
http://www.tutorialspoint.com/fsharp/fsharp_events.htm Copyright © tutorialspoint.com

F# - EVENTSF# - EVENTS

Events allow classes to send and receive messages between one another.

In GUI, events are user actions like key press, clicks, mouse movements, etc., or some occurrence
like system generated notifications. Applications need to respond to events when they occur. For
example, interrupts. Events are used for inter-process communication.

Objects communicate with one another through synchronous message passing.

Events are attached to other functions; objects register callback functions to an event, and these
callbacks are executed when andif the event is triggered by some object.

The Event Class and Event Module
The Control.Event<'T> Class helps in creating an observable object or event.

It has the following instance members to work with the events −

Member Description

Publish Publishes an observation as a first class value.

Trigger Triggers an observation using the given parameters.

The Control.Event Module provides functions for managing event streams −

Value Description

add : ′T → unit → Event<'Del,'T> → unit Runs the given function each time the given
event is triggered.

choose : ′T → ′Uoption → IEvent<'Del,'T> →
IEvent<'U>

Returns a new event which fires on a selection of
messages from the original event. The selection
function takes an original message to an
optional new message.

filter : ′T → bool → IEvent<'Del,'T> →
IEvent<'T>

Returns a new event that listens to the original
event and triggers the resulting event only when
the argument to the event passes the given
function.

map : ′T → ′U → IEvent<'Del, 'T> →
IEvent<'U>

Returns a new event that passes values
transformed by the given function.

merge : IEvent<'Del1,'T> →
IEvent<'Del2,'T> → IEvent<'T>

Fires the output event when either of the input
events fire.

pairwise : IEvent<'Del,'T> → IEvent<'T * 'T> Returns a new event that triggers on the second
and subsequent triggering of the input event.
The Nth triggering of the input event passes the
arguments from the N-1th and Nth triggering
as a pair. The argument passed to the N-1th
triggering is held in hidden internal state until
the Nth triggering occurs.

partition : ′T → bool → IEvent<'Del,'T> →
IEvent<'T> * IEvent<'T>

Returns a new event that listens to the original
event and triggers the first resulting event if the
application of the predicate to the event

http://www.tutorialspoint.com/fsharp/fsharp_events.htm

arguments returned true, and the second event
if it returned false.

scan : ′U → ′T → ′U → 'U → IEvent<'Del,'T> →
IEvent<'U>

Returns a new event consisting of the results of
applying the given accumulating function to
successive values triggered on the input event.
An item of internal state records the current
value of the state parameter. The internal state
is not locked during the execution of the
accumulation function, so care should be taken
that the input IEvent not triggered by multiple
threads simultaneously.

split : ′T → Choice < ′U1, ′U2 > →
IEvent<'Del,'T> → IEvent<'U1> *
IEvent<'U2>

Returns a new event that listens to the original
event and triggers the first resulting event if the
application of the function to the event
arguments returned a Choice1Of2, and the
second event if it returns a Choice2Of2.

Creating Events
Events are created and used through the Event class. The Event constructor is used for creating
an event.

Example

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;
 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.Name
 with get() = _name
 and set(value) = _name <- value

 member this.Shift
 with get() = _shift
 and set(value) = _shift <- value

After this you need to expose the nameChanged field as a public member, so that the listeners can
hook onto the event for which, you use the Publish property of the event −

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;

 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.NameChanged = nameChanged.Publish (* exposed event handler *)
 member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

 member this.Name
 with get() = _name
 and set(value) = _name <- value
 nameChanged.Trigger() (* invokes event handler *)

 member this.Shift
 with get() = _shift
 and set(value) = _shift <- value
 shiftChanged.Trigger() (* invokes event handler *)

Next, you add callbacks to event handlers. Each event handler has the type IEvent<'T>, which
provides several methods −

Method Description

val Add : event: ′T → unit → unit Connects a listener function to the event. The listener
will be invoked when the event is fired.

val AddHandler : 'del → unit Connects a handler delegate object to the event. A
handler can be later removed using RemoveHandler.
The listener will be invoked when the event is fired.

val RemoveHandler : 'del → unit Removes a listener delegate from an event listener
store.

The following section provides a complete example.

Example
The following example demonstrates the concept and techniques discussed above −

type Worker(name : string, shift : string) =
 let mutable _name = name;
 let mutable _shift = shift;

 let nameChanged = new Event<unit>() (* creates event *)
 let shiftChanged = new Event<unit>() (* creates event *)

 member this.NameChanged = nameChanged.Publish (* exposed event handler *)
 member this.ShiftChanged = shiftChanged.Publish (* exposed event handler *)

 member this.Name
 with get() = _name
 and set(value) =
 _name <- value
 nameChanged.Trigger() (* invokes event handler *)

 member this.Shift
 with get() = _shift
 and set(value) =
 _shift <- value
 shiftChanged.Trigger() (* invokes event handler *)

let wk = new Worker("Wilson", "Evening")
wk.NameChanged.Add(fun () -> printfn "Worker changed name! New name: %s" wk.Name)
wk.Name <- "William"
wk.NameChanged.Add(fun () -> printfn "-- Another handler attached to NameChanged!")
wk.Name <- "Bill"

wk.ShiftChanged.Add(fun () -> printfn "Worker changed shift! New shift: %s" wk.Shift)
wk.Shift <- "Morning"
wk.ShiftChanged.Add(fun () -> printfn "-- Another handler attached to ShiftChanged!")
wk.Shift <- "Night"

When you compile and execute the program, it yields the following output −

Worker changed name! New name: William
Worker changed name! New name: Bill
-- Another handler attached to NameChanged!
Worker changed shift! New shift: Morning
Worker changed shift! New shift: Night
-- Another handler attached to ShiftChanged!

Loading [MathJax]/jax/output/HTML-CSS/jax.js

