
http://www.tutorialspoint.com/fsharp/fsharp_quick_guide.htm Copyright © tutorialspoint.com

F# - QUICK GUIDEF# - QUICK GUIDE

F# - OVERVIEWF# - OVERVIEW
F# is a functional programming language. To understand F# constructs, you need to read a
couple of lines about the programming paradigm named Functional Programming.

Functional programming treats computer programs as mathematical functions. In functional
programming, the focus would be on constants and functions, instead of variables and states.
Because functions and constants are things that don’t change.

In functional programming, you will write modular programs, i.e., the programs would consist of
functions that will take other functions as input.

Programs written in functional programming language tend to be concise.

About F#
Following are the basic information about F# −

It was developed in 2005 at Microsoft Research.
It is a part of Microsoft’s family of .Net language.
It is a functional programming language.
It is based on the functional programming language OCaml.

Features of F#
It is .Net implementation of OCaml.

It compiles .Net CLI (Common Language Interface) byte code or MSIL (Microsoft Intermediate
Language) that runs on CLR (Common Language Runtime).

It provides type inference.

It provides rich pattern matching constructs.

It has interactive scripting and debugging capabilities.

It allows writing higher order functions.

It provides well developed object model.

Use of F#
F# is normally used in the following areas −

Making scientific model
Mathematical problem solving
Artificial intelligence research work
Financial modelling
Graphic design
CPU design
Compiler programming
Telecommunications

It is also used in CRUD apps, web pages, GUI games and other general purpose programs.

http://www.tutorialspoint.com/fsharp/fsharp_quick_guide.htm

F# - ENVIRONMENT SETUPF# - ENVIRONMENT SETUP
The tools required for F# programming are discussed in this chapter.

Integrated Development Environment(IDE) for F#
Microsoft provides Visual Studio 2013 for F# programming.

The free Visual Studio 2013 Community Edition is available from Microsoft’s official website. Visual
Studio 2013 Community and above comes with the Visual F# Tools. The Visual F# Tools include
the command-line compiler (fsc.exe) and F# Interactive (fsi.exe).

Using these tools, you can write all kinds of F# programs from simple command-line applications
to more complex applications. You can also write F# source code files using a basic text editor,
like Notepad, and compile the code into assemblies using the command-line compiler.

You can download it from Microsoft Visual Studio. It gets automatically installed in your machine.

Writing F# Programs On Links
Please visit the F# official website for the latest instructions on getting the tools as a Debian
package or compiling them directly from the source − http://fsharp.org/use/linux/.

Try it Option Online

We have set up the F# Programming environment online. You can easily compile and
execute all the available examples online along with doing your theory work. It gives
you confidence in what you are reading and to check the result with different options.
Feel free to modify any example and execute it online.

Try the following example using the Try it option or use the url −
http://www.compileonline.com/.

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

For most of the examples given in this tutorial, you will find a Try it option in our
website code sections at the top right corner that will take you to the online compiler.
So just make use of it and enjoy your learning.

F# - PROGRAM STRUCTUREF# - PROGRAM STRUCTURE
F# is a Functional Programming language.

In F#, functions work like data types. You can declare and use a function in the same way like any
other variable.

In general, an F# application does not have any specific entry point. The compiler executes all top-
level statements in the file from top to bottom.

However, to follow procedural programming style, many applications keep a single top level
statement that calls the main loop.

The following code shows a simple F# program −

open System
(* This is a multi-line comment *)
// This is a single-line comment

let sign num =
 if num > 0 then "positive"

http://fsharp.org/use/linux/
http://www.compileonline.com/

 elif num < 0 then "negative"
 else "zero"

let main() =
 Console.WriteLine("sign 5: {0}", (sign 5))

main()

When you compile and execute the program, it yields the following output −

sign 5: positive

Please note that −

An F# code file might begin with a number of open statements that is used to import
namespaces.

The body of the files includes other functions that implement the business logic of the
application.

The main loop contains the top executable statements.

F# - BASIC SYNTAXF# - BASIC SYNTAX
You have seen the basic structure of an F# program, so it will be easy to understand other basic
building blocks of the F# programming language.

Tokens in F#
An F# program consists of various tokens. A token could be a keyword, an identifier, a constant, a
string literal, or a symbol. We can categorize F# tokens into two types −

Keywords
Symbol and Operators

F# Keywords
The following table shows the keywords and brief descriptions of the keywords. We will discuss the
use of these keywords in subsequent chapters.

Keyword Description

abstract Indicates a method that either has no implementation in the type in which it is
declared or that is virtual and has a default implementation.

and Used in mutually recursive bindings, in property declarations, and with multiple
constraints on generic parameters.

as Used to give the current class object an object name. Also used to give a name to
a whole pattern within a pattern match.

assert Used to verify code during debugging.

base Used as the name of the base class object.

begin In verbose syntax, indicates the start of a code block.

class In verbose syntax, indicates the start of a class definition.

default Indicates an implementation of an abstract method; used together with an
abstract method declaration to create a virtual method.

delegate Used to declare a delegate.

do Used in looping constructs or to execute imperative code.

done In verbose syntax, indicates the end of a block of code in a looping expression.

downcast Used to convert to a type that is lower in the inheritance chain.

downto In a for expression, used when counting in reverse.

elif Used in conditional branching. A short form of else if.

else Used in conditional branching.

end
In type definitions and type extensions, indicates the end of a section of member
definitions.

In verbose syntax, used to specify the end of a code block that starts with the
begin keyword.

exception Used to declare an exception type.

extern Indicates that a declared program element is defined in another binary or
assembly.

false Used as a Boolean literal.

finally Used together with try to introduce a block of code that executes regardless of
whether an exception occurs.

for Used in looping constructs.

fun Used in lambda expressions, also known as anonymous functions.

function Used as a shorter alternative to the fun keyword and a match expression in a
lambda expression that has pattern matching on a single argument.

global Used to reference the top-level .NET namespace.

if Used in conditional branching constructs.

in Used for sequence expressions and, in verbose syntax, to separate expressions
from bindings.

inherit Used to specify a base class or base interface.

inline Used to indicate a function that should be integrated directly into the caller's
code.

interface Used to declare and implement interfaces.

internal Used to specify that a member is visible inside an assembly but not outside it.

lazy Used to specify a computation that is to be performed only when a result is
needed.

let Used to associate, or bind, a name to a value or function.

let! Used in asynchronous workflows to bind a name to the result of an asynchronous
computation, or, in other computation expressions, used to bind a name to a
result, which is of the computation type.

match Used to branch by comparing a value to a pattern.

member Used to declare a property or method in an object type.

module Used to associate a name with a group of related types, values, and functions, to
logically separate it from other code.

mutable Used to declare a variable, that is, a value that can be changed.

namespace Used to associate a name with a group of related types and modules, to logically
separate it from other code.

new
Used to declare, define, or invoke a constructor that creates or that can create an
object.

Also used in generic parameter constraints to indicate that a type must have a
certain constructor.

not Not actually a keyword. However, not struct in combination is used as a generic
parameter constraint.

null
Indicates the absence of an object.

Also used in generic parameter constraints.

of Used in discriminated unions to indicate the type of categories of values, and in
delegate and exception declarations.

open Used to make the contents of a namespace or module available without
qualification.

or
Used with Boolean conditions as a Boolean or operator. Equivalent to ||.

Also used in member constraints.

override Used to implement a version of an abstract or virtual method that differs from the
base version.

private Restricts access to a member to code in the same type or module.

public Allows access to a member from outside the type.

rec Used to indicate that a function is recursive.

return Used to indicate a value to provide as the result of a computation expression.

return! Used to indicate a computation expression that, when evaluated, provides the
result of the containing computation expression.

select Used in query expressions to specify what fields or columns to extract. Note that
this is a contextual keyword, which means that it is not actually a reserved word
and it only acts like a keyword in appropriate context.

static Used to indicate a method or property that can be called without an instance of a
type, or a value member that is shared among all instances of a type.

struct
Used to declare a structure type.

Also used in generic parameter constraints.

Used for OCaml compatibility in module definitions.

then
Used in conditional expressions.

Also used to perform side effects after object construction.

to Used in for loops to indicate a range.

true Used as a Boolean literal.

try Used to introduce a block of code that might generate an exception. Used
together with with or finally.

type Used to declare a class, record, structure, discriminated union, enumeration type,
unit of measure, or type abbreviation.

upcast Used to convert to a type that is higher in the inheritance chain.

use Used instead of let for values that require Dispose to be called to free resources.

use! Used instead of let! in asynchronous workflows and other computation
expressions for values that require Dispose to be called to free resources.

val Used in a signature to indicate a value, or in a type to declare a member, in
limited situations.

void Indicates the .NET void type. Used when interoperating with other .NET languages.

when Used for Boolean conditions (when guards) on pattern matches and to introduce
a constraint clause for a generic type parameter.

while Introduces a looping construct.

with Used together with the match keyword in pattern matching expressions. Also
used in object expressions, record copying expressions, and type extensions to
introduce member definitions, and to introduce exception handlers.

yield Used in a sequence expression to produce a value for a sequence.

yield! Used in a computation expression to append the result of a given computation
expression to a collection of results for the containing computation expression.

Some reserved keywords came from the OCaml language −

asr land lor lsl lsr lxor mod sig

Some other reserved keywords are kept for future expansion of F#.

atomic break checked component const constraint constructor

continue eager event external fixed functor include

method mixin object parallel process protected pure

sealed tailcall trait virtual volatile

Comments in F#
F# provides two types of comments −

One line comment starts with // symbol.
Multi line comment starts with (* and ends with *).

A Basic Program and Application Entry Point in F#
Generally, you don’t have any explicit entry point for F# programs. When you compile an F#

application, the last file provided to the compiler becomes the entry point and all top level
statements in that file are executed from top to bottom.

A well-written program should have a single top-level statement that would call the main loop of
the program.

A very minimalistic F# program that would display ‘Hello World’ on the screen −

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

When you compile and execute the program, it yields the following output −

Hello World!

F# - DATA TYPESF# - DATA TYPES
The data types in F# can be classified as follows −

Integral types
Floating point types
Text types
Other types

Integral Data Type
The following table provides the integral data types of F#. These are basically integer data types.

F#
Type

Size Range Example Remarks

sbyte 1 byte -128 to 127
42y

-11y

8-bit signed
integer

byte 1 byte 0 to 255
42uy

200uy

8-bit
unsigned
integer

int16 2 bytes -32768 to 32767
42s

-11s

16-bit signed
integer

uint16 2 bytes 0 to 65,535
42us

200us

16-bit
unsigned
integer

int/int32 4 bytes -2,147,483,648 to 2,147,483,647
42

-11

32-bit signed
integer

uint32 4 bytes 0 to 4,294,967,295
42u

32-bit
unsigned

200u
integer

int64 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 42L

-11L

64-bit signed
integer

uint64 8 bytes 0 to 18,446,744,073,709,551,615
42UL

200UL

64-bit
unsigned
integer

bigint At least 4 bytes any integer
42I

1499999

9999999

9999999

9999999

9999I

arbitrary
precision
integer

Example

(* single byte integer *)
let x = 268.97f
let y = 312.58f
let z = x + y

printfn "x: %f" x
printfn "y: %f" y
printfn "z: %f" z

(* unsigned 8-bit natural number *)

let p = 2uy
let q = 4uy
let r = p + q

printfn "p: %i" p
printfn "q: %i" q
printfn "r: %i" r

(* signed 16-bit integer *)

let a = 12s
let b = 24s
let c = a + b

printfn "a: %i" a
printfn "b: %i" b
printfn "c: %i" c

(* signed 32-bit integer *)

let d = 212l
let e = 504l
let f = d + e

printfn "d: %i" d

printfn "e: %i" e
printfn "f: %i" f

When you compile and execute the program, it yields the following output −

x: 1
y: 2
z: 3
p: 2
q: 4
r: 6
a: 12
b: 24
c: 36
d: 212
e: 504
f: 716

Floating Point Data Types
The following table provides the floating point data types of F#.

F# Type Size Range Example Remarks

float32 4 bytes ±1.5e-45 to ±3.4e38
42.0F

-11.0F

32-bit signed floating
point number (7
significant digits)

float 8 bytes ±5.0e-324 to ±1.7e308
42.0

-11.0

64-bit signed floating
point number (15-16
significant digits)

decimal 16 bytes ±1.0e-28 to ±7.9e28
42.0M

-11.0M

128-bit signed floating
point number (28-29
significant digits)

BigRational At least 4 bytes Any rational number.
42N

-11N

Arbitrary precision
rational number. Using
this type requires a
reference to
FSharp.PowerPack.dll.

Example

(* 32-bit signed floating point number *)
(* 7 significant digits *)

let d = 212.098f
let e = 504.768f
let f = d + e

printfn "d: %f" d
printfn "e: %f" e
printfn "f: %f" f

(* 64-bit signed floating point number *)
(* 15-16 significant digits *)
let x = 21290.098
let y = 50446.768

let z = x + y

printfn "x: %g" x
printfn "y: %g" y
printfn "z: %g" z

When you compile and execute the program, it yields the following output −

d: 212.098000
e: 504.768000
f: 716.866000
x: 21290.1
y: 50446.8
z: 71736.9

Text Data Types
The following table provides the text data types of F#.

F# Type Size Range Example Remarks

char 2 bytes U+0000 to U+ffff
'x'

'\t'

Single unicode
characters

string 20 + (2 * string's length)
bytes

0 to about 2 billion
characters "Hello"

"World"

Unicode text

Example

let choice = 'y'
let name = "Zara Ali"
let org = "Tutorials Point"

printfn "Choice: %c" choice
printfn "Name: %s" name
printfn "Organisation: %s" org

When you compile and execute the program, it yields the following output −

Choice: y
Name: Zara Ali
Organisation: Tutorials Point

Other Data Types
The following table provides some other data types of F#.

F# Type Size Range Example Remarks

bool 1 byte Only two possible values, true or
false true

false

Stores boolean
values

Example

let trueVal = true
let falseVal = false

printfn "True Value: %b" (trueVal)
printfn "False Value: %b" (falseVal)

When you compile and execute the program, it yields the following output −

True Value: true
False Value: false

F# - VARIABLESF# - VARIABLES
A variable is a name given to a storage area that our programs can manipulate. Each variable has
a specific type, which determines the size and layout of the variable's memory; the range of values
that can be stored within that memory; and the set of operations that can be applied to the
variable.

Variable Declaration in F#
The let keyword is used for variable declaration −

For example,

let x = 10

It declares a variable x and assigns the value 10 to it.

You can also assign an expression to a variable −

let x = 10
let y = 20
let z = x + y

The following example illustrates the concept −

Example

let x = 10
let y = 20
let z = x + y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it yields the following output −

x: 10
y: 20
z: 30

Variables in F# are immutable, which means once a variable is bound to a value, it can’t be
changed. They are actually compiled as static read-only properties.

The following example demonstrates this.

Example

let x = 10
let y = 20

let z = x + y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

let x = 15
let y = 20
let z = x + y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it shows the following error message −

Duplicate definition of value 'x'
Duplicate definition of value 'Y'
Duplicate definition of value 'Z'

Variable Definition With Type Declaration
A variable definition tells the compiler where and how much storage for the variable should be
created. A variable definition may specify a data type and contains a list of one or more variables
of that type as shown in the following example.

Example

let x:int32 = 10
let y:int32 = 20
let z:int32 = x + y

printfn "x: %d" x
printfn "y: %d" y
printfn "z: %d" z

let p:float = 15.99
let q:float = 20.78
let r:float = p + q

printfn "p: %g" p
printfn "q: %g" q
printfn "r: %g" r

When you compile and execute the program, it shows the following error message −

x: 10
y: 20
z: 30
p: 15.99
q: 20.78
r: 36.77

Mutable Variables
At times you need to change the values stored in a variable. To specify that there could be a
change in the value of a declared and assigned variable, in later part of a program, F# provides
the mutable keyword. You can declare and assign mutable variables using this keyword, whose
values you will change.

The mutable keyword allows you to declare and assign values in a mutable variable.

You can assign some initial value to a mutable variable using the let keyword. However, to assign
new subsequent value to it, you need to use the ← operator.

For example,

let mutable x = 10
x ← 15

The following example will clear the concept −

Example

let mutable x = 10
let y = 20
let mutable z = x + y

printfn "Original Values:"
printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

printfn "Let us change the value of x"
printfn "Value of z will change too."

x <- 15
z <- x + y

printfn "New Values:"
printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it yields the following output −

Original Values:
x: 10
y: 20
z: 30
Let us change the value of x
Value of z will change too.
New Values:
x: 15
y: 20
z: 35

F# - OPERATORSF# - OPERATORS
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. F# is rich in built-in operators and provides the following types of operators −

Arithmetic Operators
Comparison Operators
Boolean Operators
Bitwise Operators

Arithmetic Operators
The following table shows all the arithmetic operators supported by F# language. Assume variable
A holds 10 and variable B holds 20 then −

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

** Exponentiation Operator, raises an operand to the power of
another

B**A will give 2010

Example

let a : int32 = 21
let b : int32 = 10

let mutable c = a + b
printfn "Line 1 - Value of c is %d" c

c <- a - b;
printfn "Line 2 - Value of c is %d" c

c <- a * b;
printfn "Line 3 - Value of c is %d" c

c <- a / b;
printfn "Line 4 - Value of c is %d" c

c <- a % b;
printfn "Line 5 - Value of c is %d" c

When you compile and execute the program, it yields the following output −

Line 1 - Value of c is 31
Line 2 - Value of c is 11
Line 3 - Value of c is 210
Line 4 - Value of c is 2
Line 5 - Value of c is 1

Comparison Operators
The following table shows all the comparison operators supported by F# language. These binary
comparison operators are available for integral and floating-point types. These operators return
values of type bool.

Assume variable A holds 10 and variable B holds 20, then −

Operator Description Example

= Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(A == B) is not true.

<> Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(A <> B) is true.

> Checks if the value of left operand is greater than the value
of right operand, if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the value of
right operand, if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes
true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal to (A <= B) is true.

the value of right operand, if yes then condition becomes
true.

Example

let mutable a : int32 = 21
let mutable b : int32 = 10

if (a = b) then
 printfn "Line 1 - a is equal to b"
else
 printfn "Line 1 - a is not equal to b"

if (a < b) then
 printfn "Line 2 - a is less than b"
else
 printfn "Line 2 - a is not less than b"

if (a > b) then
 printfn "Line 3 - a is greater than b"
else
 printfn "Line 3 - a is not greater than b"

(* Lets change value of a and b *)
a <- 5
b <- 20

if (a <= b) then
 printfn "Line 4 - a is either less than or equal to b"
else
 printfn "Line4 - a is a is greater than b"

When you compile and execute the program, it yields the following output −

Line 1 - a is not equal to b
Line 2 - a is not less than b
Line 3 - a is greater than b
Line 4 - a is either less than or equal to b

Boolean Operators
The following table shows all the Boolean operators supported by F# language. Assume variable A
holds true and variable B holds false, then −

Operator Description Example

&& Called Boolean AND operator. If both the operands are
non-zero, then condition becomes true.

(A && B) is false.

|| Called Boolean OR Operator. If any of the two operands is
non-zero, then condition becomes true.

(A || B) is true.

not Called Boolean NOT Operator. Use to reverses the logical
state of its operand. If a condition is true then Logical NOT
operator will make false.

not (A && B) is true.

Example

let mutable a : bool = true;
let mutable b : bool = true;

if (a && b) then

 printfn "Line 1 - Condition is true"
else
 printfn "Line 1 - Condition is not true"

if (a || b) then
 printfn "Line 2 - Condition is true"
else
 printfn "Line 2 - Condition is not true"

(* lets change the value of a *)

a <- false
if (a && b) then
 printfn "Line 3 - Condition is true"
else
 printfn "Line 3 - Condition is not true"

if (a || b) then
 printfn "Line 4 - Condition is true"
else
 printfn "Line 4 - Condition is not true"

When you compile and execute the program, it yields the following output −

Line 1 - Condition is true
Line 2 - Condition is true
Line 3 - Condition is not true
Line 4 - Condition is true

Bitwise Operators
Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &&& (bitwise
AND), ||| (bitwise OR), and ^^^ (bitwise exclusive OR) are as follows −

p q p &&& q p ||| q p ^^^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&&&B = 0000 1100

A|||B = 0011 1101

A^^^B = 0011 0001

~~~A = 1100 0011

The Bitwise operators supported by F# language are listed in the following table. Assume variable
A holds 60 and variable B holds 13, then −

Operator Description Example



&&& Binary AND Operator copies a bit to the result if it
exists in both operands.

(A &&& B) will give 12, which
is 0000 1100

||| Binary OR Operator copies a bit if it exists in either
operand.

(A ||| B) will give 61, which is
0011 1101

^^^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

(A ^^^ B) will give 49,
which is 0011 0001

~~~ Binary Ones Complement Operator is unary and has
the effect of 'flipping' bits.

(~~~A) will give -61, which
is 1100 0011 in 2's
complement form.

<<< Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the
right operand.

A <<< 2 will give 240 which
is 1111 0000

>>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by the
right operand.

A >>> 2 will give 15 which
is 0000 1111

Example

let a : int32 = 60 // 60 = 0011 1100
let b : int32 = 13 // 13 = 0000 1101
let mutable c : int32 = 0

c <- a &&& b // 12 = 0000 1100
printfn "Line 1 - Value of c is %d" c

c <- a ||| b // 61 = 0011 1101
printfn "Line 2 - Value of c is %d" c

c <- a ^^^ b // 49 = 0011 0001
printfn "Line 3 - Value of c is %d" c

c = ~~~a // -61 = 1100 0011
printfn "Line 4 - Value of c is %d" c

c <- a <<< 2 // 240 = 1111 0000
printfn "Line 5 - Value of c is %d" c

c <- a >>> 2 // 15 = 0000 1111
printfn "Line 6 - Value of c is %d" c

When you compile and execute the program, it yields the following output −

Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is 49
Line 5 - Value of c is 240
Line 6 - Value of c is 15

Operators Precedence
The following table shows the order of precedence of operators and other expression keywords in
the F# language, from lowest precedence to the highest precedence.

Operator Associativity

as Right

when Right

| (pipe) Left

; Right

let Non associative

function, fun, match, try Non associative

if Non associative

→ Right

:= Right

, Non associative

or, || Left

&, && Left

< op, >op, =, |op, &op Left

&&& , |||, ^^^, ~~~, <<<, >>> Left

^ op Right

:: Right

:?>, :? Non associative

- op, +op, (binary) Left

* op, /op, %op Left

** op Right

f x (function application) Left

| (pattern match) Right

prefix operators (+op, -op, %, %%, &, &&, !op, ~op) Left

. Left

f(x) Left

f<types> Left

Example

let a : int32 = 20
let b : int32 = 10
let c : int32 = 15
let d : int32 = 5

let mutable e : int32 = 0
e <- (a + b) * c / d // (30 * 15) / 5
printfn "Value of (a + b) * c / d is : %d" e

e <- ((a + b) * c) / d // (30 * 15) / 5
printfn "Value of ((a + b) * c) / d is : %d" e

e <- (a + b) * (c / d) // (30) * (15/5)
printfn "Value of (a + b) * (c / d) is : %d" e

e <- a + (b * c) / d // 20 + (150/5)
printfn "Value of a + (b * c) / d is : %d" e

When you compile and execute the program, it yields the following output −

Value of (a + b) * c / d is : 90
Value of ((a + b) * c) / d is : 90
Value of (a + b) * (c / d) is : 90
Value of a + (b * c) / d is : 50

F# - DECISION MAKINGF# - DECISION MAKING
Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program. It should be along with a statement or statements to be
executed if the condition is determined to be true, and optionally, other statements to be executed
if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages −

F# programming language provides the following types of decision making statements.

Statement Description

if /then statement An if/then statement consists of a Boolean expression followed
by one or more statements.

if/then/ else statement An if/then statement can be followed by an optional else
statement, which executes when the Boolean expression is
false.

if/then/elif/else statement An if/then/elif/else statement allows you to have multiple else
branches.

nested if statements You can use one if or else if statement inside another if or else
if statement(s).

F#-if/then Statement
An if/then statement consists of a Boolean expression followed by one or more statements.

Syntax
The if/then construct in F# has the following syntax −

(* simple if *)
if expr then
 expr

Flow diagram

Example

let a : int32 = 10

(* check the boolean condition using if statement *)
if (a < 20) then
 printfn "a is less than 20\n"
 printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output −

a is less than 20

Value of a is: 10

F#-if/then/else Statement
An if/then statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax
The syntax of an if/then/else statement in F# programming language is −

if expr then
 expr
else
 expr

Flow Diagram

Example

let a : int32 = 100

(* check the boolean condition using if statement *)

if (a < 20) then
 printfn "a is less than 20\n"
else
 printfn "a is not less than 20\n"
 printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output −

a is not less than 20

Value of a is: 100

F#-if/then/elif/else Statement
An if/then/elif/else construct has multiple else branches.

Syntax
The syntax of an if/then/elif/else statement in F# programming language is −

if expr then
 expr
elif expr then
 expr
elif expr then
 expr

...
else
 expr

Example

let a : int32 = 100

(* check the boolean condition using if statement *)

if (a = 10) then
 printfn "Value of a is 10\n"
elif (a = 20) then
 printfn " Value of a is 20\n"
elif (a = 30) then
 printfn " Value of a is 30\n"
else
 printfn " None of the values are matching\n"
 printfn "Value of a is: %d" a

When you compile and execute the program, it yields the following output −

None of the values are matching

Value of a is: 100

F#-Nested if Statements
It is always legal in F# programming to nest if/then or if/then/else statements, which means you
can use one if or else if statement inside another if or else if statement(s).

Syntax

if expr then
 expr
 if expr then
 expr
 else
 expr
else
 expr

Example

let a : int32 = 100
let b : int32 = 200

(* check the boolean condition using if statement *)

if (a = 100) then
(* if condition is true then check the following *)

 if (b = 200) then
 printfn "Value of a is 100 and b is 200\n"
printfn "Exact value of a is: %d" a
printfn "Exact value of b is: %d" b

When you compile and execute the program, it yields the following output −

Value of a is 100 and b is 200

Exact value of a is: 100
Exact value of b is: 200

F# - LOOPSF# - LOOPS
Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages −

F# provides the following types of loops to handle the looping requirements.

Loop Type Description

for… to and for… downto expressions The for...to expression is used to iterate in a loop
over a range of values of a loop variable. The for…
downto expression reduces the value of loop
variable.

for … in expression This form of for loop is used to iterate over
collections of items i.e., loops over collections and
sequences

While…do loop Repeats a statement or group of statements while a
given condition is true. It tests the condition before
executing the loop body.

nested loops You can use one or more loop inside any other for
or while loop.

F#-for...to and for...downto Expressions
A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

Syntax

The syntax of a for…to loop in F# programming language is −

for var = start-expr to end-expr do
 ... // loop body

The syntax of a for…downto loop in F# programming language is −

for var = start-expr downto end-expr do
 ... // loop body

Example 1
The following program prints out the numbers 1 - 20 −

let main() =
 for i = 1 to 20 do
 printfn "i: %i" i
main()

When you compile and execute the program, it yields the following output −

i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9
i: 10
i: 11
i: 12
i: 13
i: 14
i: 15
i: 16
i: 17
i: 18
i: 19
i: 20

Example 2
The following program counts in reverse and prints out the numbers 20 - 1 −

let main() =
 for i = 20 downto 1 do
 printfn "i: %i" i
main()

When you compile and execute the program, it yields the following output −

i: 20
i: 19
i: 18
i: 17
i: 16
i: 15
i: 14
i: 13
i: 12
i: 11
i: 10

i: 9
i: 8
i: 7
i: 6
i: 5
i: 4
i: 3
i: 2
i: 1

F#-for...in Expressions
This looping construct is used to iterate over the matches of a pattern in an enumerable collection
such as a range expression, sequence, list, array, or other construct that supports enumeration.

Syntax

for pattern in enumerable-expression do
 body-expression

Example
The following program illustrates the concept −

// Looping over a list.
let list1 = [10; 25; 34; 45; 78]
for i in list1 do
 printfn "%d" i

// Looping over a sequence.
let seq1 = seq { for i in 1 .. 10 -> (i, i*i) }
for (a, asqr) in seq1 do
 printfn "%d squared is %d" a asqr

When you compile and execute the program, it yields the following output −

10
25
34
45
78
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100

F#-While…do Expressions
The while...do expression is used to perform iterative execution while a specified test condition is
true.

Syntax

while test-expression do
 body-expression

The test-expression is evaluated first; if it is true, the body-expression is executed and the test
expression is evaluated again. The body-expression must have type unit, i.e., it should not return

any value. If the test expression is false, the iteration ends.

Example

let mutable a = 10
while (a < 20) do
 printfn "value of a: %d" a
 a <- a + 1

When you compile and execute the program, it yields the following output −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

F#-Nested Loops
F# programming language allows to use one loop inside another loop.

Syntax
The syntax for a nested for loop statement could be as follows −

for var1 = start-expr1 to end-expr1 do
 for var2 = start-expr2 to end-expr2 do
 ... // loop body

The syntax for a nested while loop statement could be as follows −

while test-expression1 do
 while test-expression2 do
 body-expression

Example

let main() =
 for i = 1 to 5 do
 printf "\n"
 for j = 1 to 3 do
 printf "*"
main()

When you compile and execute the program, it yields the following output −

F# - FUNCTIONSF# - FUNCTIONS
In F#, functions work like data types. You can declare and use a function in the same way like any
other variable.

Since functions can be used like any other variables, you can −

Create a function, with a name and associate that name with a type.
Assign it a value.
Perform some calculation on that value.
Pass it as a parameter to another function or sub-routine.
Return a function as the result of another function.

Defining a Function
Functions are defined by using the let keyword. A function definition has the following syntax −

let [inline] function-name parameter-list [: return-type]
= function-body

Where,

function-name is an identifier that represents the function.

parameter-list gives the list of parameters separated by spaces. You can also specify an
explicit type for each parameter and if not specified compiler tends to deduce it from the
function body (like variables).

function-body consists of an expression, or a compound expression consisting of a number
of expressions. The final expression in the function body is the return value.

return-type is a colon followed by a type and is optional. If the return type is not specified,
then the compiler determines it from the final expression in the function body.

Parameters of a Function
You list the names of parameters right after the function name. You can specify the type of a
parameter. The type of the parameter should follow the name of the parameter separated by a
colon.

If no parameter type is specified, it is inferred by the compiler.

For example −

let doubleIt (x : int) = 2 * x

Calling a Function
A function is called by specifying the function name followed by a space and then any arguments
separated by spaces.

For example −

let vol = cylinderVolume 3.0 5.0

The following programs illustrate the concepts.

Example 1
The following program calculates the volume of a cylinder when the radius and length are given as
parameters.

// the function calculates the volume of
// a cylinder with radius and length as parameters

let cylinderVolume radius length : float =

 // function body

 let pi = 3.14159
 length * pi * radius * radius

let vol = cylinderVolume 3.0 5.0
printfn " Volume: %g " vol

When you compile and execute the program, it yields the following output −

Volume: 141.372

Example 2
The following program returns the larger value of two given parameters −

// the function returns the larger value between two
// arguments

let max num1 num2 : int32 =
 // function body
 if(num1>num2)then
 num1
 else
 num2

let res = max 39 52
printfn " Max Value: %d " res

When you compile and execute the program, it yields the following output −

Max Value: 52

Example 3

let doubleIt (x : int) = 2 * x
printfn "Double 19: %d" (doubleIt(19))

When you compile and execute the program, it yields the following output −

Double 19: 38

Recursive Functions
Recursive functions are functions that call themselves.

You define a recursive using the let rec keyword combination.

Syntax for defining a recursive function is −

//Recursive function definition
let rec function-name parameter-list = recursive-function-body

For example −

let rec fib n = if n < 2 then 1 else fib (n - 1) + fib (n - 2)

Example 1
The following program returns Fibonacci 1 to 10 −

let rec fib n = if n < 2 then 1 else fib (n - 1) + fib (n - 2)
for i = 1 to 10 do
 printfn "Fibonacci %d: %d" i (fib i)

When you compile and execute the program, it yields the following output −

Fibonacci 1: 1
Fibonacci 2: 2
Fibonacci 3: 3
Fibonacci 4: 5
Fibonacci 5: 8
Fibonacci 6: 13
Fibonacci 7: 21
Fibonacci 8: 34
Fibonacci 9: 55
Fibonacci 10: 89

Example 2
The following program returns factorial 8 −

open System
let rec fact x =
 if x < 1 then 1
 else x * fact (x - 1)
Console.WriteLine(fact 8)

When you compile and execute the program, it yields the following output −

40320

Arrow Notations in F#
F# reports about data type in functions and values, using a chained arrow notation. Let us take an
example of a function that takes one int input, and returns a string. In arrow notation, it is written
as −

int -> string

Data types are read from left to right.

Let us take another hypothetical function that takes two int data inputs and returns a string.

let mydivfunction x y = (x / y).ToString();;

F# reports the data type using chained arrow notation as −

val mydivfunction : x:int -> y:int -> string

The return type is represented by the rightmost data type in chained arrow notation.

Some more examples −

Notation Meaning

float → float → float The function takes two float inputs, returns another float.

int → string → float The function takes an int and a string input, returns a float.

Lambda Expressions
A lambda expression is an unnamed function.

Let us take an example of two functions −

let applyFunction (f: int -> int -> int) x y = f x y
let mul x y = x * y
let res = applyFunction mul 5 7
printfn "%d" res

When you compile and execute the program, it yields the following output −

35

Now in the above example, if instead of defining the function mul, we could have used lambda
expressions as −

let applyFunction (f: int -> int -> int) x y = f x y
let res = applyFunction (fun x y -> x * y) 5 7
printfn "%d" res

When you compile and execute the program, it yields the following output −

35

Function Composition and Pipelining
In F#, one function can be composed from other functions.

The following example shows the composition of a function named f, from two functions function1
and function2 −

let function1 x = x + 1
let function2 x = x * 5

let f = function1 >> function2
let res = f 10
printfn "%d" res

When you compile and execute the program, it yields the following output −

55

F# also provides a feature called pipelining of functions. Pipelining allows function calls to be
chained together as successive operations.

The following example shows that −

let function1 x = x + 1
let function2 x = x * 5

let res = 10 |> function1 |> function2
printfn "%d" res

When you compile and execute the program, it yields the following output −

55

F# - STRINGSF# - STRINGS
In F#, the string type represents immutable text as a sequence of Unicode characters.

String Literals
String literals are delimited by the quotation mark (") character.

Some special characters are there for special uses like newline, tab, etc. They are encoded using

backslash (\) character. The backslash character and the related character make the escape
sequence. The following table shows the escape sequence supported by F#.

Character Escape sequence

Backspace \b

Newline \n

Carriage return \r

Tab \t

Backslash \\

Quotation mark \"

Apostrophe \'

Unicode character \uXXXX or \UXXXXXXXX (where X indicates a hexadecimal digit)

Ways of lgnoring the Escape Sequence
The following two ways makes the compiler ignore the escape sequence −

Using the @ symbol.
Enclosing the string in triple quotes.

When a string literal is preceded by the @ symbol, it is called a verbatim string. In that way, all
escape sequences in the string are ignored, except that two quotation mark characters are
interpreted as one quotation mark character.

When a string is enclosed by triple quotes, then also all escape sequences are ignored, including
double quotation mark characters.

Example
The following example demonstrates this technique showing how to work with XML or other
structures that include embedded quotation marks −

// Using a verbatim string
let xmldata = @"<book author=""Lewis, C.S"" title=""Narnia"">"
printfn "%s" xmldata

When you compile and execute the program, it yields the following output −

<book author="Lewis, C.S" title="Narnia">

Basic Operators on Strings
The following table shows the basic operations on strings −

Value Description

collect : (char → string) → string → string Creates a new string whose characters are the
results of applying a specified function to each
of the characters of the input string and
concatenating the resulting strings.

concat : string → seq<string> → string Returns a new string made by concatenating
the given strings with a separator.

exists : (char → bool) → string → bool Tests if any character of the string satisfies the
given predicate.

forall : (char → bool) → string → bool Tests if all characters in the string satisfy the
given predicate.

init : int → (int → string) → string Creates a new string whose characters are the
results of applying a specified function to each
index and concatenating the resulting strings.

iter : (char → unit) → string → unit Applies a specified function to each character
in the string.

iteri : (int → char → unit) → string → unit Applies a specified function to the index of each
character in the string and the character itself.

length : string → int Returns the length of the string.

map : (char → char) → string → string Creates a new string whose characters are the
results of applying a specified function to each
of the characters of the input string.

mapi : (int → char → char) → string → string Creates a new string whose characters are the
results of applying a specified function to each
character and index of the input string.

replicate : int → string → string Returns a string by concatenating a specified
number of instances of a string.

The following examples demonstrate the uses of some of the above functionalities −

Example 1
The String.collect function builds a new string whose characters are the results of applying a
specified function to each of the characters of the input string and concatenating the resulting
strings.

let collectTesting inputS =
 String.collect (fun c -> sprintf "%c " c) inputS
printfn "%s" (collectTesting "Happy New Year!")

When you compile and execute the program, it yields the following output −

H a p p y N e w Y e a r !

Example 2
The String.concat function concatenates a given sequence of strings with a separator and returns
a new string.

let strings = ["Tutorials Point"; "Coding Ground"; "Absolute Classes"]
let ourProducts = String.concat "\n" strings
printfn "%s" ourProducts

When you compile and execute the program, it yields the following output −

Tutorials Point
Coding Ground
Absolute Classes

Example 3

The String.replicate method returns a string by concatenating a specified number of instances of a
string.

printfn "%s" <| String.replicate 10 "*! "

When you compile and execute the program, it yields the following output −

*! *! *! *! *! *! *! *! *! *!

F# - OPTIONSF# - OPTIONS
The option type in F# is used in calculations when there may or may not exist a value for a
variable or function. Option types are used for representing optional values in calculations. They
can have two possible values − Some(x) or None.

For example, a function performing a division will return a value in normal situation, but will throw
exceptions in case of a zero denominator. Using options here will help to indicate whether the
function has succeeded or failed.

An option has an underlying type and can hold a value of that type, or it might not have a value.

Using Options
Let us take the example of division function. The following program explains this −

Let us write a function div, and send two arguments to it 20 and 5 −

let div x y = x / y
let res = div 20 5
printfn "Result: %d" res

When you compile and execute the program, it yields the following output −

Result: 4

If the second argument is zero, then the program throws an exception −

let div x y = x / y
let res = div 20 0
printfn "Result: %d" res

When you compile and execute the program, it yields the following output −

Unhandled Exception:
System.DivideByZeroException: Division by zero

In such cases, we can use option types to return Some (value) when the operation is successful or
None if the operation fails.

The following example demonstrates the use of options −

Example

let div x y =
 match y with
 | 0 -> None
 | _ -> Some(x/y)

let res : int option = div 20 4
printfn "Result: %A " res

When you compile and execute the program, it yields the following output −

Result: Some 5

Option Properties and Methods
The option type supports the following properties and methods −

Property or method Type Description

None 'T option A static property that enables you to create an
option value that has the None value.

IsNone bool Returns true if the option has the None value.

IsSome bool Returns true if the option has a value that is not
None.

Some 'T option A static member that creates an option that has a
value that is not None.

Value 'T Returns the underlying value, or throws a
NullReferenceException if the value is None.

Example 1

let checkPositive (a : int) =
 if a > 0 then
 Some(a)
 else
 None

let res : int option = checkPositive(-31)
printfn "Result: %A " res

When you compile and execute the program, it yields the following output −

Result: <null>

Example 2

let div x y =
 match y with
 | 0 -> None
 | _ -> Some(x/y)

let res : int option = div 20 4
printfn "Result: %A " res
printfn "Result: %A " res.Value

When you compile and execute the program, it yields the following output −

Result: Some 5
Result: 5

Example 3

let isHundred = function
 | Some(100) -> true
 | Some(_) | None -> false

printfn "%A" (isHundred (Some(45)))
printfn "%A" (isHundred (Some(100)))

printfn "%A" (isHundred None)

When you compile and execute the program, it yields the following output −

false
true
false

F# - TUPLESF# - TUPLES
A tuple is a comma-separated collection of values. These are used for creating ad hoc data
structures, which group together related values.

For example, (“Zara Ali”, “Hyderabad”, 10) is a 3-tuple with two string values and an int value, it
has the type (string * string * int).

Tuples could be pairs, triples, and so on, of the same or different types.

Some examples are provided here −

// Tuple of two integers.
(4, 5)

// Triple of strings.
("one", "two", "three")

// Tuple of unknown types.
(a, b)

// Tuple that has mixed types.
("Absolute Classes", 1, 2.0)

// Tuple of integer expressions.
(a * 4, b + 7)

Example
This program has a function that takes a tuple of four float values and returns the average −

let averageFour (a, b, c, d) =
 let sum = a + b + c + d
 sum / 4.0

let avg:float = averageFour (4.0, 5.1, 8.0, 12.0)
printfn "Avg of four numbers: %f" avg

When you compile and execute the program, it yields the following output −

Avg of four numbers: 7.275000

Accessing Individual Tuple Members
The individual members of a tuple could be assessed and printed using pattern matching.

The following example illustrates the concept −

Example

let display tuple1 =
 match tuple1 with
 | (a, b, c) -> printfn "Detail Info: %A %A %A" a b c

display ("Zara Ali", "Hyderabad", 10)

When you compile and execute the program, it yields the following output −

Detail Info: "Zara Ali" "Hyderabad" 10

F# has two built-in functions, fst and snd, which return the first and second items in a 2-tuple.

The following example illustrates the concept −

Example

printfn "First member: %A" (fst(23, 30))
printfn "Second member: %A" (snd(23, 30))

printfn "First member: %A" (fst("Hello", "World!"))
printfn "Second member: %A" (snd("Hello", "World!"))

let nameTuple = ("Zara", "Ali")

printfn "First Name: %A" (fst nameTuple)
printfn "Second Name: %A" (snd nameTuple)

When you compile and execute the program, it yields the following output −

First member: 23
Second member: 30
First member: "Hello"
Second member: "World!"
First Name: "Zara"
Second Name: "Ali"

F# - RECORDSF# - RECORDS
A record is similar to a tuple, however it contains named fields. For example,

type website =
 { title : string;
 url : string }

Defining Record
A record is defined as a type using the type keyword, and the fields of the record are defined as a
semicolon-separated list.

Syntax for defining a record is −

type recordName =
 { [fieldName : dataType] + }

Creating a Record
You can create a record by specifying the record's fields. For example, let us create a website
record named homepage −

let homepage = { Title = "TutorialsPoint"; Url = "www.tutorialspoint.com" }

The following examples will explain the concepts −

Example 1
This program defines a record type named website. Then it creates some records of type website
and prints the records.

(* defining a record type named website *)

type website =
 { Title : string;
 Url : string }

(* creating some records *)
let homepage = { Title = "TutorialsPoint"; Url = "www.tutorialspoint.com" }
let cpage = { Title = "Learn C"; Url = "www.tutorialspoint.com/cprogramming/index.htm" }
let fsharppage = { Title = "Learn F#"; Url = "www.tutorialspoint.com/fsharp/index.htm" }
let csharppage = { Title = "Learn C#"; Url = "www.tutorialspoint.com/csharp/index.htm" }

(*printing records *)
(printfn "Home Page: Title: %A \n \t URL: %A") homepage.Title homepage.Url
(printfn "C Page: Title: %A \n \t URL: %A") cpage.Title cpage.Url
(printfn "F# Page: Title: %A \n \t URL: %A") fsharppage.Title fsharppage.Url
(printfn "C# Page: Title: %A \n \t URL: %A") csharppage.Title csharppage.Url

When you compile and execute the program, it yields the following output −

Home Page: Title: "TutorialsPoint"
 URL: "www.tutorialspoint.com"
C Page: Title: "Learn C"
 URL: "www.tutorialspoint.com/cprogramming/index.htm"
F# Page: Title: "Learn F#"
 URL: "www.tutorialspoint.com/fsharp/index.htm"
C# Page: Title: "Learn C#"
 URL: "www.tutorialspoint.com/csharp/index.htm"

Example 2

type student =
 { Name : string;
 ID : int;
 RegistrationText : string;
 IsRegistered : bool }

let getStudent name id =
 { Name = name; ID = id; RegistrationText = null; IsRegistered = false }

let registerStudent st =
 { st with
 RegistrationText = "Registered";
 IsRegistered = true }

let printStudent msg st =
 printfn "%s: %A" msg st

let main() =
 let preRegisteredStudent = getStudent "Zara" 10
 let postRegisteredStudent = registerStudent preRegisteredStudent

 printStudent "Before Registration: " preRegisteredStudent
 printStudent "After Registration: " postRegisteredStudent

main()

When you compile and execute the program, it yields the following output −

Before Registration: : {Name = "Zara";
 ID = 10;
 RegistrationText = null;
 IsRegistered = false;}
After Registration: : {Name = "Zara";
 ID = 10;
 RegistrationText = "Registered";
 IsRegistered = true;}

F# - LISTSF# - LISTS
In F#, a list is an ordered, immutable series of elements of the same type. It is to some extent
equivalent to a linked list data structure.

The F# module, Microsoft.FSharp.Collections.List, has the common operations on lists.
However F# imports this module automatically and makes it accessible to every F# application.

Creating and Initializing a List
Following are the various ways of creating lists −

Using list literals.

Using cons (::) operator.

Using the List.init method of List module.

Using some syntactic constructs called List Comprehensions.

List Literals
In this method, you just specify a semicolon-delimited sequence of values in square brackets. For
example:

let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

The cons (::) Operator
With this method, you can add some values by prepending or cons-ing it to an existing list using
the :: operator. For example −

let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

[] denotes an empty list.

List init Method
The List.init method of the List module is often used for creating lists. This method has the type −

val init : int -> (int -> 'T) -> 'T list

The first argument is the desired length of the new list, and the second argument is an initializer
function, which generates items in the list.

For example,

let list5 = List.init 5 (fun index -> (index, index * index, index * index * index))

Here, the index function generates the list.

List Comprehensions
List comprehensions are special syntactic constructs used for generating lists.

F# list comprehension syntax comes in two forms − ranges and generators.

Ranges have the constructs − [start .. end] and [start .. step .. end]

For example,

let list3 = [1 .. 10]

Generators have the construct − [for x in collection do ... yield expr]

For example,

let list6 = [for a in 1 .. 10 do yield (a * a)]

As the yield keyword pushes a single value into a list, the keyword, yield!, pushes a collection of
values into the list.

The following function demonstrates the above methods −

Example

(* using list literals *)
let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
printfn "The list: %A" list1

(*using cons operator *)
let list2 = 1 :: 2 :: 3 :: []
printfn "The list: %A" list2

(* using range constructs*)
let list3 = [1 .. 10]
printfn "The list: %A" list3

(* using range constructs *)
let list4 = ['a' .. 'm']
printfn "The list: %A" list4

(* using init method *)
let list5 = List.init 5 (fun index -> (index, index * index, index * index * index))
printfn "The list: %A" list5

(* using yield operator *)
let list6 = [for a in 1 .. 10 do yield (a * a)]
printfn "The list: %A" list6

(* using yield operator *)
let list7 = [for a in 1 .. 100 do if a % 3 = 0 && a % 5 = 0 then yield a]
printfn "The list: %A" list7

(* using yield! operator *)
let list8 = [for a in 1 .. 3 do yield! [a .. a + 3]]
printfn "The list: %A" list8

When you compile and execute the program, it yields the following output −

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The list: [1; 2; 3]
The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The list: ['a'; 'b'; 'c'; 'd'; 'e'; 'f'; 'g'; 'h'; 'i'; 'j'; 'k'; 'l'; 'm']
The list: [(0, 0, 0); (1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64)]
The list: [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]
The list: [15; 30; 45; 60; 75; 90]
The list: [1; 2; 3; 4; 2; 3; 4; 5; 3; 4; 5; 6]

Properties of List Data Type
The following table shows various properties of list data type −

Property Type Description

Head 'T The first element.

Empty 'T list A static property that returns an empty list of the appropriate type.

IsEmpty bool true if the list has no elements.

Item 'T The element at the specified index (zero-based).

Length int The number of elements.

Tail 'T list The list without the first element.

The following example shows the use of these properties −

Example

let list1 = [2; 4; 6; 8; 10; 12; 14; 16]

// Use of Properties
printfn "list1.IsEmpty is %b" (list1.IsEmpty)
printfn "list1.Length is %d" (list1.Length)
printfn "list1.Head is %d" (list1.Head)
printfn "list1.Tail.Head is %d" (list1.Tail.Head)
printfn "list1.Tail.Tail.Head is %d" (list1.Tail.Tail.Head)
printfn "list1.Item(1) is %d" (list1.Item(1))

When you compile and execute the program, it yields the following output −

list1.IsEmpty is false
list1.Length is 8
list1.Head is 2
list1.Tail.Head is 4
list1.Tail.Tail.Head is 6
list1.Item(1) is 4

Basic Operators on List
The following table shows the basic operations on list data type −

Value Description

append : 'T list → 'T list → 'T list Returns a new list that contains the elements of
the first list followed by elements of the second.

average : 'T list → ^T Returns the average of the elements in the list.

averageBy : ('T → ^U) → 'T list → ^U Returns the average of the elements generated
by applying the function to each element of the
list.

choose : ('T → 'U option) → 'T list → 'U list Applies the given function to each element of
the list. Returns the list comprised of the results
for each element where the function returns
Some.

collect : ('T → 'U list) → 'T list → 'U list For each element of the list, applies the given
function. Concatenates all the results and return
the combined list.

concat : seq<'T list> → 'T list Returns a new list that contains the elements of
each the lists in order.

empty : 'T list Returns an empty list of the given type.

exists : ('T → bool) → 'T list → bool Tests if any element of the list satisfies the given
predicate.

exists2 : ('T1 → 'T2 → bool) → 'T1 list → 'T2 list
→ bool

Tests if any pair of corresponding elements of
the lists satisfies the given predicate.

filter : ('T → bool) → 'T list → 'T list Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

find : ('T → bool) → 'T list → 'T Returns the first element for which the given
function returns true.

findIndex : ('T → bool) → 'T list → int Returns the index of the first element in the list
that satisfies the given predicate.

fold : ('State → 'T → 'State) → 'State → 'T list →
'State

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function takes the
second argument, and applies the function to it
and the first element of the list. Then, it passes
this result into the function along with the second
element, and so on. Finally, it returns the final
result. If the input function is f and the elements
are i0...iN, then this function computes f (... (f s
i0) i1 ...) iN.

fold2 : ('State → 'T1 → 'T2 → 'State) → 'State
→ 'T1 list → 'T2 list → 'State

Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and
j0...jN, then this function computes f (... (f s i0
j0)...) iN jN.

foldBack : ('T → 'State → 'State) → 'T list →
'State → 'State

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function isf
and the elements are i0...iN then computes f i0
(...(f iN s)).

foldBack2 : ('T1 → 'T2 → 'State → 'State) →
'T1 list → 'T2 list → 'State → 'State

Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and
j0...jN, then this function computes f i0 j0 (...(f iN
jN s)).

forall : ('T → bool) → 'T list → bool Tests if all elements of the collection satisfy the
given predicate.

forall2 : ('T1 → 'T2 → bool) → 'T1 list → 'T2 list
→ bool

Tests if all corresponding elements of the
collection satisfy the given predicate pairwise.

head : 'T list → 'T Returns the first element of the list.

init : int → (int → 'T) → 'T list Creates a list by calling the given generator on
each index.

isEmpty : 'T list → bool Returns true if the list contains no elements,
false otherwise.

iter : ('T → unit) → 'T list → unit Applies the given function to each element of
the collection.

iter2 : ('T1 → 'T2 → unit) → 'T1 list → 'T2 list →
unit

Applies the given function to two collections
simultaneously. The collections must have
identical size.

iteri : (int → 'T → unit) → 'T list → unit Applies the given function to each element of
the collection. The integer passed to the function
indicates the index of element.

iteri2 : (int → 'T1 → 'T2 → unit) → 'T1 list → 'T2
list → unit

Applies the given function to two collections
simultaneously. The collections must have
identical size. The integer passed to the function
indicates the index of element.

length : 'T list → int Returns the length of the list.

map : ('T → 'U) → 'T list → 'U list Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection.

map2 : ('T1 → 'T2 → 'U) → 'T1 list → 'T2 list →
'U list

Creates a new collection whose elements are the
results of applying the given function to the
corresponding elements of the two collections
pairwise.

map3 : ('T1 → 'T2 → 'T3 → 'U) → 'T1 list → 'T2
list → 'T3 list → 'U list

Creates a new collection whose elements are the
results of applying the given function to the
corresponding elements of the three collections
simultaneously.

mapi : (int → 'T → 'U) → 'T list → 'U list Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The integer index
passed to the function indicates the index (from
0) of element being transformed.

mapi2 : (int → 'T1 → 'T2 → 'U) → 'T1 list → 'T2
list → 'U list

Like List.mapi, but mapping corresponding
elements from two lists of equal length.

max : 'T list → 'T Returns the greatest of all elements of the list,
compared by using Operators.max.

maxBy : ('T → 'U) → 'T list → 'T Returns the greatest of all elements of the list,
compared by using Operators.max on the
function result.

min : 'T list → 'T Returns the lowest of all elements of the list,
compared by using Operators.min.

minBy : ('T → 'U) → 'T list → 'T Returns the lowest of all elements of the list,
compared by using Operators.min on the
function result

nth : 'T list → int → 'T Indexes into the list. The first element has index
0.

ofArray : 'T [] → 'T list Creates a list from the given array.

ofSeq : seq<'T> → 'T list Creates a new list from the given enumerable
object.

partition : ('T → bool) → 'T list * 'T list Splits the collection into two collections,
containing the elements for which the given
predicate returns true and false respectively.

permute : (int → int) → 'T list → 'T list Returns a list with all elements permuted
according to the specified permutation.

pick : ('T → 'U option) → 'T list → 'U Applies the given function to successive
elements, returning the first result where
function returns Some for some value.

reduce : ('T → 'T → 'T) → 'T list → 'T Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function applies
the specified function to the first two elements of
the list. It then passes this result into the function
along with the third element, and so on. Finally, it
returns the final result. If the input function is f
and the elements are i0...iN, then this function
computes f (... (f i0 i1) i2 ...) iN.

reduceBack : ('T → 'T → 'T) → 'T list → 'T Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function isf
and the elements are i0...iN, then this function
computes f i0 (...(f iN-1 iN)).

replicate : (int → 'T → 'T list) Creates a list by calling the given generator on
each index.

rev : 'T list → 'T list Returns a new list with the elements in reverse
order.

scan : ('State → 'T → 'State) → 'State → 'T list
→ 'State list

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function takes the
second argument, and applies the specified
function to it and the first element of the list.
Then, it passes this result into the function along
with the second element and so on. Finally, it
returns the list of intermediate results and the
final result.

scanBack : ('T → 'State → 'State) → 'T list →
'State → 'State list

Like foldBack, but returns both the intermediate
and final results

sort : 'T list → 'T list Sorts the given list using Operators.compare.

sortBy : ('T → 'Key) → 'T list → 'T list Sorts the given list using keys given by the given
projection. Keys are compared using
Operators.compare.

sortWith : ('T → 'T → int) → 'T list → 'T list Sorts the given list using the given comparison
function.

sum : ^T list → ^T Returns the sum of the elements in the list.

sumBy : ('T → ^U) → 'T list → ^U Returns the sum of the results generated by
applying the function to each element of the list.

tail : 'T list → 'T list Returns the input list without the first element.

toArray : 'T list → 'T [] Creates an array from the given list.

toSeq : 'T list → seq<'T> Views the given list as a sequence.

tryFind : ('T → bool) → 'T list → 'T option Returns the first element for which the given
function returns true. Return None if no such
element exists.

tryFindIndex : ('T → bool) → 'T list → int option Returns the index of the first element in the list
that satisfies the given predicate. Return None if
no such element exists.

tryPick : ('T → 'U option) → 'T list → 'U option Applies the given function to successive
elements, returning the first result where
function returns Some for some value. If no such
element exists then return None.

unzip : ('T1 * 'T2) list → 'T1 list * 'T2 list Splits a list of pairs into two lists.

unzip3 : ('T1 * 'T2 * 'T3) list → 'T1 list * 'T2 list
* 'T3 list

Splits a list of triples into three lists.

zip : 'T1 list → 'T2 list → ('T1 * 'T2) list Combines the two lists into a list of pairs. The two
lists must have equal lengths.

zip3 : 'T1 list → 'T2 list → 'T3 list → ('T1 * 'T2 *
'T3) list

Combines the three lists into a list of triples. The
lists must have equal lengths.

The following examples demonstrate the uses of the above functionalities −

Example 1
This program shows reversing a list recursively −

let list1 = [2; 4; 6; 8; 10; 12; 14; 16]
printfn "The original list: %A" list1

let reverse lt =
 let rec loop acc = function
 | [] -> acc
 | hd :: tl -> loop (hd :: acc) tl
 loop [] lt

printfn "The reversed list: %A" (reverse list1)

When you compile and execute the program, it yields the following output −

The original list: [2; 4; 6; 8; 10; 12; 14; 16]
The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]

However, you can use the rev function of the module for the same purpose −

let list1 = [2; 4; 6; 8; 10; 12; 14; 16]
printfn "The original list: %A" list1
printfn "The reversed list: %A" (List.rev list1)

When you compile and execute the program, it yields the following output −

The original list: [2; 4; 6; 8; 10; 12; 14; 16]
The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]

Example 2
This program shows filtering a list using the List.filter method −

let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
printfn "The list: %A" list1
let list2 = list1 |> List.filter (fun x -> x % 2 = 0);;
printfn "The Filtered list: %A" list2

When you compile and execute the program, it yields the following output −

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The Filtered list: [2; 4; 6; 8; 10]

Example 3
The List.map method maps a list from one type to another −

let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
printfn "The list: %A" list1
let list2 = list1 |> List.map (fun x -> (x * x).ToString());;
printfn "The Mapped list: %A" list2

When you compile and execute the program, it yields the following output −

The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The Mapped list: ["1"; "4"; "9"; "16"; "25"; "36"; "49"; "64"; "81"; "100"]

Example 4
The List.append method and the @ operator appends one list to another −

let list1 = [1; 2; 3; 4; 5]
let list2 = [6; 7; 8; 9; 10]
let list3 = List.append list1 list2

printfn "The first list: %A" list1
printfn "The second list: %A" list2
printfn "The appened list: %A" list3

let lt1 = ['a'; 'b';'c']
let lt2 = ['e'; 'f';'g']
let lt3 = lt1 @ lt2

printfn "The first list: %A" lt1
printfn "The second list: %A" lt2
printfn "The appened list: %A" lt3

When you compile and execute the program, it yields the following output −

The first list: [1; 2; 3; 4; 5]
The second list: [6; 7; 8; 9; 10]
The appened list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The first list: ['a'; 'b'; 'c']
The second list: ['e'; 'f'; 'g']
The appened list: ['a'; 'b'; 'c'; 'e'; 'f'; 'g']

Example 5
The List.sort method sorts a list. The List.sum method gives the sum of elements in the list and
the List.average method gives the average of elements in the list −

let list1 = [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0]
printfn "The list: %A" list1

let list2 = List.sort list1
printfn "The sorted list: %A" list2

let s = List.sum list1
let avg = List.average list1
printfn "The sum: %f" s
printfn "The average: %f" avg

When you compile and execute the program, it yields the following output −

The list: [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0]
The sorted list: [-10.0; -4.5; 0.0; 2.0; 8.0; 9.0; 11.2]
The sum: 15.700000
The average: 2.242857

A "fold" operation applies a function to each element in a list, aggregates the result of the function

in an accumulator variable, and returns the accumulator as the result of the fold operation.

Example 6
The List.fold method applies a function to each element from left to right, while List.foldBack
applies a function to each element from right to left.

let sumList list = List.fold (fun acc elem -> acc + elem) 0 list
printfn "Sum of the elements of list %A is %d." [1 .. 10] (sumList [1 .. 10])

When you compile and execute the program, it yields the following output −

Sum of the elements of list [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] is 55.

F# - SEQUENCESF# - SEQUENCES
Sequences, like lists also represent an ordered collection of values. However, the elements in a
sequence or sequence expression are computed when required. They are not computed at once,
and for this reason they are used to represent infinite data structures.

Defining Sequences
Sequences are defined using the following syntax −

seq { expr }

For example,

let seq1 = seq { 1 .. 10 }

Creating Sequences and Sequences Expressions
Similar to lists, you can create sequences using ranges and comprehensions.

Sequence expressions are the expressions you can write for creating sequences. These can be
done −

By specifying the range.
By specifying the range with increment or decrement.
By using the yield keyword to produce values that become part of the sequence.
By using the → operator.

The following examples demonstrate the concept −

Example 1

(* Sequences *)
let seq1 = seq { 1 .. 10 }

(* ascending order and increment*)
printfn "The Sequence: %A" seq1
let seq2 = seq { 1 .. 5 .. 50 }

(* descending order and decrement*)
printfn "The Sequence: %A" seq2
let seq3 = seq {50 .. -5 .. 0}
printfn "The Sequence: %A" seq3

(* using yield *)
let seq4 = seq { for a in 1 .. 10 do yield a, a*a, a*a*a }
printfn "The Sequence: %A" seq4

When you compile and execute the program, it yields the following output −

The Sequence: seq [1; 2; 3; 4; ...]
The Sequence: seq [1; 6; 11; 16; ...]
The Sequence: seq [50; 45; 40; 35; ...]
The Sequence: seq [(1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64); ...]

Example 2
The following program prints the prime numbers from 1 to 50 −

(* Recursive isprime function. *)
let isprime n =
 let rec check i =
 i > n/2 || (n % i <> 0 && check (i + 1))
 check 2

let primeIn50 = seq { for n in 1..50 do if isprime n then yield n }
for x in primeIn50 do
 printfn "%d" x

When you compile and execute the program, it yields the following output −

1
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

Basic Operations on Sequence
The following table shows the basic operations on sequence data type −

Value Description

append : seq<'T> → seq<'T> → seq<'T> Wraps the two given enumerations as a single
concatenated enumeration.

average : seq<^T> → ^T Returns the average of the elements in the
sequence.

averageBy : ('T → ^U) → seq<'T> → ^U Returns the average of the results generated by
applying the function to each element of the
sequence.

cache : seq<'T> → seq<'T> Returns a sequence that corresponds to a
cached version of the input sequence.

cast : IEnumerable → seq<'T> Wraps a loosely-typed System. Collections
sequence as a typed sequence.

choose : ('T → 'U option) → seq<'T> →
seq<'U>

Applies the given function to each element of
the list. Return the list comprised of the results

for each element where the function returns
Some.

collect : ('T → 'Collection) → seq<'T> →
seq<'U>

Applies the given function to each element of
the sequence and concatenates all the results.

compareWith : ('T → 'T → int) → seq<'T> →
seq<'T> → int

Compares two sequences using the given
comparison function, element by element.

concat : seq<'Collection> → seq<'T> Combines the given enumeration-of-
enumerations as a single concatenated
enumeration.

countBy : ('T → 'Key) → seq<'T> → seq<'Key
* int>

Applies a key-generating function to each
element of a sequence and return a sequence
yielding unique keys and their number of
occurrences in the original sequence.

delay : (unit → seq<'T>) → seq<'T> Returns a sequence that is built from the given
delayed specification of a sequence.

distinct : seq<'T> → seq<'T> Returns a sequence that contains no duplicate
entries according to generic hash and equality
comparisons on the entries. If an element occurs
multiple times in the sequence then the later
occurrences are discarded.

distinctBy : ('T → 'Key) → seq<'T> → seq<'T> Returns a sequence that contains no duplicate
entries according to the generic hash and
equality comparisons on the keys returned by
the given key-generating function. If an element
occurs multiple times in the sequence then the
later occurrences are discarded.

empty : seq<'T> Creates an empty sequence.

exactlyOne : seq<'T> → 'T Returns the only element of the sequence.

exists : ('T → bool) → seq<'T> → bool Tests if any element of the sequence satisfies
the given predicate.

exists2 : ('T1 → 'T2 → bool) → seq<'T1> →
seq<'T2> → bool

Tests if any pair of corresponding elements of
the input sequences satisfies the given
predicate.

filter : ('T → bool) → seq<'T> → seq<'T> Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

find : ('T → bool) → seq<'T> → 'T Returns the first element for which the given
function returns true.

findIndex : ('T → bool) → seq<'T> → int Returns the index of the first element for which
the given function returns true.

fold : ('State → 'T → 'State) → 'State →
seq<'T> → 'State

Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function is f
and the elements are i0...iN, then this function
computes f (... (f s i0)...) iN.

forall : ('T → bool) → seq<'T> → bool Tests if all elements of the sequence satisfy the
given predicate.

forall2 : ('T1 → 'T2 → bool) → seq<'T1> →
seq<'T2> → bool

Tests the all pairs of elements drawn from the
two sequences satisfy the given predicate. If one
sequence is shorter than the other then the

remaining elements of the longer sequence are
ignored.

groupBy : ('T → 'Key) → seq<'T> → seq<'Key
* seq<'T>>

Applies a key-generating function to each
element of a sequence and yields a sequence of
unique keys. Each unique key has also contains
a sequence of all elements that match to this
key.

head : seq<'T> → 'T Returns the first element of the sequence.

init : int → (int → 'T) → seq<'T> Generates a new sequence which, when iterated,
returns successive elements by calling the given
function, up to the given count. The results of
calling the function are not saved, that is, the
function is reapplied as necessary to regenerate
the elements. The function is passed the index of
the item being generated.

initInfinite : (int → 'T) → seq<'T> Generates a new sequence which, when iterated,
will return successive elements by calling the
given function. The results of calling the function
are not saved, that is, the function will be
reapplied as necessary to regenerate the
elements. The function is passed the index of the
item being generated.

isEmpty : seq<'T> → bool Tests whether a sequence has any elements.

iter : ('T → unit) → seq<'T> → unit Applies the given function to each element of
the collection.

iter2 : ('T1 → 'T2 → unit) → seq<'T1> →
seq<'T2> → unit

Applies the given function to two collections
simultaneously. If one sequence is shorter than
the other then the remaining elements of the
longer sequence are ignored.

iteri : (int → 'T → unit) → seq<'T> → unit Applies the given function to each element of
the collection. The integer passed to the function
indicates the index of element.

last : seq<'T> → 'T Returns the last element of the sequence.

length : seq<'T> → int Returns the length of the sequence.

map : ('T → 'U) → seq<'T> → seq<'U> Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The given
function will be applied as elements are
demanded using the MoveNext method on
enumerators retrieved from the object.

map2 : ('T1 → 'T2 → 'U) → seq<'T1> →
seq<'T2> → seq<'U>

Creates a new collection whose elements are the
results of applying the given function to the
corresponding pairs of elements from the two
sequences. If one input sequence is shorter than
the other then the remaining elements of the
longer sequence are ignored.

mapi : (int → 'T → 'U) → seq<'T> → seq<'U> Creates a new collection whose elements are the
results of applying the given function to each of
the elements of the collection. The integer index
passed to the function indicates the index (from
0) of element being transformed.

max : seq<'T> → 'T Returns the greatest of all elements of the
sequence, compared by using Operators.max.

maxBy : ('T → 'U) → seq<'T> → 'T Returns the greatest of all elements of the
sequence, compared by using Operators.max on
the function result.

min : seq<'T> → 'T Returns the lowest of all elements of the
sequence, compared by using Operators.min.

minBy : ('T → 'U) → seq<'T> → 'T Returns the lowest of all elements of the
sequence, compared by using Operators.min on
the function result.

nth : int → seq<'T> → 'T Computes the nth element in the collection.

ofArray : 'T array → seq<'T> Views the given array as a sequence.

ofList : 'T list → seq<'T> Views the given list as a sequence.

pairwise : seq<'T> → seq<'T * 'T> Returns a sequence of each element in the input
sequence and its predecessor, with the
exception of the first element which is only
returned as the predecessor of the second
element.

pick : ('T → 'U option) → seq<'T> → 'U Applies the given function to successive
elements, returning the first value where the
function returns a Some value.

readonly : seq<'T> → seq<'T> Creates a new sequence object that delegates to
the given sequence object. This ensures the
original sequence cannot be rediscovered and
mutated by a type cast. For example, if given an
array the returned sequence will return the
elements of the array, but you cannot cast the
returned sequence object to an array.

reduce : ('T → 'T → 'T) → seq<'T> → 'T Applies a function to each element of the
sequence, threading an accumulator argument
through the computation. Begin by applying the
function to the first two elements. Then feed this
result into the function along with the third
element and so on. Return the final result.

scan : ('State → 'T → 'State) → 'State →
seq<'T> → seq<'State>

Like Seq.fold, but computes on-demand and
returns the sequence of intermediary and final
results.

singleton : 'T → seq<'T> Returns a sequence that yields one item only.

skip : int → seq<'T> → seq<'T> Returns a sequence that skips a specified
number of elements of the underlying sequence
and then yields the remaining elements of the
sequence.

skipWhile : ('T → bool) → seq<'T> → seq<'T> Returns a sequence that, when iterated, skips
elements of the underlying sequence while the
given predicate returns true, and then yields the
remaining elements of the sequence.

sort : seq<'T> → seq<'T> Yields a sequence ordered by keys.

sortBy : ('T → 'Key) → seq<'T> → seq<'T> Applies a key-generating function to each
element of a sequence and yield a sequence
ordered by keys. The keys are compared using
generic comparison as implemented by
Operators.compare.

sum : seq<^T> → ^T Returns the sum of the elements in the
sequence.

sumBy Returns the sum of the results generated by
applying the function to each element of the
sequence.

take : int → seq<'T> → seq<'T> Returns the first elements of the sequence up to
a specified count.

takeWhile : ('T → bool) → seq<'T> →
seq<'T>

Returns a sequence that, when iterated, yields
elements of the underlying sequence while the
given predicate returns true, and then returns
no further elements.

toArray : seq<'T> → 'T[] Creates an array from the given collection.

toList : seq<'T> → 'T list Creates a list from the given collection.

truncate : int → seq<'T> → seq<'T> Returns a sequence that when enumerated
returns no more than a specified number of
elements.

tryFind : ('T → bool) → seq<'T> → 'T option Returns the first element for which the given
function returns true, or None if no such
element exists.

tryFindIndex : ('T → bool) → seq<'T> → int
option

Returns the index of the first element in the
sequence that satisfies the given predicate, or
None if no such element exists.

tryPick : ('T → 'U option) → seq<'T> → 'U
option

Applies the given function to successive
elements, returning the first value where the
function returns a Some value.

unfold : ('State → 'T * 'State option) → 'State
→ seq<'T>

Returns a sequence that contains the elements
generated by the given computation.

where : ('T → bool) → seq<'T> → seq<'T> Returns a new collection containing only the
elements of the collection for which the given
predicate returns true. A synonym for Seq.filter.

windowed : int → seq<'T> → seq<'T []> Returns a sequence that yields sliding windows
of containing elements drawn from the input
sequence. Each window is returned as a fresh
array.

zip : seq<'T1> → seq<'T2> → seq<'T1 *
'T2>

Combines the two sequences into a list of pairs.
The two sequences need not have equal lengths
− when one sequence is exhausted any
remaining elements in the other sequence are
ignored.

zip3 : seq<'T1> → seq<'T2> → seq<'T3> →
seq<'T1 * 'T2 * 'T3>

Combines the three sequences into a list of
triples. The sequences need not have equal
lengths − when one sequence is exhausted any
remaining elements in the other sequences are
ignored.

The following examples demonstrate the uses of some of the above functionalities −

Example 1
This program creates an empty sequence and fills it up later −

(* Creating sequences *)
let emptySeq = Seq.empty
let seq1 = Seq.singleton 20

printfn"The singleton sequence:"
printfn "%A " seq1
printfn"The init sequence:"

let seq2 = Seq.init 5 (fun n -> n * 3)
Seq.iter (fun i -> printf "%d " i) seq2
printfn""

(* converting an array to sequence by using cast *)
printfn"The array sequence 1:"
let seq3 = [| 1 .. 10 |] :> seq<int>
Seq.iter (fun i -> printf "%d " i) seq3
printfn""

(* converting an array to sequence by using Seq.ofArray *)
printfn"The array sequence 2:"
let seq4 = [| 2..2.. 20 |] |> Seq.ofArray
Seq.iter (fun i -> printf "%d " i) seq4
printfn""

When you compile and execute the program, it yields the following output −

The singleton sequence:
seq [20]
The init sequence:
0 3 6 9 12
The array sequence 1:
1 2 3 4 5 6 7 8 9 10
The array sequence 2:
2 4 6 8 10 12 14 16 18 20

Please note that −

The Seq.empty method creates an empty sequence.

The Seq.singleton method creates a sequence of just one specified element.

The Seq.init method creates a sequence for which the elements are created by using a given
function.

The Seq.ofArray and Seq.ofList<'T> methods create sequences from arrays and lists.

The Seq.iter method allows iterating through a sequence.

Example 2
The Seq.unfold method generates a sequence from a computation function that takes a state and
transforms it to produce each subsequent element in the sequence.

The following function produces the first 20 natural numbers −

let seq1 = Seq.unfold (fun state -> if (state > 20) then None else Some(state, state + 1))
0
printfn "The sequence seq1 contains numbers from 0 to 20."
for x in seq1 do printf "%d " x
printfn" "

When you compile and execute the program, it yields the following output −

The sequence seq1 contains numbers from 0 to 20.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example 3
The Seq.truncate method creates a sequence from another sequence, but limits the sequence to a
specified number of elements.

The Seq.take method creates a new sequence that contains a specified number of elements from
the start of a sequence.

let mySeq = seq { for i in 1 .. 10 -> 3*i }
let truncatedSeq = Seq.truncate 5 mySeq
let takeSeq = Seq.take 5 mySeq

printfn"The original sequence"
Seq.iter (fun i -> printf "%d " i) mySeq
printfn""

printfn"The truncated sequence"
Seq.iter (fun i -> printf "%d " i) truncatedSeq
printfn""

printfn"The take sequence"
Seq.iter (fun i -> printf "%d " i) takeSeq
printfn""

When you compile and execute the program, it yields the following output −

The original sequence
3 6 9 12 15 18 21 24 27 30
The truncated sequence
3 6 9 12 15
The take sequence
3 6 9 12 15

F# - SETSF# - SETS
A set in F# is a data structure that acts as a collection of items without preserving the order in
which items are inserted. Sets do not allow duplicate entries to be inserted into the collection.

Creating Sets
Sets can be created in the following ways −

By creating an empty set using Set.empty and adding items using the add function.
Converting sequences and lists to sets.

The following program demonstrates the techniques −

(* creating sets *)
let set1 = Set.empty.Add(3).Add(5).Add(7). Add(9)
printfn"The new set: %A" set1

let weekdays = Set.ofList ["mon"; "tues"; "wed"; "thurs"; "fri"]
printfn "The list set: %A" weekdays

let set2 = Set.ofSeq [1 .. 2.. 10]
printfn "The sequence set: %A" set2

When you compile and execute the program, it yields the following output −

The new set: set [3; 5; 7; 9]
The list set: set ["fri"; "mon"; "thurs"; "tues"; "wed"]
The sequence set: set [1; 3; 5; 7; 9]

Basic Operations on Sets

The following table shows the basic operations on sets −

Value Description

add : 'T → Set<'T> → Set<'T> Returns a new set with an element added to the
set. No exception is raised if the set already
contains the given element.

contains : 'T → Set<'T> → bool Evaluates to true if the given element is in the
given set.

count : Set<'T> → int Returns the number of elements in the set.

difference : Set<'T> → Set<'T> → Set<'T> Returns a new set with the elements of the
second set removed from the first.

empty : Set<'T> The empty set for the specified type.

exists : ('T → bool) → Set<'T> → bool Tests if any element of the collection satisfies
the given predicate. If the input function is
predicate and the elements are i0...iN, then this
function computes predicate i0 or ... or predicate
iN.

filter : ('T → bool) → Set<'T> → Set<'T> Returns a new collection containing only the
elements of the collection for which the given
predicate returns true.

fold : ('State → 'T → 'State) → 'State →
Set<'T> → 'State

Applies the given accumulating function to all
the elements of the set.

foldBack : ('T → 'State → 'State) → Set<'T> →
'State → 'State

Applies the given accumulating function to all
the elements of the set.

forall : ('T → bool) → Set<'T> → bool Tests if all elements of the collection satisfy the
given predicate. If the input function is p and the
elements are i0...iN, then this function computes
p i0 && ... && p iN.

intersect : Set<'T> → Set<'T> → Set<'T> Computes the intersection of the two sets.

intersectMany : seq<Set<'T>> → Set<'T> Computes the intersection of a sequence of sets.
The sequence must be non-empty.

isEmpty : Set<'T> → bool Returns true if the set is empty.

isProperSubset : Set<'T> → Set<'T> → bool Evaluates to true if all elements of the first set
are in the second, and at least one element of
the second is not in the first.

isProperSuperset : Set<'T> → Set<'T> →
bool

Evaluates to true if all elements of the second
set are in the first, and at least one element of
the first is not in the second.

isSubset : Set<'T> → Set<'T> → bool Evaluates to true if all elements of the first set
are in the second.

isSuperset : Set<'T> → Set<'T> → bool Evaluates to true if all elements of the second
set are in the first.

iter : ('T → unit) → Set<'T> → unit Applies the given function to each element of
the set, in order according to the comparison
function.

map : ('T → 'U) → Set<'T> → Set<'U> Returns a new collection containing the results
of applying the given function to each element

of the input set.

maxElement : Set<'T> → 'T Returns the highest element in the set according
to the ordering being used for the set.

minElement : Set<'T> → 'T Returns the lowest element in the set according
to the ordering being used for the set.

ofArray : 'T array → Set<'T> Creates a set that contains the same elements
as the given array.

ofList : 'T list → Set<'T> Creates a set that contains the same elements
as the given list.

ofSeq : seq<'T> → Set<'T> Creates a new collection from the given
enumerable object.

partition : ('T → bool) → Set<'T> → Set<'T> *
Set<'T>

Splits the set into two sets containing the
elements for which the given predicate returns
true and false respectively.

remove : 'T → Set<'T> → Set<'T> Returns a new set with the given element
removed. No exception is raised if the set
doesn't contain the given element.

singleton : 'T → Set<'T> The set containing the given element.

toArray : Set<'T> → 'T array Creates an array that contains the elements of
the set in order.

toList : Set<'T> → 'T list Creates a list that contains the elements of the
set in order.

toSeq : Set<'T> → seq<'T> Returns an ordered view of the collection as an
enumerable object.

union : Set<'T> → Set<'T> → Set<'T> Computes the union of the two sets.

unionMany : seq<Set<'T>> → Set<'T> Computes the union of a sequence of sets.

The following example demonstrates the uses of some of the above functionalities −

Example

let a = Set.ofSeq [1 ..2.. 20]
let b = Set.ofSeq [1 ..3 .. 20]
let c = Set.intersect a b
let d = Set.union a b
let e = Set.difference a b

printfn "Set a: "
Set.iter (fun x -> printf "%O " x) a
printfn""

printfn "Set b: "
Set.iter (fun x -> printf "%O " x) b
printfn""

printfn "Set c = set intersect of a and b : "
Set.iter (fun x -> printf "%O " x) c
printfn""

printfn "Set d = set union of a and b : "
Set.iter (fun x -> printf "%O " x) d
printfn""

printfn "Set e = set difference of a and b : "
Set.iter (fun x -> printf "%O " x) e
printfn""

When you compile and execute the program, it yields the following output −

Set a:
1 3 5 7 9 11 13 15 17 19
Set b:
1 4 7 10 13 16 19
Set c = set intersect of a and b :
1 7 13 19
Set d = set union of a and b :
1 3 4 5 7 9 10 11 13 15 16 17 19
Set e = set difference of a and b :
3 5 9 11 15 17

F# - MAPSF# - MAPS
In F#, a map is a special kind of set that associates the values with key. A map is created in a
similar way as sets are created.

Creating Maps
Maps are created by creating an empty map using Map.empty and adding items using the Add
function. The following example demonstrates this −

Example

(* Create an empty Map *)
let students =
 Map.empty. (* Creating an empty Map *)
 Add("Zara Ali", "1501").
 Add("Rishita Gupta", "1502").
 Add("Robin Sahoo", "1503").
 Add("Gillian Megan", "1504");;
printfn "Map - students: %A" students

(* Convert a list to Map *)
let capitals =
 ["Argentina", "Buenos Aires";
 "France ", "Paris";
 "Chili", "Santiago";
 "Malaysia", " Kuala Lumpur";
 "Switzerland", "Bern"]
 |> Map.ofList;;
printfn "Map capitals : %A" capitals

When you compile and execute the program, it yields the following output −

Map - students: map
[("Gillian Megan", "1504"); ("Rishita Gupta", "1502"); ("Robin Sahoo", "1503
");
("Zara Ali", "1501")]
Map capitals : map
[("Argentina", "Buenos Aires"); ("Chili", "Santiago"); ("France ", "Paris");
("Malaysia", " Kuala Lumpur"); ("Switzerland", "Bern")]

You can access individual elements in the map using the key.

Example

(* Create an empty Map *)
let students =
 Map.empty. (* Creating an empty Map *)

 Add("Zara Ali", "1501").
 Add("Rishita Gupta", "1502").
 Add("Robin Sahoo", "1503").
 Add("Gillian Megan", "1504");;
printfn "Map - students: %A" students

(*Accessing an element using key *)
printfn "%A" students.["Zara Ali"]

When you compile and execute the program, it yields the following output −

Map - students: map
[("Gillian Megan", "1504"); ("Rishita Gupta", "1502"); ("Robin Sahoo", "1503
");
("Zara Ali", "1501")]
"1501"

Basic Operations on Maps

Add module name
The following table shows the basic operations on maps −

Member Description

Add Returns a new map with the binding added to the given map.

ContainsKey Tests if an element is in the domain of the map.

Count The number of bindings in the map.

IsEmpty Returns true if there are no bindings in the map.

Item Lookup an element in the map. Raises KeyNotFoundException if no binding exists
in the map.

Remove Removes an element from the domain of the map. No exception is raised if the
element is not present.

TryFind Lookup an element in the map, returning a Some value if the element is in the
domain of the map and None if not.

The following example demonstrates the uses of some of the above functionalities −

Example

(* Create an empty Map *)
let students =
 Map.empty. (* Creating an empty Map *)
 Add("Zara Ali", "1501").
 Add("Rishita Gupta", "1502").
 Add("Robin Sahoo", "1503").
 Add("Gillian Megan", "1504").
 Add("Shraddha Dubey", "1505").
 Add("Novonil Sarker", "1506").
 Add("Joan Paul", "1507");;
printfn "Map - students: %A" students
printfn "Map - number of students: %d" students.Count

(* finding the registration number of a student*)
let found = students.TryFind "Rishita Gupta"
match found with
| Some x -> printfn "Found %s." x
| None -> printfn "Did not find the specified value."

When you compile and execute the program, it yields the following output −

Map - students: map
[("Gillian Megan", "1504"); ("Joan Paul", "1507"); ("Novonil Sarker", "1506"
);
("Rishita Gupta", "1502"); ("Robin Sahoo", "1503");
("Shraddha Dubey", "1505"); ("Zara Ali", "1501")]
Map - number of students: 7
Found 1502.

F# - DISCRIMINATED UNIONSF# - DISCRIMINATED UNIONS
Unions, or discriminated unions allows you to build up complex data structures representing well-
defined set of choices. For example, you need to build an implementation of a choice variable,
which has two values yes and no. Using the Unions tool, you can design this.

Syntax
Discriminated unions are defined using the following syntax −

type type-name =
 | case-identifier1 [of [fieldname1 :] type1 [* [fieldname2 :]
type2 ...]
 | case-identifier2 [of [fieldname3 :]type3 [* [fieldname4 :]type4 ...]
...

Our simple implementation of ,choice, will look like the following −

type choice =
 | Yes
 | No

The following example uses the type choice −

type choice =
 | Yes
 | No

let x = Yes (* creates an instance of choice *)
let y = No (* creates another instance of choice *)
let main() =
 printfn "x: %A" x
 printfn "y: %A" y
main()

When you compile and execute the program, it yields the following output −

x: Yes
y: No

Example 1
The following example shows the implementation of the voltage states that sets a bit on high or
low −

type VoltageState =
 | High
 | Low

let toggleSwitch = function (* pattern matching input *)
 | High -> Low
 | Low -> High

let main() =
 let on = High
 let off = Low
 let change = toggleSwitch off

 printfn "Switch on state: %A" on
 printfn "Switch off state: %A" off
 printfn "Toggle off: %A" change
 printfn "Toggle the Changed state: %A" (toggleSwitch change)

main()

When you compile and execute the program, it yields the following output −

Switch on state: High
Switch off state: Low
Toggle off: High
Toggle the Changed state: Low

Example 2

type Shape =
 // here we store the radius of a circle
 | Circle of float

 // here we store the side length.
 | Square of float

 // here we store the height and width.
 | Rectangle of float * float

let pi = 3.141592654

let area myShape =
 match myShape with
 | Circle radius -> pi * radius * radius
 | Square s -> s * s
 | Rectangle (h, w) -> h * w

let radius = 12.0
let myCircle = Circle(radius)
printfn "Area of circle with radius %g: %g" radius (area myCircle)

let side = 15.0
let mySquare = Square(side)
printfn "Area of square that has side %g: %g" side (area mySquare)

let height, width = 5.0, 8.0
let myRectangle = Rectangle(height, width)
printfn "Area of rectangle with height %g and width %g is %g" height width (area
myRectangle)

When you compile and execute the program, it yields the following output −

Area of circle with radius 12: 452.389
Area of square that has side 15: 225
Area of rectangle with height 5 and width 8 is 40

F# - MUTABLE DATAF# - MUTABLE DATA
Variables in F# are immutable, which means once a variable is bound to a value, it can’t be
changed. They are actually compiled as static read-only properties.

The following example demonstrates this.

Example

let x = 10
let y = 20
let z = x + y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

let x = 15
let y = 20
let z = x + y

printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it shows the following error message −

Duplicate definition of value 'x'
Duplicate definition of value 'Y'
Duplicate definition of value 'Z'

Mutable Variables
At times you need to change the values stored in a variable. To specify that there could be a
change in the value of a declared and assigned variable in later part of a program, F# provides
the mutable keyword. You can declare and assign mutable variables using this keyword, whose
values you will change.

The mutable keyword allows you to declare and assign values in a mutable variable.

You can assign some initial value to a mutable variable using the let keyword. However, to assign
new subsequent value to it, you need to use the <- operator.

For example,

let mutable x = 10
x <- 15

The following example will clear the concept −

Example

let mutable x = 10
let y = 20
let mutable z = x + y

printfn "Original Values:"
printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

printfn "Let us change the value of x"
printfn "Value of z will change too."

x <- 15
z <- x + y

printfn "New Values:"
printfn "x: %i" x
printfn "y: %i" y
printfn "z: %i" z

When you compile and execute the program, it yields the following output −

Original Values:
x: 10
y: 20
z: 30
Let us change the value of x
Value of z will change too.
New Values:
x: 15
y: 20
z: 35

Uses of Mutable Data
Mutable data is often required and used in data processing, particularly with record data structure.
The following example demonstrates this −

open System

type studentData =
 { ID : int;
 mutable IsRegistered : bool;
 mutable RegisteredText : string; }

let getStudent id =
 { ID = id;
 IsRegistered = false;
 RegisteredText = null; }

let registerStudents (students : studentData list) =
 students |> List.iter(fun st ->
 st.IsRegistered <- true
 st.RegisteredText <- sprintf "Registered %s" (DateTime.Now.ToString("hh:mm:ss"))

 Threading.Thread.Sleep(1000) (* Putting thread to sleep for 1 second to simulate
processing overhead. *))

let printData (students : studentData list) =
 students |> List.iter (fun x -> printfn "%A" x)

let main() =
 let students = List.init 3 getStudent

 printfn "Before Process:"
 printData students

 printfn "After process:"
 registerStudents students
 printData students

 Console.ReadKey(true) |> ignore

main()

When you compile and execute the program, it yields the following output −

Before Process:
{ID = 0;
IsRegistered = false;
RegisteredText = null;}
{ID = 1;
IsRegistered = false;
RegisteredText = null;}
{ID = 2;
IsRegistered = false;
RegisteredText = null;}
After process:
{ID = 0;
IsRegistered = true;

RegisteredText = "Registered 05:39:15";}
{ID = 1;
IsRegistered = true;
RegisteredText = "Registered 05:39:16";}
{ID = 2;
IsRegistered = true;
RegisteredText = "Registered 05:39:17";}

F# - ARRAYSF# - ARRAYS
Arrays are fixed-size, zero-based, mutable collections of consecutive data elements that are all of
the same type.

Creating Arrays
You can create arrays using various syntaxes and ways or by using the functions from the Array
module. In this section, we will discuss creating arrays without using the module functions.

There are three syntactical ways of creating arrays without functions −

By listing consecutive values between [| and |] and separated by semicolons.
By putting each element on a separate line, in which case the semicolon separator is
optional.
By using sequence expressions.

You can access array elements by using a dot operator (.) and brackets ([and]).

The following example demonstrates creating arrays −

//using semicolon separator
let array1 = [| 1; 2; 3; 4; 5; 6 |]
for i in 0 .. array1.Length - 1 do
 printf "%d " array1.[i]
printfn" "

// without semicolon separator
let array2 =
 [|
 1
 2
 3
 4
 5
 |]
for i in 0 .. array2.Length - 1 do
 printf "%d " array2.[i]
printfn" "

//using sequence
let array3 = [| for i in 1 .. 10 -> i * i |]
for i in 0 .. array3.Length - 1 do
 printf "%d " array3.[i]
printfn" "

When you compile and execute the program, it yields the following output −

1 2 3 4 5 6
1 2 3 4 5
1 4 9 16 25 36 49 64 81 100

Basic Operations on Arrays
The library module Microsoft.FSharp.Collections.Array supports operations on one-dimensional
arrays.

The following table shows the basic operations on Arrays −

Value Description

append : 'T [] → 'T [] → 'T [] Creates an array that contains the elements of
one array followed by the elements of another
array.

average : ^T [] → ^T Returns the average of the elements in an array.

averageBy : ('T → ^U) → 'T [] → ^U Returns the average of the elements generated
by applying a function to each element of an
array.

blit : 'T [] → int → 'T [] → int → int → unit Reads a range of elements from one array and
writes them into another.

choose : ('T → U option) → 'T [] → 'U [] Applies a supplied function to each element of
an array. Returns an array that contains the
results x for each element for which the function
returns Some(x).

collect : ('T → 'U []) → T [] → 'U [] Applies the supplied function to each element of
an array, concatenates the results, and returns
the combined array.

concat : seq<'T []> → 'T [] Creates an array that contains the elements of
each of the supplied sequence of arrays.

copy : 'T → 'T [] Creates an array that contains the elements of
the supplied array.

create : int → 'T → 'T [] Creates an array whose elements are all initially
the supplied value.

empty : 'T [] Returns an empty array of the given type.

exists : ('T → bool) → 'T [] → bool Tests whether any element of an array satisfies
the supplied predicate.

exists2 : ('T1 → 'T2 → bool) → 'T1 [] → 'T2 [] →
bool

Tests whether any pair of corresponding
elements of two arrays satisfy the supplied
condition.

fill : 'T [] → int → int → 'T → unit Fills a range of elements of an array with the
supplied value.

filter : ('T → bool) → 'T [] → 'T [] Returns a collection that contains only the
elements of the supplied array for which the
supplied condition returns true.

find : ('T → bool) → 'T [] → 'T Returns the first element for which the supplied
function returns true. Raises
KeyNotFoundException if no such element exists.

findIndex : ('T → bool) → 'T [] → int Returns the index of the first element in an array
that satisfies the supplied condition. Raises
KeyNotFoundException if none of the elements
satisfy the condition.

fold : ('State → 'T → 'State) → 'State → 'T [] →
'State

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
f (...(f s i0)...) iN.

fold2 : ('State → 'T1 → 'T2 → 'State) → 'State
→ 'T1 [] → 'T2 [] → 'State

Applies a function to pairs of elements from two
supplied arrays, left-to-right, threading an
accumulator argument through the
computation. The two input arrays must have the
same lengths; otherwise, ArgumentException is
raised.

foldBack : ('T → 'State → 'State) → 'T [] →
'State → 'State

Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
f i0 (...(f iN s)).

foldBack2 : ('T1 → 'T2 → 'State → 'State) →
'T1 [] → 'T2 [] → 'State → 'State

Applies a function to pairs of elements from two
supplied arrays, right-to-left, threading an
accumulator argument through the
computation. The two input arrays must have the
same lengths; otherwise, ArgumentException is
raised.

forall : ('T → bool) → 'T [] → bool Tests whether all elements of an array satisfy the
supplied condition.

forall2 : ('T1 → 'T2 → bool) → 'T1 [] → 'T2 [] →
bool

Tests whether all corresponding elements of two
supplied arrays satisfy a supplied condition.

get : 'T [] → int → 'T Gets an element from an array.

init : int → (int → 'T) → 'T [] Uses a supplied function to create an array of
the supplied dimension.

isEmpty : 'T [] → bool Tests whether an array has any elements.

iter : ('T → unit) → 'T [] → unit Applies the supplied function to each element of
an array.

iter2 : ('T1 → 'T2 → unit) → 'T1 [] → 'T2 [] →
unit)

Applies the supplied function to a pair of
elements from matching indexes in two arrays.
The two arrays must have the same lengths;
otherwise, ArgumentException is raised.

iteri : (int → 'T → unit) → 'T [] → unit Applies the supplied function to each element of
an array. The integer passed to the function
indicates the index of the element.

iteri2 : (int → 'T1 → 'T2 → unit) → 'T1 [] → 'T2
[] → unit

Applies the supplied function to a pair of
elements from matching indexes in two arrays,
also passing the index of the elements. The two
arrays must have the same lengths; otherwise,
an ArgumentException is raised.

length : 'T [] → int Returns the length of an array. The Length
property does the same thing.

map : ('T → 'U) → 'T [] → 'U [] Creates an array whose elements are the results
of applying the supplied function to each of the
elements of a supplied array.

map2 : ('T1 → 'T2 → 'U) → 'T1 [] → 'T2 [] → 'U
[]

Creates an array whose elements are the results
of applying the supplied function to the
corresponding elements of two supplied arrays.
The two input arrays must have the same
lengths; otherwise, ArgumentException is raised.

mapi : (int → 'T → 'U) → 'T [] → 'U [] Creates an array whose elements are the results
of applying the supplied function to each of the
elements of a supplied array. An integer index

passed to the function indicates the index of the
element being transformed.

mapi2 : (int → 'T1 → 'T2 → 'U) → 'T1 [] → 'T2 []
→ 'U []

Creates an array whose elements are the results
of applying the supplied function to the
corresponding elements of the two collections
pairwise, also passing the index of the elements.
The two input arrays must have the same
lengths; otherwise, ArgumentException is raised.

max : 'T [] → 'T Returns the largest of all elements of an array.
Operators.max is used to compare the elements.

maxBy : ('T → 'U) → 'T [] → 'T Returns the largest of all elements of an array,
compared via Operators.max on the function
result.

min : ('T [] → 'T Returns the smallest of all elements of an array.
Operators.min is used to compare the elements.

minBy : ('T → 'U) → 'T [] → 'T Returns the smallest of all elements of an array.
Operators.min is used to compare the elements.

ofList : 'T list → 'T [] Creates an array from the supplied list.

ofSeq : seq<'T> → 'T [] Creates an array from the supplied enumerable
object.

partition : ('T → bool) → 'T [] → 'T [] * 'T [] Splits an array into two arrays, one containing
the elements for which the supplied condition
returns true, and the other containing those for
which it returns false.

permute : (int → int) → 'T [] → 'T [] Permutes the elements of an array according to
the specified permutation.

pick : ('T → 'U option) → 'T [] → 'U Applies the supplied function to successive
elements of a supplied array, returning the first
result where the function returns Some(x) for
some x. If the function never returns Some(x),
KeyNotFoundException is raised.

reduce : ('T → 'T → 'T) → 'T [] → 'T Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
array elements are i0...iN, this function computes
f (...(f i0 i1)...) iN. If the array has size zero,
ArgumentException is raised.

reduceBack : ('T → 'T → 'T) → 'T [] → 'T Applies a function to each element of an array,
threading an accumulator argument through the
computation. If the input function is f and the
elements are i0...iN, this function computes f i0
(...(f iN-1 iN)). If the array has size zero,
ArgumentException is raised.

rev : 'T [] → 'T [] Reverses the order of the elements in a supplied
array.

scan : ('State → 'T → 'State) → 'State → 'T [] →
'State [])

Behaves like fold, but returns the intermediate
results together with the final results.

scanBack : ('T → 'State → 'State) → 'T [] →
'State → 'State []

Behaves like foldBack, but returns the
intermediary results together with the final
results.

set : 'T [] → int → 'T → unit Sets an element of an array.

sort : 'T[] → 'T [] Sorts the elements of an array and returns a new
array. Operators.compare is used to compare
the elements.

sortBy : ('T → 'Key) → 'T [] → 'T [] Sorts the elements of an array by using the
supplied function to transform the elements to
the type on which the sort operation is based,
and returns a new array. Operators.compare is
used to compare the elements.

sortInPlace : 'T [] → unit Sorts the elements of an array by changing the
array in place, using the supplied comparison
function. Operators.compare is used to compare
the elements.

sortInPlaceBy : ('T → 'Key) → 'T [] → unit Sorts the elements of an array by changing the
array in place, using the supplied projection for
the keys. Operators.compare is used to compare
the elements.

sortInPlaceWith : ('T → 'T → int) → 'T [] → unit Sorts the elements of an array by using the
supplied comparison function to change the
array in place.

sortWith : ('T → 'T → int) → 'T [] → 'T [] Sorts the elements of an array by using the
supplied comparison function, and returns a new
array.

sub : 'T [] → int → int → 'T [] Creates an array that contains the supplied
subrange, which is specified by starting index
and length.

sum : 'T [] → ^T Returns the sum of the elements in the array.

sumBy : ('T → ^U) → 'T [] → ^U Returns the sum of the results generated by
applying a function to each element of an array.

toList : 'T [] → 'T list Converts the supplied array to a list.

toSeq : 'T [] → seq<'T> Views the supplied array as a sequence.

tryFind : ('T → bool) → 'T [] → 'T option Returns the first element in the supplied array
for which the supplied function returns true.
Returns None if no such element exists.

tryFindIndex : ('T → bool) → 'T [] → int option Returns the index of the first element in an array
that satisfies the supplied condition.

tryPick : ('T → 'U option) → 'T [] → 'U option Applies the supplied function to successive
elements of the supplied array, and returns the
first result where the function returns Some(x)
for some x. If the function never returns Some(x),
None is returned.

unzip : ('T1 * 'T2) [] → 'T1 [] * 'T2 [] Splits an array of tuple pairs into a tuple of two
arrays.

unzip3 : ('T1 * 'T2 * 'T3) [] → 'T1 [] * 'T2 [] *
'T3 []

Splits an array of tuples of three elements into a
tuple of three arrays.

zeroCreate : int → 'T [] Creates an array whose elements are initially set
to the default value Unchecked.defaultof<'T>.

zip : 'T1 [] → 'T2 [] → ('T1 * 'T2) [] Combines two arrays into an array of tuples that
have two elements. The two arrays must have
equal lengths; otherwise, ArgumentException is
raised.

zip3 : 'T1 [] → 'T2 [] → 'T3 [] → ('T1 * 'T2 * 113
'T3) []

Combines three arrays into an array of tuples
that have three elements. The three arrays must
have equal lengths; otherwise,
ArgumentException is raised.

In the following section, we will see the uses of some of these functionalities.

Creating Arrays Using Functions
The Array module provides several functions that create an array from scratch.

The Array.empty function creates a new empty array.

The Array.create function creates an array of a specified size and sets all the elements to
given values.

The Array.init function creates an array, given a dimension and a function to generate the
elements.

The Array.zeroCreate function creates an array in which all the elements are initialized to
the zero value.

The Array.copy function creates a new array that contains elements that are copied from an
existing array.

The Array.sub function generates a new array from a subrange of an array.

The Array.append function creates a new array by combining two existing arrays.

The Array.choose function selects elements of an array to include in a new array.

The Array.collect function runs a specified function on each array element of an existing
array and then collects the elements generated by the function and combines them into a
new array.

The Array.concat function takes a sequence of arrays and combines them into a single
array.

The Array.filter function takes a Boolean condition function and generates a new array that
contains only those elements from the input array for which the condition is true.

The Array.rev function generates a new array by reversing the order of an existing array.

The following examples demonstrate these functions −

Example 1

(* using create and set *)
let array1 = Array.create 10 ""
for i in 0 .. array1.Length - 1 do
 Array.set array1 i (i.ToString())
for i in 0 .. array1.Length - 1 do
 printf "%s " (Array.get array1 i)
printfn " "

(* empty array *)
let array2 = Array.empty
printfn "Length of empty array: %d" array2.Length

let array3 = Array.create 10 7.0
printfn "Float Array: %A" array3

(* using the init and zeroCreate *)
let array4 = Array.init 10 (fun index -> index * index)
printfn "Array of squares: %A" array4

let array5 : float array = Array.zeroCreate 10
let (myZeroArray : float array) = Array.zeroCreate 10
printfn "Float Array: %A" array5

When you compile and execute the program, it yields the following output −

0 1 2 3 4 5 6 7 8 9
Length of empty array: 0
Float Array: [|7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0; 7.0|]
Array of squares: [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]
Float Array: [|0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0|]

Example 2

(* creating subarray from element 5 *)
(* containing 15 elements thereon *)

let array1 = [| 0 .. 50 |]
let array2 = Array.sub array1 5 15
printfn "Sub Array:"
printfn "%A" array2

(* appending two arrays *)
let array3 = [| 1; 2; 3; 4|]
let array4 = [| 5 .. 9 |]
printfn "Appended Array:"
let array5 = Array.append array3 array4
printfn "%A" array5

(* using the Choose function *)
let array6 = [| 1 .. 20 |]
let array7 = Array.choose (fun elem -> if elem % 3 = 0 then
 Some(float (elem))
 else
 None) array6
printfn "Array with Chosen elements:"
printfn "%A" array7

(*using the Collect function *)
let array8 = [| 2 .. 5 |]
let array9 = Array.collect (fun elem -> [| 0 .. elem - 1 |]) array8
printfn "Array with collected elements:"
printfn "%A" array9

When you compile and execute the program, it yields the following output −

Sub Array:
[|5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19|]
Appended Array:
[|1; 2; 3; 4; 5; 6; 7; 8; 9|]
Array with Chosen elements:
[|3.0; 6.0; 9.0; 12.0; 15.0; 18.0|]
Array with collected elements:
[|0; 1; 0; 1; 2; 0; 1; 2; 3; 0; 1; 2; 3; 4|]

Searching Arrays
The Array.find function takes a Boolean function and returns the first element for which the
function returns true, else raises a KeyNotFoundException.

The Array.findIndex function works similarly except that it returns the index of the element
instead of the element itself.

The following example demonstrates this.

Microsoft provides this interesting program example, which finds the first element in the range of a
given number that is both a perfect square as well as a perfect cube −

let array1 = [| 2 .. 100 |]
let delta = 1.0e-10
let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta

let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta

let element = Array.find (fun elem -> isPerfectSquare elem && isPerfectCube elem)
array1

let index = Array.findIndex (fun elem -> isPerfectSquare elem && isPerfectCube elem)
array1

printfn "The first element that is both a square and a cube is %d and its index is %d."
element index

When you compile and execute the program, it yields the following output −

The first element that is both a square and a cube is 64 and its index is 62.

F# - MUTABLE LISTSF# - MUTABLE LISTS
The List<'T> class represents a strongly typed list of objects that can be accessed by index.

It is a mutable counterpart of the List class. It is similar to arrays, as it can be accessed by an index,
however, unlike arrays, lists can be resized. Therefore you need not specify a size during
declaration.

Creating a Mutable List
Lists are created using the new keyword and calling the list's constructor. The following example
demonstrates this −

(* Creating a List *)
open System.Collections.Generic

let booksList = new List<string>()
booksList.Add("Gone with the Wind")
booksList.Add("Atlas Shrugged")
booksList.Add("Fountainhead")
booksList.Add("Thornbirds")
booksList.Add("Rebecca")
booksList.Add("Narnia")

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])

When you compile and execute the program, it yields the following output −

0: Gone with the Wind
1: Atlas Shrugged
2: Fountainhead
3: Thornbirds
4: Rebecca
5: Narnia

The List(T) Class
The List(T) class represents a strongly typed list of objects that can be accessed by index. It provide
methods to search, sort, and manipulate lists.

The following tables provide the properties, constructors and the methods of the List(T) class −

Properties

Property Description

Capacity Gets or sets the total number of elements the internal data structure can hold
without resizing.

Count Gets the number of elements contained in the List(T).

Item Gets or sets the element at the specified index.

Constructors

Constructor Description

List(T)() Initializes a new instance of the List(T) class that is empty and has
the default initial capacity.

List(T)(IEnumerable(T)) Initializes a new instance of the List(T) class that contains elements
copied from the specified collection and has sufficient capacity to
accommodate the number of elements copied.

List(T)(Int32) Initializes a new instance of the List(T) class that is empty and has
the specified initial capacity.

Method

Methods Description

Add Adds an object to the end of the List(T).

AddRange Adds the elements of the specified collection to the
end of the List(T).

AsReadOnly Returns a read-only IList(T) wrapper for the current
collection.

BinarySearch(T) Searches the entire sorted List(T) for an element
using the default comparer and returns the zero-
based index of the element.

BinarySearch(T, IComparer(T)) Searches the entire sorted List(T) for an element
using the specified comparer and returns the zero-
based index of the element.

BinarySearch(Int32, Int32, T,
IComparer(T))

Searches a range of elements in the sorted List(T)
for an element using the specified comparer and
returns the zero-based index of the element.

Clear Removes all elements from the List(T).

Contains Determines whether an element is in the List(T).

ConvertAll(TOutput) Converts the elements in the current List(T) to
another type, and returns a list containing the
converted elements.

CopyTo(T[]) Copies the entire List(T) to a compatible one-

dimensional array, starting at the beginning of the
target array.

CopyTo(T[], Int32) Copies the entire List(T) to a compatible one-
dimensional array, starting at the specified index of
the target array.

CopyTo(Int32, T[], Int32, Int32) Copies a range of elements from the List(T) to a
compatible one-dimensional array, starting at the
specified index of the target array.

Equals(Object) Determines whether the specified object is equal to
the current object. (Inherited from Object.)

Exists Determines whether the List(T) contains elements
that match the conditions defined by the specified
predicate.

Finalize Allows an object to try to free resources and
perform other cleanup operations before it is
reclaimed by garbage collection (Inherited from
Object).

Find Searches for an element that matches the
conditions defined by the specified predicate, and
returns the first occurrence within the entire List(T).

FindAll Retrieves all the elements that match the
conditions defined by the specified predicate.

FindIndex(Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the entire List(T).

FindIndex(Int32, Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the range of elements in the List(T) that
extends from the specified index to the last
element.

FindIndex(Int32, Int32, Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the first occurrence
within the range of elements in the List(T) that starts
at the specified index and contains the specified
number of elements.

FindLast Searches for an element that matches the
conditions defined by the specified predicate, and
returns the last occurrence within the entire List(T).

FindLastIndex(Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the last occurrence
within the entire List(T).

FindLastIndex(Int32, Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and
returns the zero-based index of the last occurrence
within the range of elements in the List(T) that
extends from the first element to the specified
index.

FindLastIndex(Int32, Int32, Predicate(T)) Searches for an element that matches the
conditions defined by the specified predicate, and

returns the zero-based index of the last occurrence
within the range of elements in the List(T) that
contains the specified number of elements and
ends at the specified index.

ForEach Performs the specified action on each element of
the List(T).

GetEnumerator Returns an enumerator that iterates through the
List(T).

GetHashCode Serves as the default hash function. (Inherited from
Object.)

GetRange Creates a shallow copy of a range of elements in
the source List(T).

GetType Gets the Type of the current instance. (Inherited
from Object.)

IndexOf(T) Searches for the specified object and returns the
zero-based index of the first occurrence within the
entire List(T).

IndexOf(T, Int32) Searches for the specified object and returns the
zero-based index of the first occurrence within the
range of elements in the List(T) that extends from
the specified index to the last element.

IndexOf(T, Int32, Int32) Searches for the specified object and returns the
zero-based index of the first occurrence within the
range of elements in the List(T) that starts at the
specified index and contains the specified number
of elements.

Insert Inserts an element into the List(T) at the specified
index.

InsertRange Inserts the elements of a collection into the List(T)
at the specified index.

LastIndexOf(T) Searches for the specified object and returns the
zero-based index of the last occurrence within the
entire List(T).

LastIndexOf(T, Int32) Searches for the specified object and returns the
zero-based index of the last occurrence within the
range of elements in the List(T) that extends from
the first element to the specified index.

LastIndexOf(T, Int32, Int32) Searches for the specified object and returns the
zero-based index of the last occurrence within the
range of elements in the List(T) that contains the
specified number of elements and ends at the
specified index.

MemberwiseClone Creates a shallow copy of the current Object.
(Inherited from Object.)

Remove Removes the first occurrence of a specific object
from the List(T).

RemoveAll Removes all the elements that match the conditions
defined by the specified predicate.

RemoveAt Removes the element at the specified index of the
List(T).

RemoveRange Removes a range of elements from the List(T).

Reverse() Reverses the order of the elements in the entire
List(T).

Reverse(Int32, Int32) Reverses the order of the elements in the specified
range.

Sort() Sorts the elements in the entire List(T) using the
default comparer.

Sort(Comparison(T)) Sorts the elements in the entire List(T) using the
specified System. Comparison(T).

Sort(IComparer(T)) Sorts the elements in the entire List(T) using the
specified comparer.

Sort(Int32, Int32, IComparer(T)) Sorts the elements in a range of elements in List(T)
using the specified comparer.

ToArray Copies the elements of the List(T) to a new array.

ToString Returns a string that represents the current object.
(Inherited from Object.)

TrimExcess Sets the capacity to the actual number of elements
in the List(T), if that number is less than a threshold
value.

TrueForAll Determines whether every element in the List(T)
matches the conditions defined by the specified
predicate.

Example

(* Creating a List *)
open System.Collections.Generic

let booksList = new List<string>()
booksList.Add("Gone with the Wind")
booksList.Add("Atlas Shrugged")
booksList.Add("Fountainhead")
booksList.Add("Thornbirds")
booksList.Add("Rebecca")
booksList.Add("Narnia")

printfn"Total %d books" booksList.Count
booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])
booksList.Insert(2, "Roots")

printfn("after inserting at index 2")
printfn"Total %d books" booksList.Count

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])
booksList.RemoveAt(3)

printfn("after removing from index 3")
printfn"Total %d books" booksList.Count

booksList |> Seq.iteri (fun index item -> printfn "%i: %s" index booksList.[index])

When you compile and execute the program, it yields the following output −

Total 6 books
0: Gone with the Wind

1: Atlas Shrugged
2: Fountainhead
3: Thornbirds
4: Rebecca
5: Narnia
after inserting at index 2
Total 7 books
0: Gone with the Wind
1: Atlas Shrugged
2: Roots
3: Fountainhead
4: Thornbirds
5: Rebecca
6: Narnia
after removing from index 3
Total 6 books
0: Gone with the Wind
1: Atlas Shrugged
2: Roots
3: Thornbirds
4: Rebecca
5: Narnia

F# - MUTABLE DICTIONARYF# - MUTABLE DICTIONARY
The Dictionary<'TKey, 'TValue> class is the mutable analog of the F# map data structure and
contains many of the same functions.

Recapitulating from the Map chapter in F#, a map is a special kind of set that associates the values
with key.

Creating of a Mutable Dictionary
Mutable dictionaries are created using the new keyword and calling the list's constructor. The
following example demonstrates this −

open System.Collections.Generic
let dict = new Dictionary<string, string>()
dict.Add("1501", "Zara Ali")
dict.Add("1502","Rishita Gupta")
dict.Add("1503","Robin Sahoo")
dict.Add("1504","Gillian Megan")
printfn "Dictionary - students: %A" dict

When you compile and execute the program, it yields the following output −

Dictionary - students: seq
[[1501, Zara Ali]; [1502, Rishita Gupta]; [1503, Robin Sahoo];
[1504, Gillian Megan]]

The Dictionary(TKey,TValue) Class
The Dictionary(TKey, TValue) Class represents a collection of keys and values.

The following tables provide the properties, constructors and the methods of the List(T) class −

Properties

Property Description

Comparer Gets the IEqualityComparer(T) that is used to determine equality of keys for the
dictionary.

Count Gets the number of key/value pairs contained in the Dictionary(TKey, TValue).

Item Gets or sets the value associated with the specified key.

Keys Gets a collection containing the keys in the Dictionary(TKey, TValue).

Values Gets a collection containing the values in the Dictionary(TKey, TValue).

Constructors

Constructors Description

Dictionary(TKey, TValue)() Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the default initial capacity, and uses
the default equality comparer for the key type.

Dictionary(TKey,
TValue)(IDictionary(TKey,
TValue))

Initializes a new instance of the Dictionary(TKey, TValue)
class that contains elements copied from the specified
IDictionary(TKey, TValue) and uses the default equality
comparer for the key type.

Dictionary(TKey,
TValue)(IEqualityComparer(TKey))

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the default initial capacity, and uses
the specified IEqualityComparer(T).

Dictionary(TKey, TValue)(Int32) Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the specified initial capacity, and
uses the default equality comparer for the key type.

Dictionary(TKey,
TValue)(IDictionary(TKey,
TValue),
IEqualityComparer(TKey))

Initializes a new instance of the Dictionary(TKey, TValue)
class that contains elements copied from the specified
IDictionary(TKey, TValue) and uses the specified
IEqualityComparer(T).

Dictionary(TKey, TValue)(Int32,
IEqualityComparer(TKey))

Initializes a new instance of the Dictionary(TKey, TValue)
class that is empty, has the specified initial capacity, and
uses the specified IEqualityComparer(T).

Dictionary(TKey,
TValue)(SerializationInfo,
StreamingContext)

Initializes a new instance of the ictionary(TKey, TValue)
class with serialized data.

Methods

Method Description

Add Adds the specified key and value to the dictionary.

Clear Removes all keys and values from the Dictionary(TKey, TValue).

ContainsKey Determines whether the Dictionary(TKey, TValue) contains the specified
key.

ContainsValue Determines whether the Dictionary(TKey, TValue) contains a specific value.

Equals(Object) Determines whether the specified object is equal to the current object.
(Inherited from Object.)

Finalize Allows an object to try to free resources and perform other cleanup
operations before it is reclaimed by garbage collection. (Inherited from
Object.)

GetEnumerator Returns an enumerator that iterates through the Dictionary(TKey, TValue).

GetHashCode Serves as the default hash function. (Inherited from Object.)

GetObjectData Implements the System.Runtime.Serialization.ISerializable interface and
returns the data needed to serialize the Dictionary(TKey, TValue)instance.

GetType Gets the Type of the current instance. (Inherited from Object.)

MemberwiseClone Creates a shallow copy of the current Object. (Inherited from Object.)

OnDeserialization Implements the System.Runtime.Serialization.ISerializable interface and
raises the deserialization event when the deserialization is complete.

Remove Removes the value with the specified key from the Dictionary(TKey,
TValue).

ToString Returns a string that represents the current object. (Inherited from Object.)

TryGetValue Gets the value associated with the specified key.

Example

open System.Collections.Generic
let dict = new Dictionary<string, string>()

dict.Add("1501", "Zara Ali")
dict.Add("1502","Rishita Gupta")
dict.Add("1503","Robin Sahoo")
dict.Add("1504","Gillian Megan")

printfn "Dictionary - students: %A" dict
printfn "Total Number of Students: %d" dict.Count
printfn "The keys: %A" dict.Keys
printf"The Values: %A" dict.Values

When you compile and execute the program, it yields the following output −

Dictionary - students: seq
[[1501, Zara Ali]; [1502, Rishita Gupta]; [1503, Robin Sahoo];
[1504, Gillian Megan]]
Total Number of Students: 4
The keys: seq ["1501"; "1502"; "1503"; "1504"]
The Values: seq ["Zara Ali"; "Rishita Gupta"; "Robin Sahoo"; "Gillian Megan"]

F# - BASIC IOF# - BASIC IO
Basic Input Output includes −

Reading from and writing into console.
Reading from and writing into file.

Core.Printf Module
We have used the printf and the printfn functions for writing into the console. In this section, we will
look into the details of the Printf module of F#.

Apart from the above functions, the Core.Printf module of F# has various other methods for
printing and formatting using % markers as placeholders. The following table shows the methods
with brief description −

Value Description

bprintf : StringBuilder → BuilderFormat<'T> →
'T

Prints to a StringBuilder.

eprintf : TextWriterFormat<'T> → 'T Prints formatted output to stderr.

eprintfn : TextWriterFormat<'T> → 'T Prints formatted output to stderr, adding a
newline.

failwithf : StringFormat<'T,'Result> → 'T Prints to a string buffer and raises an exception
with the given result.

fprintf : TextWriter → TextWriterFormat<'T> →
'T

Prints to a text writer.

fprintfn : TextWriter → TextWriterFormat<'T>
→ 'T

Prints to a text writer, adding a newline.

kbprintf : (unit → 'Result) → StringBuilder →
BuilderFormat<'T,'Result> → 'T

Like bprintf, but calls the specified function to
generate the result.

kfprintf : (unit → 'Result) → TextWriter →
TextWriterFormat<'T,'Result> → 'T

Like fprintf, but calls the specified function to
generate the result.

kprintf : (string → 'Result) →
StringFormat<'T,'Result> → 'T

Like printf, but calls the specified function to
generate the result. For example, these let the
printing force a flush after all output has been
entered onto the channel, but not before.

ksprintf : (string → 'Result) →
StringFormat<'T,'Result> → 'T

Like sprintf, but calls the specified function to
generate the result.

printf : TextWriterFormat<'T> → 'T Prints formatted output to stdout.

printfn : TextWriterFormat<'T> → 'T Prints formatted output to stdout, adding a
newline.

sprintf : StringFormat<'T> → 'T Prints to a string by using an internal string
buffer and returns the result as a string.

Format Specifications
Format specifications are used for formatting the input or output, according to the programmers’
need.

These are strings with % markers indicating format placeholders.

The syntax of a Format placeholders is −

%[flags][width][.precision][type]

The type is interpreted as −

Type Description

%b Formats a bool, formatted as true or false.

%c Formats a character.

%s Formats a string, formatted as its contents, without interpreting any
escape characters.

%d, %i Formats any basic integer type formatted as a decimal integer,
signed if the basic integer type is signed.

%u Formats any basic integer type formatted as an unsigned decimal
integer.

%x Formats any basic integer type formatted as an unsigned
hexadecimal integer, using lowercase letters a through f.

%X Formats any basic integer type formatted as an unsigned
hexadecimal integer, using uppercase letters A through F.

%o Formats any basic integer type formatted as an unsigned octal
integer.

%e, %E, %f, %F, %g, %G Formats any basic floating point type (float, float32) formatted
using a C-style floating point format specifications.

%e, %E Formats a signed value having the form [-]d.dddde[sign]ddd where d
is a single decimal digit, dddd is one or more decimal digits, ddd is
exactly three decimal digits, and sign is + or -.

%f Formats a signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits. The number of digits before the decimal
point depends on the magnitude of the number, and the number of
digits after the decimal point depends on the requested precision.

%g, %G Formats a signed value printed in f or e format, whichever is more
compact for the given value and precision.

%M Formats a Decimal value.

%O Formats any value, printed by boxing the object and using its
ToString method.

%A, %+A Formats any value, printed with the default layout settings. Use %+A
to print the structure of discriminated unions with internal and
private representations.

%a
A general format specifier, requires two arguments. The first
argument is a function which accepts two arguments: first, a context
parameter of the appropriate type for the given formatting function
(for example, a TextWriter), and second, a value to print and which
either outputs or returns appropriate text.

The second argument is the particular value to print.

%t A general format specifier, requires one argument: a function which
accepts a context parameter of the appropriate type for the given
formatting function (aTextWriter) and which either outputs or returns
appropriate text. Basic integer types are byte, sbyte, int16,
uint16, int32, uint32, int64, uint64, nativeint, and unativeint.
Basic floating point types are float and float32.

The width is an optional parameter. It is an integer that indicates the minimal width of the result.
For example, %5d prints an integer with at least spaces of 5 characters.

Valid flags are described in the following table −

Value Description

0 Specifies to add zeros instead of spaces to make up the required width.

- Specifies to left-justify the result within the width specified.

+ Specifies to add a + character if the number is positive (to match a - sign for negative
numbers).

' ' Specifies to add an extra space if the number is positive (to match a - sign for

(space) negative numbers).

Invalid.

Example

printf "Hello "
printf "World"
printfn ""
printfn "Hello "
printfn "World"
printf "Hi, I'm %s and I'm a %s" "Rohit" "Medical Student"

printfn "d: %f" 212.098f
printfn "e: %f" 504.768f

printfn "x: %g" 212.098f
printfn "y: %g" 504.768f

printfn "x: %e" 212.098f
printfn "y: %e" 504.768f
printfn "True: %b" true

When you compile and execute the program, it yields the following output −

Hello World
Hello
World
Hi, I'm Rohit and I'm a Medical Studentd: 212.098000
e: 504.768000
x: 212.098
y: 504.768
x: 2.120980e+002
y: 5.047680e+002
True: true

The Console Class
This class is a part of the .NET framework. It represents the standard input, output, and error
streams for console applications.

It provides various methods for reading from and writing into the console. The following table
shows the methods −

Method Description

Beep() Plays the sound of a beep through the console speaker.

Beep(Int32, Int32) Plays the sound of a beep of a specified frequency and duration
through the console speaker.

Clear Clears the console buffer and corresponding console window of
display information.

MoveBufferArea(Int32,
Int32, Int32, Int32, Int32,
Int32)

Copies a specified source area of the screen buffer to a specified
destination area.

MoveBufferArea(Int32,
Int32, Int32, Int32, Int32,
Int32, Char, ConsoleColor,
ConsoleColor)

Copies a specified source area of the screen buffer to a specified
destination area.

OpenStandardError() Acquires the standard error stream.

OpenStandardError(Int32) Acquires the standard error stream, which is set to a specified
buffer size.

OpenStandardInput() Acquires the standard input stream.

OpenStandardInput(Int32) Acquires the standard input stream, which is set to a specified
buffer size.

OpenStandardOutput() Acquires the standard output stream.

OpenStandardOutput(Int32) Acquires the standard output stream, which is set to a specified
buffer size.

Read Reads the next character from the standard input stream.

ReadKey() Obtains the next character or function key pressed by the user.
The pressed key is displayed in the console window.

ReadKey(Boolean) Obtains the next character or function key pressed by the user.
The pressed key is optionally displayed in the console window.

ReadLine Reads the next line of characters from the standard input stream.

ResetColor Sets the foreground and background console colors to their
defaults.

SetBufferSize Sets the height and width of the screen buffer area to the
specified values.

SetCursorPosition Sets the position of the cursor.

SetError Sets the Error property to the specified TextWriter object.

SetIn Sets the In property to the specified TextReader object.

SetOut Sets the Out property to the specified TextWriter object.

SetWindowPosition Sets the position of the console window relative to the screen
buffer.

SetWindowSize Sets the height and width of the console window to the specified
values.

Write(Boolean) Writes the text representation of the specified Boolean value to
the standard output stream.

Write(Char) Writes the specified Unicode character value to the standard
output stream.

Write(Char[]) Writes the specified array of Unicode characters to the standard
output stream.

Write(Decimal) Writes the text representation of the specified Decimal value to
the standard output stream.

Write(Double) Writes the text representation of the specified double-precision
floating-point value to the standard output stream.

Write(Int32) Writes the text representation of the specified 32-bit signed
integer value to the standard output stream.

Write(Int64) Writes the text representation of the specified 64-bit signed
integer value to the standard output stream.

Write(Object) Writes the text representation of the specified object to the
standard output stream.

http://msdn.microsoft.com/en-us/library/system.io.textwriter.aspx
http://msdn.microsoft.com/en-us/library/system.io.textreader.aspx
http://msdn.microsoft.com/en-us/library/system.io.textwriter.aspx

Write(Single) Writes the text representation of the specified single-precision
floating-point value to the standard output stream.

Write(String) Writes the specified string value to the standard output stream.

Write(UInt32) Writes the text representation of the specified 32-bit unsigned
integer value to the standard output stream.

Write(UInt64) Writes the text representation of the specified 64-bit unsigned
integer value to the standard output stream.

Write(String, Object) Writes the text representation of the specified object to the
standard output stream using the specified format information.

Write(String, Object[]) Writes the text representation of the specified array of objects to
the standard output stream using the specified format
information.

Write(Char[], Int32, Int32) Writes the specified subarray of Unicode characters to the
standard output stream.

Write(String, Object, Object) Writes the text representation of the specified objects to the
standard output stream using the specified format information.

Write(String, Object, Object,
Object)

Writes the text representation of the specified objects to the
standard output stream using the specified format information.

Write(String, Object, Object,
Object, Object)

Writes the text representation of the specified objects and
variable-length parameter list to the standard output stream
using the specified format information.

WriteLine() Writes the current line terminator to the standard output stream.

WriteLine(Boolean) Writes the text representation of the specified Boolean value,
followed by the current line terminator, to the standard output
stream.

WriteLine(Char) Writes the specified Unicode character, followed by the current
line terminator, value to the standard output stream.

WriteLine(Char[]) Writes the specified array of Unicode characters, followed by the
current line terminator, to the standard output stream.

WriteLine(Decimal) Writes the text representation of the specified Decimal value,
followed by the current line terminator, to the standard output
stream.

WriteLine(Double) Writes the text representation of the specified double-precision
floating-point value, followed by the current line terminator, to
the standard output stream.

WriteLine(Int32) Writes the text representation of the specified 32-bit signed
integer value, followed by the current line terminator, to the
standard output stream.

WriteLine(Int64) Writes the text representation of the specified 64-bit signed
integer value, followed by the current line terminator, to the
standard output stream.

WriteLine(Object) Writes the text representation of the specified object, followed by
the current line terminator, to the standard output stream.

WriteLine(Single) Writes the text representation of the specified single-precision
floating-point value, followed by the current line terminator, to
the standard output stream.

WriteLine(String) Writes the specified string value, followed by the current line

terminator, to the standard output stream.

WriteLine(UInt32) Writes the text representation of the specified 32-bit unsigned
integer value, followed by the current line terminator, to the
standard output stream.

WriteLine(UInt64) Writes the text representation of the specified 64-bit unsigned
integer value, followed by the current line terminator, to the
standard output stream.

WriteLine(String, Object) Writes the text representation of the specified object, followed by
the current line terminator, to the standard output stream using
the specified format information.

WriteLine(String, Object[]) Writes the text representation of the specified array of objects,
followed by the current line terminator, to the standard output
stream using the specified format information.

WriteLine(Char[], Int32,
Int32)

Writes the specified subarray of Unicode characters, followed by
the current line terminator, to the standard output stream.

WriteLine(String, Object,
Object)

Writes the text representation of the specified objects, followed
by the current line terminator, to the standard output stream
using the specified format information.

WriteLine(String, Object,
Object, Object)

Writes the text representation of the specified objects, followed
by the current line terminator, to the standard output stream
using the specified format information.

WriteLine(String, Object,
Object, Object, Object)

Writes the text representation of the specified objects and
variable-length parameter list, followed by the current line
terminator, to the standard output stream using the specified
format information.

The following example demonstrates reading from console and writing into it −

Example

open System
let main() =
 Console.Write("What's your name? ")
 let name = Console.ReadLine()
 Console.Write("Hello, {0}\n", name)
 Console.WriteLine(System.String.Format("Big Greetings from {0} and {1}",
"TutorialsPoint", "Absoulte Classes"))
 Console.WriteLine(System.String.Format("|{0:yyyy-MMM-dd}|", System.DateTime.Now))
main()

When you compile and execute the program, it yields the following output −

What's your name? Kabir
Hello, Kabir
Big Greetings from TutorialsPoint and Absoulte Classes
|2015-Jan-05|

The System.IO Namespace
The System.IO namespace contains a variety of useful classes for performing basic I/O.

It contains types or classes that allow reading and writing to files and data streams and types that
provide basic file and directory support.

Classes useful for working with the file system −

The System.IO.File class is used for creating, appending, and deleting files.

System.IO.Directory class is used for creating, moving, and deleting directories.
System.IO.Path class performs operations on strings, which represent file paths.
System.IO.FileSystemWatcher class allows users to listen to a directory for changes.

Classes useful for working with the streams (sequence of bytes) −

System.IO.StreamReader class is used to read characters from a stream.
System.IO.StreamWriter class is used to write characters to a stream.
System.IO.MemoryStream class creates an in-memory stream of bytes.

The following table shows all the classes provided in the namespace along with a brief description
−

Class Description

BinaryReader Reads primitive data types as binary values in a specific
encoding.

BinaryWriter Writes primitive types in binary to a stream and supports
writing strings in a specific encoding.

BufferedStream Adds a buffering layer to read and write operations on
another stream.

Directory Exposes static methods for creating, moving, and
enumerating through directories and subdirectories.

DirectoryInfo Exposes instance methods for creating, moving, and
enumerating through directories and subdirectories.

DirectoryNotFoundException The exception that is thrown when part of a file or
directory cannot be found.

DriveInfo Provides access to information on a drive.

DriveNotFoundException The exception that is thrown when trying to access a drive
or share that is not available.

EndOfStreamException The exception that is thrown when reading is attempted
past the end of a stream.

ErrorEventArgs Provides data for the FileSystemWatcher.Error event.

File Provides static methods for the creation, copying,
deletion, moving, and opening of a single file, and aids in
the creation of FileStream objects.

FileFormatException The exception that is thrown when an input file or a data
stream that is supposed to conform to a certain file
format specification is malformed.

FileInfo Provides properties and instance methods for the
creation, copying, deletion, moving, and opening of files,
and aids in the creation of FileStream objects.

FileLoadException The exception that is thrown when a managed assembly
is found but cannot be loaded.

FileNotFoundException The exception that is thrown when an attempt to access a
file that does not exist on disk fails.

FileStream Exposes a Stream around a file, supporting both
synchronous and asynchronous read and write

operations.

FileSystemEventArgs Provides data for the directory events − Changed,
Created, Deleted.

FileSystemInfo Provides the base class for both FileInfo and DirectoryInfo
objects.

FileSystemWatcher Listens to the file system change notifications and raises
events when a directory, or file in a directory, changes.

InternalBufferOverflowException The exception thrown when the internal buffer overflows.

InvalidDataException The exception that is thrown when a data stream is in an
invalid format.

IODescriptionAttribute Sets the description visual designers can display when
referencing an event, extender, or property.

IOException The exception that is thrown when an I/O error occurs.

MemoryStream Creates a stream whose backing store is memory.

Path Performs operations on String instances that contain file
or directory path information. These operations are
performed in a cross-platform manner.

PathTooLongException The exception that is thrown when a path or file name is
longer than the system-defined maximum length.

PipeException Thrown when an error occurs within a named pipe.

RenamedEventArgs Provides data for the Renamed event.

Stream Provides a generic view of a sequence of bytes. This is an
abstract class.

StreamReader Implements a TextReader that reads characters from a
byte stream in a particular encoding.

StreamWriter Implements a TextWriter for writing characters to a
stream in a particular encoding. To browse the .NET
Framework source code for this type, see the Reference
Source.

StringReader Implements a TextReader that reads from a string.

StringWriter Implements a TextWriter for writing information to a
string. The information is stored in an underlying
StringBuilder.

TextReader Represents a reader that can read a sequential series of
characters.

TextWriter Represents a writer that can write a sequential series of
characters. This class is abstract.

UnmanagedMemoryAccessor Provides random access to unmanaged blocks of memory
from managed code.

UnmanagedMemoryStream Provides access to unmanaged blocks of memory from
managed code.

WindowsRuntimeStorageExtensions Contains extension methods for the IStorageFile and
IStorageFolder interfaces in the Windows Runtime when
developing Windows Store apps.

WindowsRuntimeStreamExtensions Contains extension methods for converting between

streams in the Windows Runtime and managed streams
in the .NET for Windows Store apps.

Example
The following example creates a file called test.txt, writes a message there, reads the text from the
file and prints it on the console.

Note − The amount of code needed to do this is surprisingly less!

open System.IO // Name spaces can be opened just as modules
File.WriteAllText("test.txt", "Hello There\n Welcome to:\n Tutorials Point")
let msg = File.ReadAllText("test.txt")
printfn "%s" msg

When you compile and execute the program, it yields the following output −

Hello There
Welcome to:
Tutorials Point

F# - GENERICSF# - GENERICS
Generics allow you to delay the specification of the data type of programming elements in a class
or a method, until it is actually used in the program. In other words, generics allow you to write a
class or method that can work with any data type.

You write the specifications for the class or the method, with substitute parameters for data types.
When the compiler encounters a constructor for the class or a function call for the method, it
generates code to handle the specific data type.

In F#, function values, methods, properties, and aggregate types such as classes, records, and
discriminated unions can be generic.

Generic constructs contain at least one type parameter. Generic functions and types enable you to
write code that works with a variety of types without repeating the code for each type.

Syntax
Syntax for writing a generic construct is as follows −

// Explicitly generic function.
let function-name<type-parameters> parameter-list =
 function-body

// Explicitly generic method.
[static] member object-identifer.method-name<type-parameters> parameter-list [return-
type] =
 method-body

// Explicitly generic class, record, interface, structure,
// or discriminated union.
type type-name<type-parameters> type-definition

Examples

(* Generic Function *)
let printFunc<'T> x y =
 printfn "%A, %A" x y

printFunc<float> 10.0 20.0

When you compile and execute the program, it yields the following output −

10.0, 20.0

You can also make a function generic by using the single quotation mark syntax −

(* Generic Function *)
let printFunction (x: 'a) (y: 'a) =
 printfn "%A %A" x y

printFunction 10.0 20.0

When you compile and execute the program, it yields the following output −

10.0 20.0

Please note that when you use generic functions or methods, you might not have to specify the
type arguments. However, in case of an ambiguity, you can provide type arguments in angle
brackets as we did in the first example.

If you have more than one type, then you separate multiple type arguments with commas.

Generic Class
Like generic functions, you can also write generic classes. The following example demonstrates
this −

type genericClass<'a> (x: 'a) =
 do printfn "%A" x

let gr = new genericClass<string>("zara")
let gs = genericClass(seq { for i in 1 .. 10 -> (i, i*i) })

When you compile and execute the program, it yields the following output −

"zara"
seq [(1, 1); (2, 4); (3, 9); (4, 16); ...]

F# - DELEGATESF# - DELEGATES
A delegate is a reference type variable that holds the reference to a method. The reference can
be changed at runtime. F# delegates are similar to pointers to functions, in C or C++.

Declaring Delegates
Delegate declaration determines the methods that can be referenced by the delegate. A delegate
can refer to a method, which have the same signature as that of the delegate.

Syntax for delegate declaration is −

type delegate-typename = delegate of type1 -> type2

For example, consider the delegates −

// Delegate1 works with tuple arguments.
type Delegate1 = delegate of (int * int) -> int
// Delegate2 works with curried arguments.
type Delegate2 = delegate of int * int -> int

Both the delegates can be used to reference any method that has two int parameters and returns
an int type variable.

In the syntax −

type1 represents the argument type(s).

type2 represents the return type.

Please note −

The argument types are automatically curried.

Delegates can be attached to function values, and static or instance methods.

F# function values can be passed directly as arguments to delegate constructors.

For a static method the delegate is called by using the name of the class and the method. For
an instance method, the name of the object instance and method is used.

The Invoke method on the delegate type calls the encapsulated function.

Also, delegates can be passed as function values by referencing the Invoke method name
without the parentheses.

The following example demonstrates the concept −

Example

type Myclass() =
 static member add(a : int, b : int) =
 a + b
 static member sub (a : int) (b : int) =
 a - b
 member x.Add(a : int, b : int) =
 a + b
 member x.Sub(a : int) (b : int) =
 a - b

// Delegate1 works with tuple arguments.
type Delegate1 = delegate of (int * int) -> int
// Delegate2 works with curried arguments.
type Delegate2 = delegate of int * int -> int

let InvokeDelegate1 (dlg : Delegate1) (a : int) (b: int) =
 dlg.Invoke(a, b)
let InvokeDelegate2 (dlg : Delegate2) (a : int) (b: int) =
 dlg.Invoke(a, b)

// For static methods, use the class name, the dot operator, and the
// name of the static method.
let del1 : Delegate1 = new Delegate1(Myclass.add)
let del2 : Delegate2 = new Delegate2(Myclass.sub)

let mc = Myclass()
// For instance methods, use the instance value name, the dot operator, and the instance
method name.

let del3 : Delegate1 = new Delegate1(mc.Add)
let del4 : Delegate2 = new Delegate2(mc.Sub)

for (a, b) in [(400, 200); (100, 45)] do
 printfn "%d + %d = %d" a b (InvokeDelegate1 del1 a b)
 printfn "%d - %d = %d" a b (InvokeDelegate2 del2 a b)
 printfn "%d + %d = %d" a b (InvokeDelegate1 del3 a b)
 printfn "%d - %d = %d" a b (InvokeDelegate2 del4 a b)

When you compile and execute the program, it yields the following output −

400 + 200 = 600
400 - 200 = 200
400 + 200 = 600
400 - 200 = 200
100 + 45 = 145

100 - 45 = 55
100 + 45 = 145
100 - 45 = 55

F# - ENUMERATIONSF# - ENUMERATIONS
An enumeration is a set of named integer constants.

In F#, enumerations, also known as enums, are integral types where labels are assigned to a
subset of the values. You can use them in place of literals to make code more readable and
maintainable.

Declaring Enumerations
The general syntax for declaring an enumeration is −

type enum-name =
 | value1 = integer-literal1
 | value2 = integer-literal2
...

The following example demonstrates the use of enumerations −

Example

// Declaration of an enumeration.
type Days =
 | Sun = 0
 | Mon = 1
 | Tues = 2
 | Wed = 3
 | Thurs = 4
 | Fri = 5
 | Sat = 6

// Use of an enumeration.
let weekend1 : Days = Days.Sat
let weekend2 : Days = Days.Sun
let weekDay1 : Days = Days.Mon

printfn "Monday: %A" weekDay1
printfn "Saturday: %A" weekend1
printfn "Sunday: %A" weekend2

When you compile and execute the program, it yields the following output −

Monday: Mon
Saturday: Sat
Sunday: Sun

F# - PATTERN MATCHINGF# - PATTERN MATCHING
Pattern matching allows you to “compare data with a logical structure or structures, decompose
data into constituent parts, or extract information from data in various ways”.

In other terms, it provides a more flexible and powerful way of testing data against a series of
conditions and performing some computations based on the condition met.

Conceptually, it is like a series of if… then statements.

Syntax
In high level terms, pattern matching follows this syntax in F# −

match expr with

| pat1 - result1
| pat2 -> result2
| pat3 when expr2 -> result3
| _ -> defaultResult

Where,

Each | symbol defines a condition.
The -> symbol means "if the condition is true, return this value...".
The _ symbol provides the default pattern, meaning that it matches all other things like a
wildcard.

Example 1
The following example, calculates the Fibonacci numbers using pattern matching syntax −

let rec fib n =
 match n with
 | 0 -> 0
 | 1 -> 1
 | _ -> fib (n - 1) + fib (n - 2)
for i = 1 to 10 do
 printfn "Fibonacci %d: %d" i (fib i)

When you compile and execute the program, it yields the following output −

Fibonacci 1: 1
Fibonacci 2: 1
Fibonacci 3: 2
Fibonacci 4: 3
Fibonacci 5: 5
Fibonacci 6: 8
Fibonacci 7: 13
Fibonacci 8: 21
Fibonacci 9: 34
Fibonacci 10: 55

You can also chain together multiple conditions, which return the same value. For example −

Example 2

let printSeason month =
 match month with
 | "December" | "January" | "February" -> printfn "Winter"
 | "March" | "April" -> printfn "Spring"
 | "May" | "June" -> printfn "Summer"
 | "July" | "August" -> printfn "Rainy"
 | "September" | "October" | "November" -> printfn "Autumn"
 | _ -> printfn "Season depends on month!"

printSeason "February"
printSeason "April"
printSeason "November"
printSeason "July"

When you compile and execute the program, it yields the following output −

Winter
Spring
Autumn
Rainy

Pattern Matching Functions

F# allows you to write pattern matching functions using the function keyword −

let getRate = function
 | "potato" -> 10.00
 | "brinjal" -> 20.50
 | "cauliflower" -> 21.00
 | "cabbage" -> 8.75
 | "carrot" -> 15.00
 | _ -> nan (* nan is a special value meaning "not a number" *)

printfn "%g"(getRate "potato")
printfn "%g"(getRate "brinjal")
printfn "%g"(getRate "cauliflower")
printfn "%g"(getRate "cabbage")
printfn "%g"(getRate "carrot")

When you compile and execute the program, it yields the following output −

10
20.5
21
8.75
15

Adding Filters or Guards to Patterns
You can add filters, or guards, to patterns using the when keyword.

Example 1

let sign = function
 | 0 -> 0
 | x when x < 0 -> -1
 | x when x > 0 -> 1

printfn "%d" (sign -20)
printfn "%d" (sign 20)
printfn "%d" (sign 0)

When you compile and execute the program, it yields the following output −

-1
1
0

Example 2

let compareInt x =
 match x with
 | (var1, var2) when var1 > var2 -> printfn "%d is greater than %d" var1 var2
 | (var1, var2) when var1 < var2 -> printfn "%d is less than %d" var1 var2
 | (var1, var2) -> printfn "%d equals %d" var1 var2

compareInt (11,25)
compareInt (72, 10)
compareInt (0, 0)

When you compile and execute the program, it yields the following output −

11 is less than 25
72 is greater than 10
0 equals 0

Pattern Matching with Tuples
The following example demonstrates the pattern matching with tuples −

let greeting (name, subject) =
 match (name, subject) with
 | ("Zara", _) -> "Hello, Zara"
 | (name, "English") -> "Hello, " + name + " from the department of English"
 | (name, _) when subject.StartsWith("Comp") -> "Hello, " + name + " from the
department of Computer Sc."
 | (_, "Accounts and Finance") -> "Welcome to the department of Accounts and Finance!"
 | _ -> "You are not registered into the system"

printfn "%s" (greeting ("Zara", "English"))
printfn "%s" (greeting ("Raman", "Computer Science"))
printfn "%s" (greeting ("Ravi", "Mathematics"))

When you compile and execute the program, it yields the following output −

Hello, Zara
Hello, Raman from the department of Computer Sc.
You are not registered into the system

Pattern Matching with Records
The following example demonstrates pattern matching with records −

type Point = { x: float; y: float }
let evaluatePoint (point: Point) =
 match point with
 | { x = 0.0; y = 0.0 } -> printfn "Point is at the origin."
 | { x = xVal; y = 0.0 } -> printfn "Point is on the x-axis. Value is %f." xVal
 | { x = 0.0; y = yVal } -> printfn "Point is on the y-axis. Value is %f." yVal
 | { x = xVal; y = yVal } -> printfn "Point is at (%f, %f)." xVal yVal

evaluatePoint { x = 0.0; y = 0.0 }
evaluatePoint { x = 10.0; y = 0.0 }
evaluatePoint { x = 0.0; y = 10.0 }
evaluatePoint { x = 10.0; y = 10.0 }

When you compile and execute the program, it yields the following output −

Point is at the origin.
Point is on the x-axis. Value is 10.000000.
Point is on the y-axis. Value is 10.000000.
Point is at (10.000000, 10.000000).

F# - EXCEPTION HANDLINGF# - EXCEPTION HANDLING
An exception is a problem that arises during the execution of a program. An F# exception is a
response to an exceptional circumstance that arises while a program is running, such as an
attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. F# exception
handling provides the following constructs −

Construct Description

raise expr Raises the given exception.

failwith expr Raises the System.Exception exception.

try expr with rules Catches expressions matching the pattern rules.

try expr finally expr Execution the finally expression both when the computation
is successful and when an exception is raised.

| :? ArgumentException A rule matching the given .NET exception type.

| :? ArgumentException as e A rule matching the given .NET exception type, binding the
name e to the exception object value.

| Failure(msg) → expr A rule matching the given data-carrying F# exception.

| exn → expr A rule matching any exception, binding the name exn to the
exception object value.

| exn when expr → expr A rule matching the exception under the given condition,
binding the name exn to the exception object value.

Let us start with the basic syntax of Exception Handling.

Syntax
Basic syntax for F# exception handling block is −

exception exception-type of argument-type

Where,

exception-type is the name of a new F# exception type.

argument-type represents the type of an argument that can be supplied when you raise an
exception of this type.

Multiple arguments can be specified by using a tuple type for argument-type.

The try...with expression is used for exception handling in the F# language.

Syntax for the try … with expression is −

try
 expression1
with
 | pattern1 -> expression2
 | pattern2 -> expression3
...

The try...finally expression allows you to execute clean-up code even if a block of code throws an
exception.

Syntax for the try … finally expression is −

try
 expression1
finally
 expression2

The raise function is used to indicate that an error or exceptional condition has occurred. It also
captures the information about the error in an exception object.

Syntax for the raise function is −

raise (expression)

The failwith function generates an F# exception.

Syntax for the failwith function is −

failwith error-message-string

The invalidArg function generates an argument exception.

invalidArg parameter-name error-message-string

Example of Exception Handling

Example 1
The following program shows the basic exception handling with a simple try… with block −

let divisionprog x y =
 try
 Some (x / y)
 with
 | :? System.DivideByZeroException -> printfn "Division by zero!"; None

let result1 = divisionprog 100 0

When you compile and execute the program, it yields the following output −

Division by zero!

Example 2
F# provides an exception type for declaring exceptions. You can use an exception type directly in
the filters in a try...with expression.

The following example demonstrates this −

exception Error1 of string
// Using a tuple type as the argument type.
exception Error2 of string * int

let myfunction x y =
 try
 if x = y then raise (Error1("Equal Number Error"))
 else raise (Error2("Error Not detected", 100))
 with
 | Error1(str) -> printfn "Error1 %s" str
 | Error2(str, i) -> printfn "Error2 %s %d" str i
myfunction 20 10
myfunction 5 5

When you compile and execute the program, it yields the following output −

Error2 Error Not detected 100
Error1 Equal Number Error

Example 3
The following example demonstrates nested exception handling −

exception InnerError of string
exception OuterError of string

let func1 x y =
 try
 try
 if x = y then raise (InnerError("inner error"))
 else raise (OuterError("outer error"))

 with
 | InnerError(str) -> printfn "Error:%s" str
 finally
 printfn "From the finally block."

let func2 x y =
 try
 func1 x y
 with
 | OuterError(str) -> printfn "Error: %s" str

func2 100 150
func2 100 100
func2 100 120

When you compile and execute the program, it yields the following output −

From the finally block.
Error: outer error
Error:inner error
From the finally block.
From the finally block.
Error: outer error

Example 4
The following function demonstrates the failwith function −

let divisionFunc x y =
 if (y = 0) then failwith "Divisor cannot be zero."
 else
 x / y

let trydivisionFunc x y =
 try
 divisionFunc x y
 with
 | Failure(msg) -> printfn "%s" msg; 0

let result1 = trydivisionFunc 100 0
let result2 = trydivisionFunc 100 4
printfn "%A" result1
printfn "%A" result2

When you compile and execute the program, it yields the following output −

Divisor cannot be zero.
0
25

Example 5
The invalidArg function generates an argument exception. The following program demonstrates
this −

let days = [| "Sunday"; "Monday"; "Tuesday"; "Wednesday"; "Thursday"; "Friday";
"Saturday" |]
let findDay day =
 if (day > 7 || day < 1)
 then invalidArg "day" (sprintf "You have entered %d." day)
 days.[day - 1]

printfn "%s" (findDay 1)
printfn "%s" (findDay 5)
printfn "%s" (findDay 9)

When you compile and execute the program, it yields the following output −

Sunday
Thursday
Unhandled Exception:
System.ArgumentException: You have entered 9.
…

Some other information about the file and variable causing error in the system will also be
displayed, depending upon the system.

F# - CLASSESF# - CLASSES
Classes are types that represent objects that can have properties, methods, and events. ‘They are
used to model actions, processes, and any conceptual entities in applications.’

Syntax
Syntax for defining a class type is as follows −

// Class definition:
type [access-modifier] type-name [type-params] [access-modifier] (parameter-list) [as
identifier] =
 [class]
 [inherit base-type-name(base-constructor-args)]
 [let-bindings]
 [do-bindings]
 member-list
 ...
 [end]

// Mutually recursive class definitions:
type [access-modifier] type-name1 ...
and [access-modifier] type-name2 ...
...

Where,

The type-name is any valid identifier. Default access modifier for this is public.

The type-params describes optional generic type parameters.

The parameter-list describes constructor parameters. Default access modifier for primary
constructor is public.

The identifier used with the optional as keyword gives a name to the instance variable, or
self-identifier, which can be used in the type definition to refer to the instance of the type.

The inherit keyword allows you to specify the base class for a class.

The let bindings allow you to declare fields or function values local to the class.

The do-bindings section includes code to be executed upon object construction.

The member-list consists of additional constructors, instance and static method
declarations, interface declarations, abstract bindings, and property and event declarations.

The keywords class and end that mark the start and end of the definition are optional.

Constructor of a Class
The constructor is code that creates an instance of the class type.

In F#, constructors work little differently than other .Net languages. In the class definition, the
arguments of the primary constructor are described as parameter-list.

The body of the constructor consists of the let and do bindings.

You can add additional constructors by using the new keyword to add a member −

new (argument-list) = constructor-body

The following example illustrates the concept −

Example
The following program creates a line class along with a constructor that calculates the length of
the line while an object of the class is created −

type Line = class
 val X1 : float
 val Y1 : float
 val X2 : float
 val Y2 : float

 new (x1, y1, x2, y2) as this =
 { X1 = x1; Y1 = y1; X2 = x2; Y2 = y2;}
 then
 printfn " Creating Line: {(%g, %g), (%g, %g)}\nLength: %g"
 this.X1 this.Y1 this.X2 this.Y2 this.Length

 member x.Length =
 let sqr x = x * x
 sqrt(sqr(x.X1 - x.X2) + sqr(x.Y1 - x.Y2))
end
let aLine = new Line(1.0, 1.0, 4.0, 5.0)

When you compile and execute the program, it yields the following output −

Creating Line: {(1, 1), (4, 5)}
Length: 5

Let Bindings
The let bindings in a class definition allow you to define private fields and private functions for F#
classes.

type Greetings(name) as gr =
 let data = name
 do
 gr.PrintMessage()
 member this.PrintMessage() =
 printf "Hello %s\n" data
let gtr = new Greetings("Zara")

When you compile and execute the program, it yields the following output −

Hello Zara

Please note the use of self-identifier gr for the Greetings class.

F# - STRUCTURESF# - STRUCTURES
A structure in F# is a value type data type. It helps you to make a single variable, hold related data
of various data types. The struct keyword is used for creating a structure.

Syntax
Syntax for defining a structure is as follows −

[attributes]
type [accessibility-modifier] type-name =
 struct
 type-definition-elements
 end
// or
[attributes]
[<StructAttribute>]
type [accessibility-modifier] type-name =
 type-definition-elements

There are two syntaxes. The first syntax is mostly used, because, if you use the struct and end
keywords, you can omit the StructAttribute attribute.

The structure definition elements provide −

Member declarations and definitions.
Constructors and mutable and immutable fields.
Members and interface implementations.

Unlike classes, structures cannot be inherited and cannot contain let or do bindings. Since,
structures do not have let bindings; you must declare fields in structures by using the val keyword.

When you define a field and its type using val keyword, you cannot initialize the field value,
instead they are initialized to zero or null. So for a structure having an implicit constructor, the val
declarations be annotated with the DefaultValue attribute.

Example
The following program creates a line structure along with a constructor. The program calculates
the length of a line using the structure −

type Line = struct
 val X1 : float
 val Y1 : float
 val X2 : float
 val Y2 : float

 new (x1, y1, x2, y2) =
 {X1 = x1; Y1 = y1; X2 = x2; Y2 = y2;}
end
let calcLength(a : Line)=
 let sqr a = a * a
 sqrt(sqr(a.X1 - a.X2) + sqr(a.Y1 - a.Y2))

let aLine = new Line(1.0, 1.0, 4.0, 5.0)
let length = calcLength aLine
printfn "Length of the Line: %g " length

When you compile and execute the program, it yields the following output −

Length of the Line: 5

F# - OPERATOR OVERLOADINGF# - OPERATOR OVERLOADING
You can redefine or overload most of the built-in operators available in F#. Thus a programmer
can use operators with user-defined types as well.

Operators are functions with special names, enclosed in brackets. They must be defined as static
class members. Like any other function, an overloaded operator has a return type and a
parameter list.

The following example, shows a + operator on complex numbers −

//overloading + operator
static member (+) (a : Complex, b: Complex) =
Complex(a.x + b.x, a.y + b.y)

The above function implements the addition operator (+) for a user-defined class Complex. It
adds the attributes of two objects and returns the resultant Complex object.

Implementation of Operator Overloading
The following program shows the complete implementation −

//implementing a complex class with +, and - operators
//overloaded
type Complex(x: float, y : float) =
 member this.x = x
 member this.y = y
 //overloading + operator
 static member (+) (a : Complex, b: Complex) =
 Complex(a.x + b.x, a.y + b.y)

 //overloading - operator
 static member (-) (a : Complex, b: Complex) =
 Complex(a.x - b.x, a.y - b.y)

 // overriding the ToString method
 override this.ToString() =
 this.x.ToString() + " " + this.y.ToString()

//Creating two complex numbers
let c1 = Complex(7.0, 5.0)
let c2 = Complex(4.2, 3.1)

// addition and subtraction using the
//overloaded operators
let c3 = c1 + c2
let c4 = c1 - c2

//printing the complex numbers
printfn "%s" (c1.ToString())
printfn "%s" (c2.ToString())
printfn "%s" (c3.ToString())
printfn "%s" (c4.ToString())

When you compile and execute the program, it yields the following output −

7 5
4.2 3.1
11.2 8.1
2.8 1.9

F# - INHERITANCEF# - INHERITANCE
One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to create
and maintain an application. This also provides an opportunity to reuse the code functionality and
fast implementation time.

When creating a class, instead of writing completely new data members and member functions,
the programmer can designate that the new class should inherit the members of an existing class.
This existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS A animal, dog
IS-A mammal hence dog IS-A animal as well and so on.

Base Class and Sub Class

A subclass is derived from a base class, which is already defined. A subclass inherits the members
of the base class, as well as has its own members.

A subclass is defined using the inherit keyword as shown below −

type MyDerived(...) =
 inherit MyBase(...)

In F#, a class can have at most one direct base class. If you do not specify a base class by using
the inherit keyword, the class implicitly inherits from Object.

Please note −

The methods and members of the base class are available to users of the derived class like
the direct members of the derived class.

Let bindings and constructor parameters are private to a class and, therefore, cannot be
accessed from derived classes.

The keyword base refers to the base class instance. It is used like the self-identifier.

Example

type Person(name) =
 member x.Name = name
 member x.Greet() = printfn "Hi, I'm %s" x.Name

type Student(name, studentID : int) =
 inherit Person(name)
 let mutable _GPA = 0.0
 member x.StudentID = studentID
 member x.GPA
 with get() = _GPA
 and set value = _GPA <- value

type Teacher(name, expertise : string) =
 inherit Person(name)

 let mutable _salary = 0.0
 member x.Salary
 with get() = _salary
 and set value = _salary <- value
 member x.Expertise = expertise

//using the subclasses
let p = new Person("Mohan")
let st = new Student("Zara", 1234)
let tr = new Teacher("Mariam", "Java")

p.Greet()
st.Greet()
tr.Greet()

When you compile and execute the program, it yields the following output −

Hi, I'm Mohan
Hi, I'm Zara
Hi, I'm Mariam

Overriding Methods
You can override a default behavior of a base class method and implement it differently in the
subclass or the derived class.

Methods in F# are not overridable by default.

To override methods in a derived class, you have to declare your method as overridable using the
abstract and default keywords as follows −

type Person(name) =
 member x.Name = name
 abstract Greet : unit -> unit
 default x.Greet() = printfn "Hi, I'm %s" x.Name

Now, the Greet method of the Person class can be overridden in derived classes. The following
example demonstrates this −

Example

type Person(name) =
 member x.Name = name
 abstract Greet : unit -> unit
 default x.Greet() = printfn "Hi, I'm %s" x.Name

type Student(name, studentID : int) =
 inherit Person(name)

 let mutable _GPA = 0.0

 member x.StudentID = studentID
 member x.GPA
 with get() = _GPA
 and set value = _GPA <- value
 override x.Greet() = printfn "Student %s" x.Name

type Teacher(name, expertise : string) =
 inherit Person(name)
 let mutable _salary = 0.0
 member x.Salary
 with get() = _salary
 and set value = _salary <- value

 member x.Expertise = expertise
 override x.Greet() = printfn "Teacher %s." x.Name

//using the subclasses
let p = new Person("Mohan")
let st = new Student("Zara", 1234)
let tr = new Teacher("Mariam", "Java")

//default Greet
p.Greet()

//Overriden Greet
st.Greet()
tr.Greet()

When you compile and execute the program, it yields the following output −

Hi, I'm Mohan
Student Zara
Teacher Mariam.

Abstract Class
At times you need to provide an incomplete implementation of an object, which should not be
implemented in reality. Later, some other programmer should create subclasses of the abstract
class to a complete implementation.

For example, the Person class will not be needed in a School Management System. However, the
Student or the Teacher class will be needed. In such cases, you can declare the Person class as an
abstract class.

The AbstractClass attribute tells the compiler that the class has some abstract members.

You cannot create an instance of an abstract class because the class is not fully implemented.

The following example demonstrates this −

Example

[<AbstractClass>]
type Person(name) =
 member x.Name = name
 abstract Greet : unit -> unit

type Student(name, studentID : int) =
 inherit Person(name)
 let mutable _GPA = 0.0
 member x.StudentID = studentID
 member x.GPA
 with get() = _GPA
 and set value = _GPA <- value
 override x.Greet() = printfn "Student %s" x.Name

type Teacher(name, expertise : string) =
 inherit Person(name)
 let mutable _salary = 0.0
 member x.Salary
 with get() = _salary
 and set value = _salary <- value
 member x.Expertise = expertise
 override x.Greet() = printfn "Teacher %s." x.Name

let st = new Student("Zara", 1234)
let tr = new Teacher("Mariam", "Java")

//Overriden Greet
st.Greet()
tr.Greet()

When you compile and execute the program, it yields the following output −

Student Zara
Teacher Mariam.

F# - INTERFACESF# - INTERFACES
Interfaces provide an abstract way of writing up the implementation details of a class. It is a
template that declares the methods the class must implement and expose publicly.

Syntax
An interface specifies the sets of related members that other classes implement. It has the
following syntax −

// Interface declaration:
[attributes]
type interface-name =
 [interface]
 [inherit base-interface-name ...]
 abstract member1 : [argument-types1 ->] return-type1
 abstract member2 : [argument-types2 ->] return-type2
 ...
 [end]

// Implementing, inside a class type definition:
interface interface-name with
 member self-identifier.member1 argument-list = method-body1

 member self-identifier.member2 argument-list = method-body2
// Implementing, by using an object expression:
[attributes]
let class-name (argument-list) =
 { new interface-name with
 member self-identifier.member1 argument-list = method-body1
 member self-identifier.member2 argument-list = method-body2
 [base-interface-definitions]
 }
member-list

Please note −

In an interface declaration the members are not implemented.

The members are abstract, declared by the abstract keyword. However you may provide a
default implementation using the default keyword.

You can implement interfaces either by using object expressions or by using class types.

In class or object implementation, you need to provide method bodies for abstract methods
of the interface.

The keywords interface and end, which mark the start and end of the definition, are
optional.

For example,

type IPerson =
 abstract Name : string
 abstract Enter : unit -> unit
 abstract Leave : unit -> unit

Calling Interface Methods
Interface methods are called through the interface, not through the instance of the class or type
implementing interface. To call an interface method, you up cast to the interface type by using the
:> operator (upcast operator).

For example,

(s :> IPerson).Enter()
(s :> IPerson).Leave()

The following example illustrates the concept −

Example

type IPerson =
 abstract Name : string
 abstract Enter : unit -> unit
 abstract Leave : unit -> unit

type Student(name : string, id : int) =
 member this.ID = id
 interface IPerson with
 member this.Name = name
 member this.Enter() = printfn "Student entering premises!"
 member this.Leave() = printfn "Student leaving premises!"

type StuffMember(name : string, id : int, salary : float) =
 let mutable _salary = salary

 member this.Salary
 with get() = _salary
 and set(value) = _salary <- value

 interface IPerson with
 member this.Name = name
 member this.Enter() = printfn "Stuff member entering premises!"
 member this.Leave() = printfn "Stuff member leaving premises!"

let s = new Student("Zara", 1234)
let st = new StuffMember("Rohit", 34, 50000.0)

(s :> IPerson).Enter()
(s :> IPerson).Leave()
(st :> IPerson).Enter()
(st :> IPerson).Leave()

When you compile and execute the program, it yields the following output −

Student entering premises!
Student leaving premises!
Stuff member entering premises!
Stuff member leaving premises!

Interface Inheritance
Interfaces can inherit from one or more base interfaces.

The following example shows the concept −

type Interface1 =
 abstract member doubleIt: int -> int

type Interface2 =
 abstract member tripleIt: int -> int

type Interface3 =
 inherit Interface1
 inherit Interface2
 abstract member printIt: int -> string

type multiplierClass() =
 interface Interface3 with
 member this.doubleIt(a) = 2 * a
 member this.tripleIt(a) = 3 * a
 member this.printIt(a) = a.ToString()

let ml = multiplierClass()
printfn "%d" ((ml:>Interface3).doubleIt(5))
printfn "%d" ((ml:>Interface3).tripleIt(5))
printfn "%s" ((ml:>Interface3).printIt(5))

When you compile and execute the program, it yields the following output −

10
15
5

F# - EVENTSF# - EVENTS
Events allow classes to send and receive messages between one another.

In GUI, events are user actions like key press, clicks, mouse movements, etc., or some occurrence
like system generated notifications. Applications need to respond to events when they occur. For
example, interrupts. Events are used for inter-process communication.

Objects communicate with one another through synchronous message passing.

Events are attached to other functions; objects register callback functions to an event, and these

callbacks are executed when (and if) the event is triggered by some object.

The Event Class and Event Module
The Control.Event<'T> Class helps in creating an observable object or event.

It has the following instance members to work with the events −

Member Description

Publish Publishes an observation as a first class value.

Trigger Triggers an observation using the given parameters.

The Control.Event Module provides functions for managing event streams −

Value Description

add : ('T → unit) → Event<'Del,'T> → unit Runs the given function each time the given
event is triggered.

choose : ('T → 'U option) → IEvent<'Del,'T> →
IEvent<'U>

Returns a new event which fires on a selection of
messages from the original event. The selection
function takes an original message to an
optional new message.

filter : ('T → bool) → IEvent<'Del,'T> →
IEvent<'T>

Returns a new event that listens to the original
event and triggers the resulting event only when
the argument to the event passes the given
function.

map : ('T → 'U) → IEvent<'Del, 'T> →
IEvent<'U>

Returns a new event that passes values
transformed by the given function.

merge : IEvent<'Del1,'T> →
IEvent<'Del2,'T> → IEvent<'T>

Fires the output event when either of the input
events fire.

pairwise : IEvent<'Del,'T> → IEvent<'T * 'T> Returns a new event that triggers on the second
and subsequent triggering of the input event.
The Nth triggering of the input event passes the
arguments from the N-1th and Nth triggering
as a pair. The argument passed to the N-1th
triggering is held in hidden internal state until
the Nth triggering occurs.

partition : ('T → bool) → IEvent<'Del,'T> →
IEvent<'T> * IEvent<'T>

Returns a new event that listens to the original
event and triggers the first resulting event if the
application of the predicate to the event
arguments returned true, and the second event
if it returned false.

scan : ('U → 'T → 'U) → 'U → IEvent<'Del,'T>
→ IEvent<'U>

Returns a new event consisting of the results of
applying the given accumulating function to
successive values triggered on the input event.
An item of internal state records the current
value of the state parameter. The internal state
is not locked during the execution of the
accumulation function, so care should be taken
that the input IEvent not triggered by multiple
threads simultaneously.

split : ('T → Choice<'U1,'U2>) →
IEvent<'Del,'T> → IEvent<'U1> *

Returns a new event that listens to the original
event and triggers the first resulting event if the

IEvent<'U2> application of the function to the event
arguments returned a Choice1Of2, and the
second event if it returns a Choice2Of2.

Creating Events
Events are created and used through the Event class. The Event constructor is used for creating
an event.

Example

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;
 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.Name
 with get() = _name
 and set(value) = _name <- value

 member this.Shift
 with get() = _shift
 and set(value) = _shift <- value

After this you need to expose the nameChanged field as a public member, so that the listeners can
hook onto the event for which, you use the Publish property of the event −

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;

 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.NameChanged = nameChanged.Publish (* exposed event handler *)
 member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

 member this.Name
 with get() = _name
 and set(value) = _name <- value
 nameChanged.Trigger() (* invokes event handler *)

 member this.Shift
 with get() = _shift
 and set(value) = _shift <- value
 shiftChanged.Trigger() (* invokes event handler *)

Next, you add callbacks to event handlers. Each event handler has the type IEvent<'T>, which
provides several methods −

Method Description

val Add : event:('T → unit) → unit Connects a listener function to the event. The listener
will be invoked when the event is fired.

val AddHandler : 'del → unit Connects a handler delegate object to the event. A
handler can be later removed using RemoveHandler.
The listener will be invoked when the event is fired.

val RemoveHandler : 'del → unit Removes a listener delegate from an event listener
store.

The following section provides a complete example.

Example
The following example demonstrates the concept and techniques discussed above −

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;

 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.NameChanged = nameChanged.Publish (* exposed event handler *)
 member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

 member this.Name
 with get() = _name
 and set(value) =
 _name <- value
 nameChanged.Trigger() (* invokes event handler *)

 member this.Shift
 with get() = _shift
 and set(value) =
 _shift <- value
 shiftChanged.Trigger() (* invokes event handler *)

let wk = new Worker("Wilson", "Evening")
wk.NameChanged.Add(fun () -> printfn "Worker changed name! New name: %s" wk.Name)
wk.Name <- "William"
wk.NameChanged.Add(fun () -> printfn "-- Another handler attached to NameChanged!")
wk.Name <- "Bill"

wk.ShiftChanged.Add(fun () -> printfn "Worker changed shift! New shift: %s" wk.Shift)
wk.Shift <- "Morning"
wk.ShiftChanged.Add(fun () -> printfn "-- Another handler attached to ShiftChanged!")
wk.Shift <- "Night"

When you compile and execute the program, it yields the following output −

Worker changed name! New name: William
Worker changed name! New name: Bill
-- Another handler attached to NameChanged!
Worker changed shift! New shift: Morning
Worker changed shift! New shift: Night
-- Another handler attached to ShiftChanged!

F# - MODULESF# - MODULES
As per MSDN library, an F# module is a grouping of F# code constructs, such as types, values,
function values, and code in do bindings. It is implemented as a common language runtime (CLR)
class that has only static members.

Depending upon the situation whether the whole file is included in the module, there are two types
of module declarations −

Top-level module declaration
Local module declaration

In a top-level module declaration the whole file is included in the module. In this case, the first
declaration in the file is the module declaration. You do not have to indent declarations in a top-
level module.

In a local module declaration, only the declarations that are indented under that module
declaration are part of the module.

Syntax
Syntax for module declaration is as follows −

// Top-level module declaration.
module [accessibility-modifier] [qualified-namespace.]module-name
 declarations
// Local module declaration.
module [accessibility-modifier] module-name =
 declarations

Please note that the accessibility-modifier can be one of the following − public, private, internal.
The default is public.

The following examples will demonstrate the concepts −

Example 1
The module file Arithmetic.fs −

module Arithmetic
let add x y =
 x + y

let sub x y =
 x - y

let mult x y =
 x * y

let div x y =
 x / y

The program file main.fs −

// Fully qualify the function name.
let addRes = Arithmetic.add 25 9
let subRes = Arithmetic.sub 25 9
let multRes = Arithmetic.mult 25 9
let divRes = Arithmetic.div 25 9

printfn "%d" addRes
printfn "%d" subRes
printfn "%d" multRes
printfn "%d" divRes

// Opening the module.
open Arithmetic

let addRes2 = Arithmetic.add 100 10
let subRes2 = Arithmetic.sub 100 10
let multRes2 = Arithmetic.mult 100 10
let divRes2 = Arithmetic.div 100 10

printfn "%d" addRes2
printfn "%d" subRes2
printfn "%d" multRes2
printfn "%d" divRes2

When you compile and execute the program, it yields the following output −

34
16
225
2
110

90
1000
10

Example 2

// Module1
module module1 =
 // Indent all program elements within modules that are declared with an equal sign.
 let value1 = 100
 let module1Function x =
 x + value1

// Module2
module module2 =
 let value2 = 200

 // Use a qualified name to access the function.
 // from module1.
 let module2Function x =
 x + (module1.module1Function value2)

let result = module1.module1Function 25
printfn "%d" result

let result2 = module2.module2Function 25
printfn "%d" result2

When you compile and execute the program, it yields the following output −

125
325

F# - NAMESPACESF# - NAMESPACES
A namespace is designed for providing a way to keep one set of names separate from another.
The class names declared in one namespace will not conflict with the same class names declared
in another.

As per the MSDN library, a namespace lets you organize code into areas of related functionality by
enabling you to attach a name to a grouping of program elements.

Declaring a Namespace
To organize your code in a namespace, you must declare the namespace as the first declaration in
the file. The contents of the entire file then become part of the namespace.

namespace [parent-namespaces.]identifier

The following example illustrates the concept −

Example

namespace testing

module testmodule1 =
 let testFunction x y =
 printfn "Values from Module1: %A %A" x y
module testmodule2 =
 let testFunction x y =
 printfn "Values from Module2: %A %A" x y

module usermodule =
 do
 testmodule1.testFunction ("one", "two", "three") 150

 testmodule2.testFunction (seq { for i in 1 .. 10 do yield i * i }) 200

When you compile and execute the program, it yields the following output −

Values from Module1: ("one", "two", "three") 150
Values from Module2: seq [1; 4; 9; 16; ...] 200

