F# - PATTERN MATCHING

Pattern matching allows you to “compare data with a logical structure or structures, decompose
data into constituent parts, or extract information from data in various ways”.

In other terms, it provides a more flexible and powerful way of testing data against a series of
conditions and performing some computations based on the condition met.

Conceptually, itis like a series of if... then statements.

Syntax

In high level terms, pattern matching follows this syntax in F# —

match expr with

| patl - resultl

| pat2 -> result2

| pat3 when expr2 -> result3
| _ -> defaultResult

Where,

e Each | symbol defines a condition.
e The -> symbol means "if the condition is true, return this value...".

e The _symbol provides the default pattern, meaning that it matches all other things like a
wildcard.

Example 1

The following example, calculates the Fibonacci numbers using pattern matching syntax —

let rec fib n =
match n with
| @ -> 0
| 1 -> 1
| — -> fib (n - 1) + fib (n - 2)
for i = 1 to 10 do
printfn "Fibonacci %d: %d" i (fib 1)

When you compile and execute the program, it yields the following output —

Fibonacci 1: 1
Fibonacci 2: 1
Fibonacci 3: 2
Fibonacci 4: 3
Fibonacci 5: 5
Fibonacci 6: 8
Fibonacci 7: 13
Fibonacci 8: 21
Fibonacci 9: 34
Fibonacci 10: 55

You can also chain together multiple conditions, which return the same value. For example —
Example 2

let printSeason month =
match month with
| "December" | "January" | "February" -> printfn "wWinter"
| "March" | "April" -> printfn "Spring"
| "May" | "June" -> printfn "Summer"

http://www.tutorialspoint.com/fsharp/fsharp_pattern_matching.htm

| "July" | "August" -> printfn "Rainy"
| "September" | "October" | "November" -> printfn "Autumn"
| _ -> printfn "Season depends on month!"

printSeason "February"
printSeason "April"
printSeason "November"
printSeason "July"

When you compile and execute the program, it yields the following output —

Winter
Spring
Autumn
Rainy

Pattern Matching Functions

F# allows you to write pattern matching functions using the function keyword —

let getRate = function
| "potato" -> 10.00
| "brinjal" -> 20.50
| "cauliflower" -> 21.00
| "cabbage" -> 8.75
| "carrot" -> 15.00
| _ ->nan (* nan is a special value meaning "not a number'" *)

printfn "%g"(getRate "potato")
printfn "%g" (getRate "brinjal')
printfn "%g"(getRate "cauliflower")
printfn "%g" (getRate '"cabbage")
printfn "%g"(getRate "carrot")

When you compile and execute the program, it yields the following output —

10
20.5
21
8.75
15

Adding Filters or Guards to Patterns

You can add filters, or guards, to patterns using the when keyword.

Example 1

let sign = function
| © -> 0
| x when x < 0 -> -1
| x when x > 0 -> 1

printfn "%d" (sign -20)

printfn "%d" (sign 20)
printfn "%d" (sign 0)

When you compile and execute the program, it yields the following output —
-1

1
0

Example 2

let compareInt x =
match x with
| (varl, var2) when varl > var2 -> printfn "%d is greater than %d" varl var2
| (varl, var2) when varl < var2 -> printfn "%d is less than %d" varl var2
| (varl, var2) -> printfn "%d equals %d" varl var2

compareInt (11,25)

compareInt (72, 10)
compareInt (0, 0)

When you compile and execute the program, it yields the following output —

11 is less than 25
72 is greater than 10
0 equals 0

Pattern Matching with Tuples
The following example demonstrates the pattern matching with tuples —

let greeting (name, subject) =
match (name, subject) with

| ("zara", _) -> "Hello, Zara"
| (name, "English") -> "Hello, " + name + " from the department of English"
| (name, _) when subject.Startswith("Comp") -> "Hello, " + name + " from the

department of Computer Sc."
| (_, "Accounts and Finance") -> "Welcome to the department of Accounts and Finance!"
| _ -> "You are not registered into the system"

printfn "%s" (greeting ("Zzara", "English"))

printfn "%s" (greeting ("Raman", "Computer Science"))
printfn "%s" (greeting ("Ravi", "Mathematics"))

When you compile and execute the program, it yields the following output —

Hello, Zara
Hello, Raman from the department of Computer Sc.
You are not registered into the system

Pattern Matching with Records

The following example demonstrates pattern matching with records —

type Point = { x: float; y: float }
let evaluatePoint (point: Point) =
match point with

| { x =0.0; vy = 0.0 } -> printfn "Point is at the origin."
| { x = xval; y = 0.0 } -> printfn "Point is on the x-axis. Value is %f." xVal
| { x = 0.0; y = yval } -> printfn "Point is on the y-axis. Value is %f." yVval
| { x = xval; y = yval } -> printfn "Point is at (%f, %f)." xval yval
evaluatePoint { x = 0.0; y = 0.0 }
evaluatePoint { x = 10.0; y = 0.0 }
evaluatePoint { x = 0.0; y = 10.0 }
evaluatePoint { x = 10.0; y = 10.0 }

When you compile and execute the program, it yields the following output —

Point is at the origin.

Point is on the x-axis. Value is 10.000000.
Point is on the y-axis. Value is 10.000000.
Point is at (10.000000, 10.000000).

