F# - DELEGATES

A delegate is a reference type variable that holds the reference to a method. The reference can
be changed at runtime. F# delegates are similar to pointers to functions, in C or C++.

Declaring Delegates

Delegate declaration determines the methods that can be referenced by the delegate. A delegate
can refer to a method, which have the same signature as that of the delegate.

Syntax for delegate declaration is —

type delegate-typename = delegate of typel -> type2

For example, consider the delegates —

// Delegatel works with tuple arguments.

type Delegatel = delegate of (int * int) -> int
// Delegate2 works with curried arguments.

type Delegate2 = delegate of int * int -> int

Both the delegates can be used to reference any method that has two int parameters and returns
an int type variable.

In the syntax —
e typel represents the argument types.
e type2 represents the return type.

Please note —

The argument types are automatically curried.
e Delegates can be attached to function values, and static or instance methods.
e F# function values can be passed directly as arguments to delegate constructors.

¢ For a static method the delegate is called by using the name of the class and the method. For
an instance method, the name of the object instance and method is used.

e The Invoke method on the delegate type calls the encapsulated function.

e Also, delegates can be passed as function values by referencing the Invoke method name
without the parentheses.

The following example demonstrates the concept —

Example

type Myclass() =

static member add(a : int, b : int) =
a-+h

static member sub (a : int) (b : int) =
a-»b

member x.Add(a : int, b : int) =
a-+hb

member x.Sub(a : int) (b : int) =
a-»b

// Delegatel works with tuple arguments.
type Delegatel = delegate of (int * int) -> int
// Delegate2 works with curried arguments.

http://www.tutorialspoint.com/fsharp/fsharp_delegates.htm

type Delegate2 = delegate of int * int -> int

let InvokeDelegatel (dlg : Delegatel) (a : int) (b: int) =
dlg.Invoke(a, b)

let InvokeDelegate2 (dlg : Delegate2) (a : int) (b: int) =
dlg.Invoke(a, b)

// For static methods, use the class name, the dot operator, and the
// name of the static method.

let dell : Delegatel = new Delegatel(Myclass.add)

let del2 : Delegate2 = new Delegate2(Myclass.sub)

let mc = Myclass()

// For instance methods, use the instance value name, the dot operator, and the instance
method name.

let del3 : Delegatel
let del4 : Delegate2

new Delegatel(mc.Add)
new Delegate2(mc.Sub)

for (a, b) in [(400, 200); (160, 45)] do
printfn "%d + %d = %d" a b (InvokeDelegatel dell a b)
printfn "%d - %d %d" a b (InvokeDelegate2 del2 a b)
printfn "%d + %d %d" a b (InvokeDelegatel del3 a b)
printfn "%d - %d %d" a b (InvokeDelegate2 del4 a b)

When you compile and execute the program, it yields the following output —

400 + 200 = 600
400 - 200 = 200
400 + 200 = 600
400 - 200 = 200
100 + 45 = 145
100 - 45 = 55

100 + 45 = 145
100 AR — BR

Loading [Math)ax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

