FLEX - TREE CONTROL

Introduction

The Tree control displays hierarchical data arranged as an expandable tree.

Class declaration

Following is the declaration for mx.controls.Tree class:

public class Tree
extends List

implements IIMESupport

Public properties

S.N.

1

Property & Description

dataDescriptor : mx.controls.treeClasses:ITreeDataDescriptor

Returns the current ITreeDataDescriptor.

dataProvider : Object

[override] An object that contains the data to be displayed.

dragMoveEnabled : Boolean

[override] Indicates that items can be moved instead of just copied from the Tree control
as part of a drag-and-drop operation.

firstVisibleltem : Object

The item that is currently displayed in the top row of the tree.

hasRoot : Boolean

[read-only] Indicates that the current dataProvider has a root item; for example, a single
top node in a hierarchical structure.

itemlcons : Object

An object that specifies the icons for the items.

maxHorizontalScrollPosition : Number

[override] The maximum value for the maxHorizontalScrollPosition property for the Tree
control.

http://www.tutorialspoint.com/flex/flex_tree_control.htm

openitems : Object

The items that have been opened or set opened.

showRoot : Boolean

Sets the visibility of the root item.

Public methods

S.N. Method & Description

1
Tree
Constructor.
2
expandChildrenOfitem: Object, open: Boolean:void
Opens or closes all the tree items below the specified item.
3
expanditem
item: Object, open: Boolean, animate: Boolean = false, dispatchEvent: Boolean = false, cause: Event = null
:void
Opens or closes a branch item.
4
getParentltemitem: Object:*
Returns the known parent of a child item.
5
isltemOpenitem: Object:Boolean
Returns true if the specified item branch is open isshowingitschildren.
6

setltemlconitem: Object, iconID: Class, iconID2: Class:void

Sets the associated icon for the item.

Protected methods

S.N. Method & Description

1
dragCompleteHandlerevent: DragEvent:void

[override] Handles DragEvent. DRAG_COMPLETE events.

dragDropHandlerevent: DragEvent:void

[override] Handles DragEvent.DRAG_DROP events.

3
initListDataitem: Object, treeListData: mx. controls. treeClasses: TreeListData:void
Initializes a TreelListData object that is used by the tree item renderer.

4
makeListDatadata: Object, uid: String, rowNum: int:BaseListData
[override] Creates a new TreeListData instance and populates the fields based on the
input data provider item.

Events

S.N. Event & Description

1

itemClose

Dispatched when a branch is closed or collapsed.
2

itemOpen

Dispatched when a branch is opened or expanded.
3

itemOpening

Dispatched when a branch open or close is initiated.

Methods inherited

This class inherits methods from the following classes:
e mx.controls.List
e mx.controls.listClasess.ListBase
e mx.core.ScrollControlBase
e mx.core.UIComponent
e mx.core.FlexSprite
o flash.display.Sprite
¢ flash.display.DisplayObjectContainer
¢ flash.display.InteractiveObject
o flash.display.DisplayObject

o flash.events.EventDispatcher

e Object
Flex Tree Control Example
Let us follow the following steps to check usage of Tree control in a Flex application by creating a

test application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the

requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%" minWidth="500" minHeight="500"
>
<fx:Style source="/com/tutorialspoint/client/Style.css"/>
<fx:Script>
<I[CDATA[
[Bindable]
public var selectedNode:XML;

// Event handler for the Tree control change event.
public function treeChanged(event:Event):void {

selectedNode=Tree(event.target).selectedItem as XML;
}

11>
</fx:Script>
<fx:Declarations>
<fx:XMLList >
<node label="E-Mail Box'">
<node label="Inbox">
<node label="Client"/>
<node label="Product"/>
<node label="Personal"/>
</node>
<node label="Sent Items">
<node label="Professional"/>
<node label="Personal"/>
</node>
<node label="Deleted Items"/>
<node label="Spam"/>
</node>
</TX:XMLList>
</fx:Declarations>
<s:BorderContainer width="630" height="480"
styleName="container">
<s:VGroup width="100%" height="100%" gap="50"
horizontalAlign="center" verticalAlign="middle">

<s:lLabel
fontSize="40" color="0x777777" styleName="heading"/>
<s:Panel
width="500" height="300">
<s:layout>

<s:VerticallLayout gap="10" verticalAlign="middle"
horizontalAlign="center"/>
</s:layout>

<mx:Tree
labelField="@label" showRoot="false"
dataProvider="{treeData}" change="treeChanged(event)"/>

<s:TextArea height="20%" width="95%"
text="Selected Item: {selectedNode.@label}"/>

</s:Panel>
</s:VGroup>
</s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

— —— =)

7 i
{ T T A
= | B] CAUsers\GBI824\Adobe Flash O = & X I (2 C\Users\GB3824\Adobe Fla.. (] 3¢ 27

B e

-

Complex Controls Demonstration

Using Tree

v [23Inbox
|_| Client
|| Product
| Personal
» 1 Sentitems
|| Deleted tterns
_1Spam

Seleclted ltem: Client |

Loading [Mathjax]/jax/output/HTML-CSS/jax.js = —_— —

/flex/flex_create_application.htm
/flex/samples/ComplexControlsApplication.html#currentlyLoaded=Tree

