wk.ShiftChanged.Add(fun () -> printfn "Worker changed shift! New shift: %s" wk.Shift)
wk.Shift <- "Morning"

wk.ShiftChanged.Add(fun () -> printfn "-- Another handler attached to ShiftChanged!")
wk.Shift <- "Night"

When you compile and execute the program, it yields the following output —

Worker changed name! New name: William
Worker changed name! New name: Bill

-- Another handler attached to NameChanged!
Worker changed shift! New shift: Morning
Worker changed shift! New shift: Night

-- Another handler attached to ShiftChanged!

F# - MODULES

As per MSDN library, an F# module is a grouping of F# code constructs, such as types, values,
function values, and code in do bindings. It is implemented as a common language runtime (CLR)
class that has only static members.

Depending upon the situation whether the whole file is included in the module, there are two types
of module declarations —

e Top-level module declaration

e Local module declaration

In a top-level module declaration the whole file is included in the module. In this case, the first
declaration in the file is the module declaration. You do not have to indent declarations in a top-
level module.

In a local module declaration, only the declarations that are indented under that module
declaration are part of the module.



Syntax

Syntax for module declaration is as follows —

// Top-level module declaration.

module [accessibility-modifier] [qualified-namespace.]module-name
declarations

// Local module declaration.

module [accessibility-modifier] module-name =
declarations

Please note that the accessibility-modifier can be one of the following — public, private, internal.
The default is public.

The following examples will demonstrate the concepts —

Example 1

The module file Arithmetic.fs —

module Arithmetic
let add x y =
X +y

let sub x y =
X -y

let mult x y =
X *y

let div x y =
X /'y

The program file main.fs —

// Fully qualify the function name.
let addRes = Arithmetic.add 25 9
let subRes = Arithmetic.sub 25 9
let multRes = Arithmetic.mult 25 9
let divRes = Arithmetic.div 25 9

printfn "%d" addRes
printfn "%d" subRes
printfn "%d" multRes
printfn "%d" divRes

// Opening the module.
open Arithmetic

let addRes2 Arithmetic.add 100 10
let subRes2 Arithmetic.sub 100 10
let multRes2 = Arithmetic.mult 100 10
let divRes2 = Arithmetic.div 100 10

printfn "%d" addRes2
printfn "%d" subRes2
printfn "%d" multRes2
printfn "%d" divRes2

When you compile and execute the program, it yields the following output —

34
16
225
2
110



90
1000
10

Example 2

// Modulel
module modulel =
// Indent all program elements within modules that are declared with an equal sign.
let valuel = 100
let modulelFunction x =
X + valuel

// Module2
module module2 =
let value2 = 200

// Use a qualified name to access the function.
// from modulel.
let module2Function x =

X + (modulel.modulelFunction value?2)

let result = modulel.modulelFunction 25
printfn "%d" result

let result2 = module2.module2Function 25
printfn "%d" result2

When you compile and execute the program, it yields the following output —

125
325

F# - NAMESPACES

A namespace is designed for providing a way to keep one set of names separate from another.
The class names declared in one namespace will not conflict with the same class names declared
in another.

As per the MSDN library, a namespace lets you organize code into areas of related functionality by
enabling you to attach a name to a grouping of program elements.

Declaring a Namespace

To organize your code in a namespace, you must declare the namespace as the first declaration in
the file. The contents of the entire file then become part of the namespace.

namespace [parent-namespaces.]identifier

The following example illustrates the concept —

Example

namespace testing

module testmodulel =
let testFunction x y =
printfn "Values from Modulel: %A %A" X y
module testmodule2 =
let testFunction X y =
printfn "Values from Module2: %A %A" X y

module usermodule =
do
testmodulel.testFunction ( "one", "two", "three" ) 150



testmodule2.testFunction (seq { for i in 1 .. 10 do yield i * i }) 200

When you compile and execute the program, it yields the following output —

Values from Modulel: ("one", "two", '"three") 150
Values from Module2: seq [1; 4; 9; 16; ...] 200



