F# - BASIC SYNTAX

You have seen the basic structure of an F# program, so it will be easy to understand other basic
building blocks of the F# programming language.

Tokens in F#

An F# program consists of various tokens. A token could be a keyword, an identifier, a constant, a
string literal, or a symbol. We can categorize F# tokens into two types —

e Keywords

e Symbol and Operators

F# Keywords

The following table shows the keywords and brief descriptions of the keywords. We will discuss the
use of these keywords in subsequent chapters.

Keyword

abstract

and

as

assert
base
begin
class

default

delegate
do

done
downcast
downto
elif

else

end

Description

Indicates a method that either has no implementation in the type in which it is
declared or thatis virtual and has a defaultimplementation.

Used in mutually recursive bindings, in property declarations, and with multiple
constraints on generic parameters.

Used to give the current class object an object name. Also used to give a name to
a whole pattern within a pattern match.

Used to verify code during debugging.

Used as the name of the base class object.

In verbose syntax, indicates the start of a code block.

In verbose syntax, indicates the start of a class definition.

Indicates an implementation of an abstract method; used together with an
abstract method declaration to create a virtual method.

Used to declare a delegate.

Used in looping constructs or to execute imperative code.

In verbose syntax, indicates the end of a block of code in a looping expression.
Used to convert to a type that is lower in the inheritance chain.

In a for expression, used when counting in reverse.

Used in conditional branching. A short form of else if.

Used in conditional branching.

In type definitions and type extensions, indicates the end of a section of member
definitions.

In verbose syntax, used to specify the end of a code block that starts with the
begin keyword.

http://www.tutorialspoint.com/fsharp/fsharp_basic_syntax.htm

exception

extern

false

finally

for
fun

function

global
if

in
inherit

inline

interface
internal

lazy
let

let!

match
member

module

mutable

namespace

new

not

null

Used to declare an exception type.

Indicates that a declared program element is defined in another binary or
assembly.

Used as a Boolean literal.

Used together with try to introduce a block of code that executes regardless of
whether an exception occurs.

Used in looping constructs.
Used in lambda expressions, also known as anonymous functions.

Used as a shorter alternative to the fun keyword and a match expression in a
lambda expression that has pattern matching on a single argument.

Used to reference the top-level .NET namespace.
Used in conditional branching constructs.

Used for sequence expressions and, in verbose syntax, to separate expressions
from bindings.

Used to specify a base class or base interface.

Used to indicate a function that should be integrated directly into the caller's
code.

Used to declare and implement interfaces.
Used to specify that a member is visible inside an assembly but not outside it.

Used to specify a computation thatis to be performed only when a resultis
needed.

Used to associate, or bind, a name to a value or function.

Used in asynchronous workflows to bind a name to the result of an asynchronous
computation, or, in other computation expressions, used to bind a name to a
result, which is of the computation type.

Used to branch by comparing a value to a pattern.

Used to declare a property or method in an object type.

Used to associate a name with a group of related types, values, and functions, to
logically separate it from other code.

Used to declare a variable, that is, a value that can be changed.

Used to associate a name with a group of related types and modules, to logically
separate it from other code.

Used to declare, define, or invoke a constructor that creates or that can create an
object.

Also used in generic parameter constraints to indicate that a type must have a

certain constructor.

Not actually a keyword. However, not struct in combination is used as a generic
parameter constraint.

Indicates the absence of an object.

Also used in generic parameter constraints.

of

open

or

override

private
public
rec
return

return!

select

static

struct

then

to
true

try

type

upcast
use

use!

val

Used in discriminated unions to indicate the type of categories of values, and in
delegate and exception declarations.

Used to make the contents of a namespace or module available without
qualification.

Used with Boolean conditions as a Boolean or operator. Equivalent to ||.

Also used in member constraints.

Used to implement a version of an abstract or virtual method that differs from the
base version.

Restricts access to a member to code in the same type or module.

Allows access to a member from outside the type.

Used to indicate that a function is recursive.

Used to indicate a value to provide as the result of a computation expression.

Used to indicate a computation expression that, when evaluated, provides the
result of the containing computation expression.

Used in query expressions to specify what fields or columns to extract. Note that
this is a contextual keyword, which means thatitis not actually a reserved word
and it only acts like a keyword in appropriate context.

Used to indicate a method or property that can be called without an instance of a
type, or a value member that is shared among all instances of a type.

Used to declare a structure type.

Also used in generic parameter constraints.

Used for OCaml compatibility in module definitions.

Used in conditional expressions.

Also used to perform side effects after object construction.

Used in for loops to indicate a range.
Used as a Boolean literal.

Used to introduce a block of code that might generate an exception. Used
together with with or finally.

Used to declare a class, record, structure, discriminated union, enumeration type,
unit of measure, or type abbreviation.

Used to convert to a type that is higher in the inheritance chain.
Used instead of let for values that require Dispose to be called to free resources.

Used instead of let! in asynchronous workflows and other computation
expressions for values that require Dispose to be called to free resources.

Used in a signature to indicate a value, or in a type to declare a member, in
limited situations.

void Indicates the .NET void type. Used when interoperating with other .NET languages.

when Used for Boolean conditions whenguards on pattern matches and to introduce a
constraint clause for a generic type parameter.

while Introduces a looping construct.

with Used together with the match keyword in pattern matching expressions. Also

used in object expressions, record copying expressions, and type extensions to
introduce member definitions, and to introduce exception handlers.

yield Used in a sequence expression to produce a value for a sequence.

yield! Used in a computation expression to append the result of a given computation
expression to a collection of results for the containing computation expression.

Some reserved keywords came from the OCaml language —

asr land lor sl Isr Ixor mod sig

Some other reserved keywords are kept for future expansion of F#.

atomic break checked component const constraint constructor
continue eager event external fixed functor include
method mixin object parallel process protected pure
sealed tailcall trait virtual volatile

Comments in F#
F# provides two types of comments —
¢ One line comment starts with // symbol.
e Multi line comment starts with * andendswith * .
A Basic Program and Application Entry Point in F#

Generally, you don’t have any explicit entry point for F# programs. When you compile an F#
application, the last file provided to the compiler becomes the entry point and all top level
statements in that file are executed from top to bottom.

A well-written program should have a single top-level statement that would call the main loop of
the program.

A very minimalistic F# program that would display ‘Hello World’ on the screen —

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn '"Hello World!"

When you compile and execute the program, it yields the following output —

Halln Wnrldl
Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

