
http://www.tutorialspoint.com/flex/flex_quick_guide.htm Copyright © tutorialspoint.com

FLEX - QUICK GUIDEFLEX - QUICK GUIDE

FLEX - OVERVIEWFLEX - OVERVIEW
What is Flex?

Flex is a powerful, open source application framework which allows to build traditional
applications for browser, mobile and desktop using the same programming model, tool, and
codebase.

Flex provides FLEX SDK consisting of the Flex class library ActionScriptclasses, the Flex
compilers, the debugger, the MXML and ActionScript programming languages, and other
utilities to build expressive and interactive rich internet applications RIA

Flex takes care of the user interface UI or the client-side functionality of a web application.
Server-side functionality dependent on server-side components written in a traditional
scripting language Java/PHPetc.

A Flex based application actually delivered as a SWF file and it closely resembles the HTML /
Javascript portion of a traditional web application.

Flex application is deployed as SWF files plus an HTML wrapper, the CSS files and any server-
side script files i. e. Java, . CFM, . PHP, etc to the server. Like traditional web applications

These resources are delivered from the server to the client browser using the customary
HTTP request / response fashion and Flash Player run the application in the browser.

Advantages of Flex
Flex applications being Flash Player based can access device capabilities like GPS, camera,
local database, graphics accelerometer.

Flex applications can run on Andriod, BlackBerry Tablet OS, iOS devices.

Flex applications can run on Browsers as well as on Desktop.

Flex applications are platform independent. UI can be native to platform or can be made
same on each platform.

Flex applications can interact with server with all major server side technologies like Java,
Spring, Hibernate, PHP, Ruby, .NET, Adobe ColdFusion, and SAP using industry standards such
as REST, SOAP, JSON, JMS, and AMF.

Flex Applications developed assures Rich User Experience through intuitive interaction with
the application and presenting information in a visually richer interface.

Flex application is a single page application where states can can transition from one state to
other state without having to fetch a new page from the server or to refresh the browser.

Flex application reduces the load on the server to great extent because it is only required
return the application once, rather than a new page every time when the user changes
views.

Disadvantages of Flex
Flex applications are single threaded applications but Flex provides an asynchronous
programming model to mitigate this concern.

Flex is actionscript and XML based. Learning of these two is a must to work in Flex.

FLEX - ENVIRONMENT SETUPFLEX - ENVIRONMENT SETUP

http://www.tutorialspoint.com/flex/flex_quick_guide.htm

This tutorial will guide you on how to prepare a development environment to start your work with
Adobe Flex Framework. This tutorial will also teach you how to setup JDK and Adobe Flash Builder
on your machine before you setup Flex Framework:

System Requirement
FLEX requires JDK 1.4 or higher so the very first requirement is to have JDK installed in your
machine.

JDK 1.4 or above.

Memory no minimum requirement.

Disk Space no minimum requirement.

Operating System no minimum requirement.

Follow the given steps to setup your environment to start with Flex application development.

Step 1 - Verify Java installation on your machine
Now open console and execute the following java command.

OS Task Command

Windows Open Command Console c:\> java -version

Linux Open Command Terminal $ java -version

Mac Open Terminal machine:~ joseph$ java -version

Let's verify the output for all the operating systems:

OS Generated Output

Windows
java version "1.6.0_21"

JavaTM SE Runtime Environment build1.6.021 − b07

Java HotSpotTM Client VM build17.0 − b17, mixedmode, sharing

Linux
java version "1.6.0_21"

JavaTM SE Runtime Environment build1.6.021 − b07

Java HotSpotTM Client VM build17.0 − b17, mixedmode, sharing

Mac
java version "1.6.0_21"

JavaTM SE Runtime Environment build1.6.021 − b07

Java HotSpotTM64-Bit Server VM build17.0 − b17, mixedmode, sharing

Step 2 - Setup Java Development Kit JDK:
If you do not have Java installed then you can install the Java Software Development Kit SDK from
Oracle's Java site: Java SE Downloads. You will find instructions for installing JDK in downloaded
files, follow the given instructions to install and configure the setup. Finally set PATH and
JAVA_HOME environment variables to refer to the directory that contains java and javac, typically
java_install_dir/bin and java_install_dir respectively.

Set the JAVA_HOME environment variable to point to the base directory location where Java is
installed on your machine. For example

OS Output

Windows Set the environment variable JAVA_HOME to C:\Program
Files\Java\jdk1.6.0_21

Linux export JAVA_HOME=/usr/local/java-current

Mac export JAVA_HOME=/Library/Java/Home

Append Java compiler location to System Path.

OS Output

Windows Append the string ;%JAVA_HOME%\bin to the end of the system
variable, Path.

Linux export PATH=PATH: JAVA_HOME/bin/

Mac not required

Step 3 - Setup Adobe Flash Builder 4.5
All the examples in this tutorial have been written using Adobe Flash Builder 4.5 Profession IDE
Trial Version. So I would suggest you should have latest version of Adobe Flash Builder installed on
your machine based on your operating system.

To install Adobe Flash Builder IDE, download the latest Adobe Flash Builder binaries from
http://www.adobe.com/in/products/flash-builder.html. Once you downloaded the installation,
unpack the binary distribution into a convenient location. For example in C:\flash-builder on
windows, or /usr/local/flash-builder on Linux/Unix and finally set PATH variable appropriately.

Flash Builder can be started by executing the following commands on windows machine, or you
can simply double click on FlashBuilder.exe

 %C:\flash-builder\FlashBuilder.exe

Flash Builder can be started by executing the following commands on Unix Solaris, Linux, etc.
machine:

$/usr/local/flash-builder/FlashBuilder

Adobe Flash Builder Trial Version can be used for 60 days. Just accept the terms and conditions
and skip the initial registration steps and continue with the IDE. We're using the trial version for
teaching purpose.

After a successful startup, if everything is fine then it should display following result:

Adobe Flash Builder comes pre-configured with FLEX SDKs. We're using FLEX SDK 4.5 in our

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.adobe.com/in/products/flash-builder.html

examples which comes bundled with Adobe Flash Builder 4.5.

Step 4: Setup Apache Tomcat:
You can download the latest version of Tomcat from http://tomcat.apache.org/. Once you
downloaded the installation, unpack the binary distribution into a convenient location. For example
in C:\apache-tomcat-6.0.33 on windows, or /usr/local/apache-tomcat-6.0.33 on Linux/Unix and set
CATALINA_HOME environment variable pointing to the installation locations.

Tomcat can be started by executing the following commands on windows machine, or you can
simply double click on startup.bat

 %CATALINA_HOME%\bin\startup.bat

 or

 C:\apache-tomcat-6.0.33\bin\startup.bat

Tomcat can be started by executing the following commands on Unix Solaris, Linux, etc. machine:

$CATALINA_HOME/bin/startup.sh

or

/usr/local/apache-tomcat-6.0.33/bin/startup.sh

After a successful startup, the default web applications included with Tomcat will be available by
visiting http://localhost:8080/. If everything is fine then it should display following result:

Further information about configuring and running Tomcat can be found in the documentation
included here, as well as on the Tomcat web site: http://tomcat.apache.org

Tomcat can be stopped by executing the following commands on windows machine:

%CATALINA_HOME%\bin\shutdown

or

C:\apache-tomcat-5.5.29\bin\shutdown

Tomcat can be stopped by executing the following commands on Unix Solaris, Linux, etc. machine:

$CATALINA_HOME/bin/shutdown.sh

or

/usr/local/apache-tomcat-5.5.29/bin/shutdown.sh

FLEX - APPLICATIONSFLEX - APPLICATIONS
Before we start with creating actual HelloWorld application using Flash Builder, let us see what are
the actual parts of a Flex application. A Flex application consists of following four important parts
out of which last part is optional but first three parts are mandatory:

Flex Framework Libraries

Client-side code

Public Resources HTML /JS /CSS

Server-side code

Sample locations of different parts of a typical Flex application HelloWord will be as shown below:

http://tomcat.apache.org/

Name Location

Project root HelloWorld/

Flex Framework
Libraries

Build Path

Public resources html-template

Client-side code table table-bordered/com/tutorialspoint/client

Server-side code table table-bordered/com/tutorialspoint/server

Application Build Process
Flex application required Flex Framework libraries. Flash Builder automatically add the libraries to
build path.

When we build our code using Flash Builder, Flash builder will do the following tasks

Compiles the source code to HelloWorld.swf file.

Compiles a HelloWorld.html awrapperfileforswffile from a file index.template.html stored in html-
template folder

Copies HelloWorld.swf and HelloWorld.html files in target folder, bin-debug.

Copies swfobject.js, a javascript code responsible to load swf file dynamically in
HelloWorld.html in target folder, bin-debug

Copies framework libraries in form of swf file named frameworks_xxx.swf in target folder,
bin-debug

Copies other flex modules . swffilessuchassparkskinsxxx. swf, textLayoutxxx. swf in target folder.

Application Launch Process
Open the HelloWorld.html file available in \HelloWorld\bin-debug folder in any web-browser.

HelloWorld.swf will load automatically and application will start running.

Flex Framework Libraries
Following is the brief detail about few important framework libraries.

In flex libraries are denoted using .swc notation

S.N. Nodes & Description

1
playerglobal.swc

This library is specific to FlashPlayer installed on your machine and contains native
methods supported by flash player.

2

2
textlayout.swc

This library supports the text layout related features.

3
framework.swc

This is the flex framework library contains the core features of Flex.

4
mx.swc

This library stores the definations of mx UI controls.

5
charts.swc

This library supports the charting controls.

6
spark.swc

This library stores the definations of spark UI controls.

7
sparkskins.swc

This library supports the skinning of spark UI controls.

Client-side code
Flex application code can be written in MXML and ActionScript.

S.N. Type & Description

1
MXML

MXML is an XML markup language that we'll use to lay out user interface
components.MXML is compiled into ActionScript during build process.

2
ActionScript

ActionScript is an object-oriented procedural programming language and is based on the
ECMAScript ECMA − 262 edition 4 draft language specification.

In Flex, we can mix ActionScript and MXML, to do the following:

Lay out user interface components using MXML tags

Use MXML to declaratively define nonvisual aspects of an application, such as access to data
sources on the server

Use MXML to create data bindings between user interface components and data sources on
the server.

Use ActionScript to define event listeners inside MXML event attributes.

Add script blocks using the <mx:Script> tag.

Include external ActionScript files.

Import ActionScript classes.

Create ActionScript components.

Public resources
These are helper files referenced by Flex application, such as Host HTML page, CSS or images
located under html-template folder.It contains following files

S.N. File Name & Description

1
index.template.html

Host HTML page, with place holders. Flash Builder uses this template to build actual page
HelloWorld.html with HelloWorld.swf file.

2
playerProductInstall.swf

This is a flash utility to install Flash Player in express mode.

3
swfobject.js

This is the javascript responsible to check version of flash player installed and to load
HelloWorld.swf in HelloWorld.html page.

4
html-template/history

This folder contains resources for history management of the application.

HelloWorld.mxml
This is the actual MXML/AS ActionScript code written implementing the business logic of the
application and that the Flex compiler translates into SWF file which will be executed by flash
player in the browser.A sample HelloWorld Entry class will be as follows:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">

 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 protected function btnClickMe_clickHandler(event:MouseEvent):void
 {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent):void

 {
 lblHeader.text = "My Hello World Application";
 }
]]>
 </fx:Script>
 <s:VGroup horizontalAlign="center" width="100%" height="100%"
 paddingTop="100" gap="50">
 <s:Label />
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)" />
 </s:VGroup>
</s:Application>

Following Table gives the description of all the tags used in the above code script.

S.N. Node & Description

1
Application

Defines the Application container that is always the root tag of a Flex application.

2
Script

Contains the business logic in ActionScript language.

3
VGroup

Defines a Vertical Grouping Container which can contain Flex UI controls in vertical
fashion.

4
Label

Represents a Label control, a very simple user interface component that displays text.

5
Button

Represents a Button control, which can be clicked to do some action.

Server-side code
This is the server side part of your application and its very much optional. If you are not doing any
backend processing with-in your application then you do not need this part, but if there is some
processing required at backend and your client-side application interact with the server then you
will have to develop these components.

Next chapter will make use of all the above mentioned concepts to create HelloWorld application
using Flash Builder.

FLEX - CREATE APPLICATIONFLEX - CREATE APPLICATION
We'll use Flash Builder 4.5 to create Flex Applications. Let's start with a simple HelloWorld
application:

Step 1 - Create Project

The first step is to create a simple Flex Project using Flash Builder IDE. Launch project wizard using
the option File > New > Flex Project. Now name your project as HelloWorld using the wizard
window as follows:

Select Application Type Web runsinAdobeFlashPlayer if not selected and leave other default values as
such and click Finish Button. Once your project is created successfully, you will have following
content in your Project Explorer:

Here is brief description of all important folders:

Folder Location

table table-
bordered Source code mxml/asclasses files.

We've created com/tutorialspoint/client folder structure containing the
client-side specific java classes responsible for client UI display.

bin-debug
This is the output part, it represents the actual deployable web application.

history folder contains support files for history management of Flex
application.

framework_xxx.swf, flex framework files to be used by flex application.

HelloWorld.html, wrapper/host HTML File for flex application.

HelloWorld.swf, our flex based application.

playerProductInstall.swf, flash player express installer.

spark_xxx.swf, library for spark component support.

swfobject.js, javascript responsible to load HelloWorld.swf in
HelloWorld.html. It checks flash player version and passes initialization
parameter to HelloWorld.swf file.

textLayout_xxx.swf, library for text component support.

html-
template This represents the configurable web application. Flash Builder compiles

files from html-template to bin-debug folder.

history folder contains support files for history management of Flex
application.

index.template.html, wrapper/host HTML File for flex application having
place holders for Flash Builder specific configuration. Gets compiled to
HelloWorld.html in bin-debug folder during build.

playerProductInstall.swf, flash player express installer.Gets copied to bin-
debug folder during build.

swfobject.js, javascript responsible to load HelloWorld.swf in
HelloWorld.html. It checks flash player version and passes initialization
parameter to HelloWorld.swf file.Gets copied to bin-debug folder during
build.

Step 2 - Create external CSS file
Create a CSS file styles.css for Wrapper HTML page in html-template folder.

html, body {
 height:100%;
}
body {
 margin:0;
 padding:0;
 overflow:auto;
 text-align:center;
}
object:focus {
 outline:none;
}
#flashContent {
 display:none;
}

.pluginHeader {
 font-family:Arial, Helvetica, sans-serif;
 font-size:14px;
 color:#9b1204;
 text-decoration:none;
 font-weight:bold;
}

.pluginInstallText {
 font-family:Arial, Helvetica, sans-serif;
 font-size:12px;
 color:#000000;
 line-height:18px;
 font-style:normal;
}

.pluginText {
 font-family:Arial, Helvetica, sans-serif;
 font-size:12px;
 color:#000000;
 line-height:18px;
 font-style:normal;
}

Step 3 - Modify Wrapper HTML page template
Modify Wrapper HTML page template index.template.html in html-template folder. Flash
Builder will create a default Wrapper HTML page template html-template/index.template.html,
which will be compiled to HelloWorld.html. This file contains placeholders which Flash Builder
replaces during compilation process for example flash player version, application name etc.

Let us modify this file to display custom messages if flash plugin is not installed.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>${title}</title>
<meta name="google" value="notranslate" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="styles.css" type="text/css"></link>
<link rel="stylesheet" type="text/css" href="history/history.css" />
<script type="text/javascript" table table-bordered="history/history.js"></script>
<script type="text/javascript" table table-bordered="swfobject.js"></script>
<script type="text/javascript">
 // For version detection, set to min. required Flash Player version,
 //or 0 (or 0.0.0), for no version detection.
 var swfVersionStr = "${version_major}.${version_minor}.${version_revision}";

 // To use express install, set to playerProductInstall.swf,
 //otherwise the empty string.
 var xiSwfUrlStr = "${expressInstallSwf}";
 var flashvars = {};
 var params = {};
 params.quality = "high";
 params.bgcolor = "${bgcolor}";
 params.allowscriptaccess = "sameDomain";
 params.allowfullscreen = "true";
 var attributes = {};
 attributes.id = "${application}";
 attributes.name = "${application}";
 attributes.align = "middle";
 swfobject.embedSWF(
 "${swf}.swf", "flashContent",
 "${width}", "${height}",
 swfVersionStr, xiSwfUrlStr,
 flashvars, params, attributes);
 // JavaScript enabled so display the flashContent div in case
 //it is not replaced with a swf object.
 swfobject.createCSS("#flashContent", "display:block;text-align:left;");
</script>
</head>
<body>
<div >
 <p style="margin:100px;">
 <table width="700" cellpadding="10" cellspacing="2" border="0">
 <tr><td >Flash Player Required</td></tr>
 <tr><td >The Adobe Flash Player version
 10.2.0 or greater is required.</td></tr>
 <tr><td class = "pluginInstallText" align="left">
 <table border="0" width="100%">
 <tr class = "pluginInstallText" >
 <td>Click here to download and install Adobe Flash Player:</td>
 <td> </td>
 <td align="right"> <script type="text/javascript">
 var pageHost
 =((document.location.protocol == "https:") ? "https://" : "http://");
 document.write("<a target='_blank'"
 +" href='http://get.adobe.com/flashplayer/'><"
 +"img style='border-style: none' table table-bordered='"
 +pageHost
 +"www.adobe.com/images/shared/download_buttons/get_flash_player.gif'"
 +" alt='Get Adobe Flash player' />");
 </script>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </p>
</div>
<noscript>
 <object class
 width="${width}" height="${height}" >
 <param name="movie" value="${swf}.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="${bgcolor}" />
 <param name="allowScriptAccess" value="sameDomain" />
 <param name="allowFullScreen" value="true" />
 <!--[if !IE]>-->
 <object type="application/x-shockwave-flash" data="${swf}.swf"
 width="${width}" height="${height}">
 <param name="quality" value="high" />
 <param name="bgcolor" value="${bgcolor}" />
 <param name="allowScriptAccess" value="sameDomain" />
 <param name="allowFullScreen" value="true" />
 <!--<![endif]-->

 <!--[if gte IE 6]>-->
 <p>
 <p style="margin:100px;">
 <table width="700" cellpadding="10" cellspacing="2" border="0">
 <tr><td >Flash Player Required</td></tr>
 <tr><td >The Adobe Flash Player version
 10.2.0 or greater is required.</td></tr>
 <tr><td class = "pluginInstallText" align="left">
 <table border="0" width="100%">
 <tr class = "pluginInstallText" >
 <td>Click here to download and install Adobe Flash Player:</td>
 <td> </td>
 <td align="right"> <script type="text/javascript">
 var pageHost
 = ((document.location.protocol == "https:") ? "https://" : "http://");
 document.write("<a target='_blank'"
 +" href='http://get.adobe.com/flashplayer/'><"
 +"img style='border-style: none' table table-bordered='"
 +pageHost
 +"www.adobe.com/images/shared/download_buttons/get_flash_player.gif'"
 +" alt='Get Adobe Flash player' />");
 </script>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </p>
 </p>
 <!--<![endif]-->
 <p style="margin:100px;">
 <table width="700" cellpadding="10" cellspacing="2" border="0">
 <tr><td >Flash Player Required</td></tr>
 <tr><td >The Adobe Flash Player version
 10.2.0 or greater is required.</td></tr>
 <tr><td class = "pluginInstallText" align="left">
 <table border="0" width="100%">
 <tr class = "pluginInstallText" >
 <td>Click here to download and install Adobe Flash Player:</td>
 <td> </td>
 <td align="right"> <script type="text/javascript">
 var pageHost
 = ((document.location.protocol == "https:") ? "https://" : "http://");
 document.write("<a target='_blank'"
 +" href='http://get.adobe.com/flashplayer/'><"
 +"img style='border-style: none' table table-bordered='"
 +pageHost
 +"www.adobe.com/images/shared/download_buttons/get_flash_player.gif'"
 +" alt='Get Adobe Flash player' />");
 </script>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </p>
 <!--[if !IE]>-->
 </object>
 <!--<![endif]-->
 </object>
</noscript>
</body>
</html>

Step 4 - Create internal CSS file
Create a CSS file Style.css for HelloWorld.mxml in table table-bordered/com/tutorialspoint

folder. Flex provides similar css styles for its UI Controls as there are css styles for HTML UI
controls.

/* CSS file */
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";

.heading
{
 fontFamily: Arial, Helvetica, sans-serif;
 fontSize: 17px;
 color: #9b1204;
 textDecoration:none;
 fontWeight:normal;
}

.button {
 fontWeight: bold;
}

.container {
 cornerRadius :10;
 horizontalCenter :0;
 borderColor: #777777;
 verticalCenter:0;
 backgroundColor: #efefef;
}

Step 5 - Modify Entry Level Class
Flash Builder will create a default mxml file table table-
bordered/com.tutorialspoint/HelloWorld.mxml, which is having root tag <application> container
for the application. Let us modify this file to display "Hello,World!":

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 protected function btnClickMe_clickHandler(event:MouseEvent):void
 {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent):void
 {
 lblHeader.text = "My Hello World Application";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50" horizontalAlign="center"
 verticalAlign="middle">
 <s:Label
 styleName="heading"/>
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)" styleName="button" />
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

You can create more mxml or actionscript files in the same source directory to define either new
applications or to define helper routines.

Step 6 - Build Application
Flash Builder has Build Automatically by default checked. Just check the Problems View if there
is any error. Once you are done with the changes, you will not see any errors.

Step 7 - Run Application
Now click on
Run application menu and select HelloWorld application to run the application.

If everything is fine, you must see browser pop up and application up and running. If everything is
fine with your application, this will produce following result: [Try it online]

Because you are running your application in flash player, so you will need to install Flash Player
plugin for your browser. Simply follow the onscreen instructions to install the plugin. If you already
have Flash Player plugin set for your browser, then you should be able to see the following output:

/flex/samples/CreateApplication.html

Congratulations! you have implemented your first application using Flex.

FLEX - DEPLOY APPLICATIONFLEX - DEPLOY APPLICATION
This tutorial will explain you how to create an application war file and how to deploy that in
Apache Tomcat Websever root. If you understood this simple example then you will also be able to
deploy a complex Flex application following the same steps.

Let us follow the following steps to create a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Follow the following steps to create a release build of a Flex application and then deploy it to
tomcat server:

The first step is to create a release build using Flash Builder IDE. Launch release build wizard using
the option File > Export > Flash Builder > Release Build

.

Select project as HelloWorld using the wizard window as follows

Leave other default values as such and click Finish Button. Now Flash Builder will create a bin-
release folder containing the project's release build.

Now our release build is ready ,let us follow the following steps to deploy a Flex application:

Step Description

1 Zip the content of the bin-release folder of the application in the form of HelloWorld.war
file and deploy it in Apache Tomcat Webserver.

2 Launch your web application using appropriate URL as explained below in the last step.

Following is the content of the modified mxml file table table-
bordered/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 protected function btnClickMe_clickHandler(event:MouseEvent):void

 {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent):void
 {
 lblHeader.text = "My Hello World Application";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50" horizontalAlign="center"
 verticalAlign="middle">
 <s:Label
 styleName="heading"/>
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)" styleName="button" />
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

Create WAR File
Now our applictaion is working fine and we are ready to export it as a war file. Follow the following
steps:

Go into your project's bin-release directory C:\workspace\HelloWorld\bin-release

Select all the files & folders available inside bin-release directory.

Zip all the selected files & folders in a file called HelloWorld.zip.

Rename HelloWorld.zip to HelloWorld.war.

/flex/flex_create_application.htm
/flex/samples/CreateApplication.html

Deploy WAR file
Stop the tomcat server.

Copy the HelloWorld.war file to tomcat installation directory > webapps folder.

Start the tomcat server.

Look inside webapps directory, there should be a folder HelloWorld got created.

Now HelloWorld.war is successfully deployed in Tomcat Webserver root.

Run Application
Enter a url in web browser: http://localhost:8080/HelloWorld/HelloWorld.html to launch the
application

Server name localhost and port 8080 may vary as per your tomcat configuration.

FLEX - LIFE CYCLE PHASESFLEX - LIFE CYCLE PHASES
Life Cycle of flex application:
Although you can build Flex applications without understanding life cycle phases of an application
life cycle, but it is good to know the basic mechanism: the order in which things occur.It will help
you configure features such as load other Flex applications at runtime, and manage the process of
loading and unloading class libraries and assets at runtime.

A good understanding of the Flex application life cycle will enable you to build better applications
and optimize them because you will know where to optimally run code. For example, if you need to
ensure that some code runs during a preloader, you need to know where to place the code for that
event.

When we loads flex application in browser the following events occurs during the lifeCycle of flex
application.

Following is the brief detail about different Flex Life Cycle Events.

S.N. Event & Description

1
preInitialize: mx.core.UIComponent.preinitialize

Event Type: mx.events.FlexEvent.PREINITIALIZE

This event is dispatched at the beginning of the component initialization sequence. The
component is in a very raw state when this event is dispatched. Many components, such
as Button control, creates internal child components to implement functionality. For
example, the Button control creates an internal UITextField component to represent its
label text.

When Flex dispatches the preinitialize event, the children, including all the internal
children, of a component have not yet been created.

2
initialize: mx.core.UIComponent.initialize

Event Type: mx.events.FlexEvent.INITIALIZE

This event is dispatched after preinitialize phase. Flex framework initializes the internal
structure of this component during this phase. This event automatically fires when the
component is added to a parent.

you do not need to call initialize generally.

3
creationComplete: mx.core.UIComponent.creationComplete

Event Type: mx.events.FlexEvent.CREATION_COMPLETE

This event is dispatched when the component has finished its construction, property
processing, measuring, layout, and drawing.

At this point, depending on its visible property, the component is not visible even though
it has been drawn.

4
applicationComplete: spark.components.Application.applicationComplete

Event Type:mx.events.FlexEvent.APPLICATION_COMPLETE

Dispatched after the Application has been initialized, processed by the LayoutManager,
and attached to the display list.

This is the last event of the application creation life cycle and signifies that application
has been loaded completely.

Flex Life Cycle Example
Let us follow the following steps to test life cycle of a Flex application by creating a test application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%" minWidth="500" minHeight="500"
 initialize="reportEvent(event)"
 preinitialize="reportEvent(event)"
 creationComplete="reportEvent(event)"
 applicationComplete="reportEvent(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;

 [Bindable]
 private var report:String = "";

 private function reportEvent(event:FlexEvent):void{
 report += "\n" + (event.type + " event occured at: "
 + getTimer() + " ms" + "\n");
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label textAlign="center" width="100%"
 fontSize="40" color="0x777777" styleName="heading"
 text="Life Cycle Events Demonstration"/>
 <s:TextArea
 width="300" height="200">
 </s:TextArea>
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/LifeCyleApplication.html

FLEX - STYLE WITH CSSFLEX - STYLE WITH CSS
Flex supports the use of CSS syntax and styles to apply styles to its UI controls in the same way as
CSS to HTML components.

Way #1: Using external style sheet file
You can refer to a style sheet available in the class path of the application. For example consider
Style.css file in com/tutorialspoint/client folder where HelloWorld.mxml file also lies.

/* CSS file */
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";
...
.container {
 cornerRadius :10;
 horizontalCenter :0;
 borderColor: #777777;
 verticalCenter:0;
 backgroundColor: #efefef;
}

Then css file can be referred by following code snippet

<fx:Style source="/com/tutorialspoint/client/Style.css"/>

Assign styles to UI component using styleName property

<s:BorderContainer width="500" height="500"
 styleName="container">
...
</s:BorderContainer>

Way #2: Using styles within UI container component
You can define styles within UI container component using <fx:Style> tag

Class Level Selector

<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";

/* class level selector */
.errorLabel {
 color: red;
}
</fx:Style>

Assign styles to UI component using styleName property.

<s:Label />

Id Level Selector
Style UI component using id selector.

<fx:Style>
/* id level selector */
#msgLabel {
 color: gray;
}
</fx:Style>

<s:Label />

Type Level Selector
Style one type of UI Component in one go.

<fx:Style>
/* style applied on all buttons */
s|Button {
 fontSize: 15;
 color: #9933FF;
}
</fx:Style>

<s:Button label="Click Me!"
click="btnClickMe_clickHandler(event)" />

Flex Style with CSS Example
Let us follow the following steps to check css styling of a Flex application by creating a test
application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify Style.css, HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified css file src/com.tutorialspoint/Style.css.

/* CSS file */
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";

.heading
{
 fontFamily: Arial, Helvetica, sans-serif;
 fontSize: 17px;
 color: #9b1204;
 textDecoration:none;
 fontWeight:normal;
}

.button {
 fontWeight: bold;
}

.container {
 cornerRadius :10;
 horizontalCenter :0;
 borderColor: #777777;
 verticalCenter:0;
 backgroundColor: #efefef;
}

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%" minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">
 <!--Add reference to style sheet -->
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>

 <!--Using styles within mxml file -->
 <fx:Style>
 @namespace s "library://ns.adobe.com/flex/spark";
 @namespace mx "library://ns.adobe.com/flex/mx";

 /* class level selector */
 .errorLabel {
 color: red;
 }

 /* id level selector */
 #msgLabel {
 color: gray;
 }

 /* style applied on all buttons */
 s|Button {
 fontSize: 15;
 color: #9933FF;
 }
 </fx:Style>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 protected function btnClickMe_clickHandler(event:MouseEvent)
 :void {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent)
 :void {
 lblHeader.text = "CSS Demonstrating Application";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="560" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label width="100%"
 color="0x777777" styleName="heading"/>
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)" />
 <s:Label
 text="This is an error message" styleName="errorLabel" />
 <s:Label />
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

FLEX - STYLE WITH SKINFLEX - STYLE WITH SKIN
What is Skining?

/flex/flex_create_application.htm
/flex/samples/CSSApplication.html

Skinning in Flex, is a process of customizing look and feel of a UI Component completely.

A Skin can define text, image, filters , transitions and states of a compoent.

A Skin can be created as a seperate mxml or ActionScript component.

Using skin, we can control all visual aspects of a UI component.

The process of defining skin is same for all the UI component.

Step 1: Create a skin
Launch Create MXML Skin wizard using the option File > New > MXML Skin.

Enter Package as com.tutorialspoint.skin, name as GradientBackgroundSkin and choose host
component as existing flex BorderContainer control spark.component.BorderContainer.

Now you've created a skin for a BorderContainer. Modify content of the mxml skin file
src/com.tutorialspoint/skin/GradientBackgroundSkin.mxml. Update fill layer as follows:

<!-- fill -->
<s:Rect >
 <s:fill>
 <s:LinearGradient rotation="90">
 <s:GradientEntry color="0x888888" ratio="0.2"/>
 <s:GradientEntry color="0x111111" ratio="1"/>
 </s:LinearGradient>
 </s:fill>
</s:Rect>

Step 2: Apply skin
You can apply skin over a component using two ways

Apply skin in MXML script statically
Apply GradientBackgroundSkin to a BorderContainer with id mainContainer using its
skinClass attribute.

<s:BorderContainer width="560" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50"
 horizontalAlign="center" verticalAlign="middle"
 skinClass="com.tutorialspoint.skin.GradientBackgroundSkin">

Apply skin in ActionScript dynamically

Apply GradientBackgroundSkin to a BorderContainer with id mainContainer using its
skinClass property.

protected function gradientBackground_clickHandler(event:MouseEvent):void
{
 mainContainer.setStyle("skinClass", GradientBackgroundSkin);
}

Flex Style with Skin Example
Let us follow the following steps to see skinning in action in a Flex application by creating a test
application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Create skin GradientBackgroundSkin.mxml under a package com.tutorialspoint.skin as
explained above. Keep rest of the files unchanged.

3 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

4 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the GradientBackgroundSkin.mxml file
src/com/tutorialspoint/skin/GradientBackgroundSkin.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Skin xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx">
 <!-- host component -->
 <fx:Metadata>
 [HostComponent("spark.components.BorderContainer")]
 </fx:Metadata>

 <!-- states -->
 <s:states>
 <s:State name="disabled" />
 <s:State name="disabled" />
 <s:State name="normal" />
 </s:states>

 <!-- SkinParts
 name=contentGroup, type=spark.components.Group, required=false
 -->
 <!-- fill -->
 <s:Rect >
 <s:fill>

 <s:LinearGradient rotation="90">
 <s:GradientEntry color="0x111111" ratio="0.2"/>
 <s:GradientEntry color="0x888888" ratio="1"/>
 </s:LinearGradient>
 </s:fill>
 </s:Rect>
 <!-- must specify this for the host component -->
 <s:Group />
</s:Skin>

Following is the content of the modified HelloWorld.mxml file
src/com/tutorialspoint/client/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%" minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">

 <fx:Style source="/com/tutorialspoint/client/Style.css"/>

 <fx:Script>
 <![CDATA[
 import com.tutorialspoint.skin.GradientBackgroundSkin;
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 import spark.skins.spark.BorderContainerSkin;

 protected function btnClickMe_clickHandler(event:MouseEvent):void
 {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent):void
 {
 lblHeader.text = "My Hello World Application";
 }

 protected function gradientBackground_clickHandler(event:MouseEvent):void
 {
 mainContainer.setStyle("skinClass", GradientBackgroundSkin);
 }

 protected function standardBackground_clickHandler(event:MouseEvent):void
 {
 mainContainer.setStyle("skinClass", BorderContainerSkin);
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <s:RadioButtonGroup />
 </fx:Declarations>
 <s:BorderContainer width="500" height="500"
 skinClass="spark.skins.spark.BorderContainerSkin"
 horizontalCenter="0" verticalCenter="0" cornerRadius="10">
 <s:VGroup width="100%" height="100%" gap="50" horizontalAlign="center"
 verticalAlign="middle">
 <s:Label
 styleName="heading"/>
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)"/>
 <s:RadioButton color="gray" fontWeight="bold"
 group="{selectorGroup}" label="Standard Background"
 click="standardBackground_clickHandler(event)" selected="true"/>
 <s:RadioButton color="gray" fontWeight="bold"
 group="{selectorGroup}" label="Gradient Background"
 click="gradientBackground_clickHandler(event)"/>
 </s:VGroup>

 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/SkinApplication.html

FLEX - DATA BINDINGFLEX - DATA BINDING
What is Data Binding?
Data Binding is a process in which data of one object is tied to another object. Data binding
requires a source property, a destination property and a triggering event which indicates when to
copy the data from source to destination.

Flex provides three ways to do Data Binding

Curly brace syntax in MXML Script

<fx:binding> tag in MXML

BindingUtils in ActionScript

Data Binding - Using Curly Braces in MXML
Following example demonstrates using curly braces to specify data binding of a source to
destination.

<s:TextInput />
<s:TextInput />

Data Binding - Using <fx:Binding> tag in MXML
Following example demonstrates using <fx:Binding> tag to specify data binding of a source to
destination.

<fx:Binding source="txtInput1.text" destination="txtInput2.text" />
<s:TextInput />
<s:TextInput />

Data Binding - Using BindingUtils in ActionScript
Following example demonstrates using BindingUtils to specify data binding of a source to
destination.

<fx:Script>
 <![CDATA[
 import mx.binding.utils.BindingUtils;
 import mx.events.FlexEvent;

 protected function txtInput2_preinitializeHandler(event:FlexEvent):void

 {
 BindingUtils.bindProperty(txtInput2,"text",txtInput1, "text");
 }
]]>
</fx:Script>
<s:TextInput />
<s:TextInput
preinitialize="txtInput2_preinitializeHandler(event)"/>

Flex Data Binding Example
Let us follow the following steps to see skinning in action in a Flex application by creating a test
application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified HelloWorld.mxml file
src/com/tutorialspoint/client/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%" minWidth="500" minHeight="500"
 >
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.binding.utils.BindingUtils;
 import mx.events.FlexEvent;

 protected function txtInput6_preinitializeHandler(event:FlexEvent):void
 {
 BindingUtils.bindProperty(txtInput6,"text",txtInput5, "text");
 }
]]>
 </fx:Script>
 <fx:Binding source="txtInput3.text" destination="txtInput4.text" />
 <s:BorderContainer width="500" height="550"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50" horizontalAlign="center"
 verticalAlign="middle">
 <s:Label
 fontSize="40" color="0x777777" styleName="heading"/>
 <s:Panel title="Example #1 (Using Curly Braces,\{\})" width="400"
 height="100" >
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:HGroup >
 <s:Label text = "Type here: " width="100" paddingTop="6"/>
 <s:TextInput />
 </s:HGroup>
 <s:HGroup >
 <s:Label text = "Copied text: " width="100" paddingTop="6"/>
 <s:TextInput />
 </s:HGroup>

 </s:Panel>
 <s:Panel title="Example #2 (Using <fx:Binding>)" width="400"
 height="100" >
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:HGroup >
 <s:Label text = "Type here: " width="100" paddingTop="6"/>
 <s:TextInput />
 </s:HGroup>
 <s:HGroup >
 <s:Label text = "Copied text: " width="100" paddingTop="6"/>
 <s:Label />
 </s:HGroup>
 </s:Panel>
 <s:Panel title="Example #3 (Using BindingUtils)" width="400"
 height="100" > <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:HGroup >
 <s:Label text = "Type here: " width="100" paddingTop="6"/>
 <s:TextInput />
 </s:HGroup>
 <s:HGroup >
 <s:Label text = "Copied text: " width="100" paddingTop="6"/>
 <s:TextInput enabled="false"
 preinitialize="txtInput6_preinitializeHandler(event)"/>
 </s:HGroup>
 </s:Panel>
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/DataBindingApplication.html

FLEX - BASIC CONTROLSFLEX - BASIC CONTROLS
Every user interface considers the following three main aspects:

UI elements : These are the core visual elements the user eventually sees and interacts
with. Flex provides a huge list of widely used and common elements varying from basic to
complex which we will cover in this tutorial.

Layouts: They define how UI elements should be organized on the screen and provide a
final look and feel to the GUI GraphicalUserInterface. This part will be covered in Layout chapter.

Behavior: These are events which occur when the user interacts with UI elements. This part
will be covered in Event Handling chapter.

Flex UI Elements:
The Flex UI library provides classes in a well-defined class hierarchy to create complex web-based
user interfaces. All classes in this component hierarchy has been derived from the
EventDispatcher base class as shown below:

Every Basic UI control inherits properties from UIComponent class which in turn inherits properties

from EventDispatcher and other top level classes.

S.N. Control & Description

1 Flex EventDispatcher Class

The EventDispatcher class is the base class for all classes that can dispatch events. The
EventDispatcher class allows any object on the display list to be an event target and as
such, to use the methods of the IEventDispatcher interface.

2 Flex UIComponent

The UIComponent class is the base class for all visual components, both interactive and
noninteractive.

Basic Controls
Following are few important Basic Controls:

S.N. Controls & Description

1 Label

Label is a low-level UIComponent that can render one or more lines of uniformly-
formatted text.

2 Text

The Text control lets you display HTML content as well as normal text in your application.

3 Image

The Image control lets you import JPEG, PNG, GIF, and SWF files at runtime.

4 LinkButton

The LinkButton control is a borderless Button control whose contents are highlighted
when a user moves the mouse over it.

FLEX - FORM CONTROLSFLEX - FORM CONTROLS
Form controls allows users to input data and provides them interaction capability with the
application. Every Form UI control inherits properties from UIComponent class which in turn
inherits properties from EventDispatcher and other top level classes.

S.N. Control & Description

1 Flex EventDispatcher Class

The EventDispatcher class is the base class for all classes that can dispatch events. The
EventDispatcher class allows any object on the display list to be an event target and as
such, to use the methods of the IEventDispatcher interface.

2 Flex UIComponent

/flex/flex_eventdispatcher_class.htm
/flex/flex_uicomponent_class.htm
/flex/flex_label_control.htm
/flex/flex_text_control.htm
/flex/flex_image_control.htm
/flex/flex_linkbutton_control.htm
/flex/flex_eventdispatcher_class.htm
/flex/flex_uicomponent_class.htm

The UIComponent class is the base class for all visual components, both interactive and
noninteractive.

Form Controls
Following are few important Form Controls:

S.N. Control & Description

1 Button

The Button component is a commonly used rectangular button.

2 ToggleButton

The ToggleButton component defines a toggle button.

3 CheckBox

The CheckBox component consists of an optional label and a small box that can contain
a check mark or not.

4 ColorPicker

The ColorPicker control provides a way for a user to choose a color from a swatch list.

5 ComboBox

The ComboBox control is a child class of the DropDownListBase control.

6 DateChooser

The DateChooser control displays the name of a month, the year, and a grid of the days
of the month, with columns labeled for the day of the week.

7 RadioButton

The RadioButton component allows the user make a single choice within a set of
mutually exclusive choices.

8 TextArea

TextArea is a text-entry control that lets users enter and edit multiple lines of formatted
text.

9 TextInput

TextInput is a text-entry control that lets users enter and edit a single line of uniformly-
formatted text.

10 DropDownList

The DropDownList control contains a drop-down list from which the user can select a
single value.

/flex/flex_button_control.htm
/flex/flex_togglebutton_control.htm
/flex/flex_checkbox_control.htm
/flex/flex_colorpicker_control.htm
/flex/flex_combobox_control.htm
/flex/flex_datechooser_control.htm
/flex/flex_radiobutton_control.htm
/flex/flex_textarea_control.htm
/flex/flex_textinput_control.htm
/flex/flex_dropdownlist_control.htm

11 NumericStepper

The NumericStepper control lets you select a number from an ordered set.

FLEX - COMPLEX CONTROLSFLEX - COMPLEX CONTROLS
Complex controls provides users advanced capabilities to deal with large amount of data in an
easy way and provides them interaction capability with the application. Every Complex UI control
inherits properties from UIComponent class which in turn inherits properties from EventDispatcher
and other top level classes.

S.N. Control & Description

1 Flex EventDispatcher Class

The EventDispatcher class is the base class for all classes that can dispatch events. The
EventDispatcher class allows any object on the display list to be an event target and as
such, to use the methods of the IEventDispatcher interface.

2 Flex UIComponent

The UIComponent class is the base class for all visual components, both interactive and
noninteractive.

Complex Controls
Following are few important Complex Controls:

S.N. Control & Description

1 DataGrid

The DataGrid control displays a row of column headings above a scrollable grid.

2 AdvancedDataGrid

The AdvancedDataGrid adds few additional functionality to the standard DataGrid control
to add data visualization features.

3 Menu

The Menu control creates a pop-up menu of individually selectable choices.

4 ProgressBar

The ProgressBar control provides a visual representation of the progress of a task over
time.

5 RichTextEditor

The RichTextEditor control lets users enter and format text.

6 TileList

/flex/flex_numericstepper_control.htm
/flex/flex_eventdispatcher_class.htm
/flex/flex_uicomponent_class.htm
/flex/flex_datagrid_control.htm
/flex/flex_advanceddatagrid_control.htm
/flex/flex_menu_control.htm
/flex/flex_progressbar_control.htm
/flex/flex_richtexteditor_control.htm
/flex/flex_tilelist_control.htm

The TileList control The TileList control displays a number of items laid out in tiles.

7 Tree

The Tree control lets a user view hierarchical data arranged as an expandable tree.

8 VideoPlayer

The VideoPlayer control is a skinnable video player that supports progressive download,
multi-bitrate streaming, and streaming video.

9 Accordian

An Accordian control has a collection of child MX containers or Spark NavigatorContent
containers, but only one of them at a time is visible.

10 TabNavigator

The TabNavigator control includes a TabBar container for navigating between its child
containers.

11 ToggleButtonBar

The ToggleButtonBar control defines a horizontal or vertical group of buttons that
maintain their selected or deselected state.

FLEX - LAYOUT PANELSFLEX - LAYOUT PANELS
Layout panel controls provides users to organize UI controls on the page. Every Layout control
inherits properties from UIComponent class which in turn inherits properties from EventDispatcher
and other top level classes.

S.N. Control & Description

1 Flex EventDispatcher Class

The EventDispatcher class is the base class for all classes that can dispatch events. The
EventDispatcher class allows any object on the display list to be an event target and as
such, to use the methods of the IEventDispatcher interface.

2 Flex UIComponent

The UIComponent class is the base class for all visual components, both interactive and
noninteractive.

Layout Panels
Following are few important Layout Panels:

S.N. Panel & Description

1 BorderContainer

The BorderContainer class provides a set of CSS styles that control the appearance of the

/flex/flex_tree_control.htm
/flex/flex_videoplayer_control.htm
/flex/flex_accordian_control.htm
/flex/flex_tabnavigator_control.htm
/flex/flex_togglebuttonbar_control.htm
/flex/flex_eventdispatcher_class.htm
/flex/flex_uicomponent_class.htm
/flex/flex_bordercontainer.htm

border and background fill of the container.

2 Form

The Form container provides control over the layout of a form, mark form fields as
required or optional, handle error messages, and bind form data to the Flex data model
to perform data checking and validation.

3 VGroup

The VGroup container is a Group container that uses the VerticalLayout class.

4 HGroup

The HGroup container is a Group container that uses the HorizontalLayout class.

5 Panel

The Panel class is a container that includes a title bar, a caption, a border, and a content
area for its children.

6 SkinnableContainer

The SkinnableContainer class is the base class for skinnable containers that provide
visual content.

7 TabBar

The TabBar displays a set of identical tabs.

8 TitleWindow

The TitleWindow extends Panel to include a close button and move area.

FLEX - VISUAL EFFECTSFLEX - VISUAL EFFECTS
We can add behaviour to flex application using concept of Effects. For example, when a text box
get focus, we can make its text become bolder and make its size slight bigger.

Every Effect inherits properties from Effect class which in turn inherits properties from
EventDispatcher and other top level classes.

S.N. Effect & Description

1 Flex Effect Class

The Effect class is an abstract base class that defines the basic functionality of all Flex
effects. This class defines the base factory class for all effects.

Basic Effects
Following are few important Basic Visual Effects:

S.N. Effect & Description

/flex/flex_form.htm
/flex/flex_vgroup.htm
/flex/flex_hgroup.htm
/flex/flex_panel.htm
/flex/flex_skinnablecontainer.htm
/flex/flex_tabbar.htm
/flex/flex_titlewindow.htm
/flex/flex_effect_class.htm

1 Fade

The Fade effect animates the alpha property of a component.

2 WipeLeft

The WipeLeft class defines a wipe left effect.

3 WipeRight

The WipeRight class defines a wipe right effect.

4 Move3D

The Move3D class moves a target object in the x, y, and z dimensions.

5 Scale3D

The Scale3D class scales a target object in three dimensions around the transform
center.

6 Rotate3D

The Rotate3D class rotate a target object in three dimensions around the x, y, or z axes.

7 Animate

This Animate effect animates an arbitrary set of properties between values. Specify the
properties and values to animate by setting the motionPaths property.

FLEX - EVENT HANDLINGFLEX - EVENT HANDLING
Flex uses concept of event to pass data from one object to another depend upon the state or user
interaction within the application.

ActionScript has a generic Event class which defines much of the functionality needed to work
with events. Every time an event occurs within a Flex application, three types of objects from the
Event class hierarchy are created.

Event has the following three key properties

Property Description

type type states about what kind of event just happened. This may be click, initialize,
mouseover, change, etc. The actual values will be represented by constants like
MouseEvent.CLICK.

target The target property of Event is an object reference to the component that
generated the event.If you click a Button with an id of clickMeButton, the target
of that click event will be clickMeButton

currentTarget The currentTarget property varies container hierarchy. It mainly deals with flow
of events.

Event Flow Phases

/flex/flex_fade_effect.htm
/flex/flex_wipeleft_effect.htm
/flex/flex_wiperight_effect.htm
/flex/flex_move3d_effect.htm
/flex/flex_scale3d_effect.htm
/flex/flex_rotate3d_effect.htm
/flex/flex_animate_effect.htm

An event goes through three phases looking for event handlers.

Phase Description

Capture In the capture phase the program will start looking for event handlers from the
outside ortop parent to the innermost one. The capture phase stops at the parent of
the object that triggered the event.

Target In the target phase ,the component that triggered the event, is checked for an event
handler.

Bubble The Bubble phase is reverse of capture phase, working back through the structure,
from the target component's parent on up.

Consider the following application code

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500" >
 <s:Panel>
 <s:Button />
 </s:Panel>
</s:Application>

When the user clicks the Button, he or she has also clicked the Panel and the Application.The event
goes through three phases looking for event-handler assignments.

Let us follow the following steps to test event handing in a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as

explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%" minWidth="500" minHeight="500"
 >
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 protected function reportEvent(event:MouseEvent):void
 {
 var target:String = event.target.id;
 var currentTarget:String = event.target.id;
 var eventPhase: String;

 if(event.target is Button){
 var button:Button = event.target as Button;
 target = button.label + " Button";
 } else if(event.target is HGroup){
 var hGroup:HGroup = event.target as HGroup;
 target = hGroup.id + " HGroup";
 }else if(event.target is Panel){
 var panel:Panel = event.target as Panel;
 target = panel.id + " Panel";
 }

 if(event.currentTarget is Button){
 var button1:Button = event.currentTarget as Button;
 currentTarget = button1.label + " Button";
 }else if(event.currentTarget is HGroup){
 var hGroup1:HGroup = event.currentTarget as HGroup;
 currentTarget = hGroup1.id + " HGroup";
 }else if(event.currentTarget is Panel){
 var panel1:Panel = event.currentTarget as Panel;
 currentTarget = panel1.id + " Panel";
 }

 var eventPhaseInt:uint = event.eventPhase;

 if(eventPhaseInt == EventPhase.AT_TARGET){
 eventPhase = "Target";
 } else if(eventPhaseInt == EventPhase.BUBBLING_PHASE){
 eventPhase = "Bubbling";
 }else if(eventPhaseInt == EventPhase.CAPTURING_PHASE){
 eventPhase = "Capturing";
 }

 reports.text += " Target: " + target + "\n currentTarget: " +
 currentTarget + "\n Phase: " + eventPhase + "\n----------\n";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="630" height="480"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="10"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label
 fontSize="40" color="0x777777" styleName="heading"/>
 <s:Panel

 click="reportEvent(event)" width="500"
 height="100" includeInLayout="true" visible="true">
 <s:layout>
 <s:VerticalLayout gap="10"
 verticalAlign="middle" horizontalAlign="center"/>
 </s:layout>
 <s:HGroup >
 <s:Button label="Click Me"
 click="reportEvent(event)"/>
 </s:HGroup>
 </s:Panel>
 <s:Panel
 title="Events" width="500" height="230">
 <mx:Text />
 </s:Panel>
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

FLEX - CUSTOM CONTROLSFLEX - CUSTOM CONTROLS
Flex provides two ways to create custom components.

Using ActionScript

Using MXML

Using ActionScript
You can create a component by extending existing component. To create a component using
Flash Builder, Click on File > New > ActionScript Class. Enter the details as shown below.

/flex/flex_create_application.htm
/flex/samples/EventHandlingApplication.html

Flash Builder will create the following CustomButton.as file.

package com.tutorialspoint.client
{
 import spark.components.Button;

 public class CustomButton extends Button
 {
 public function CustomButton()
 {
 super();
 }
 }
}

Using MXML
You can create a component by extending existing component. To create a component using
Flash Builder, Click on File > New > MXML Component. Enter the details as shown below.

Flash Builder will create the following CustomLogin.mxml file.

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="400" height="300">

</s:Group>

Let us follow the following steps to test custom controls in a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

4 Create CustomLogin.mxml and CustomButton.as component as explained above. Modify
these files as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file
src/com.tutorialspoint/client/CustomLogin.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <s:Form>
 <s:FormItem label="UserName:">
 <s:TextInput width="200" />
 </s:FormItem>
 <s:FormItem label="Password:">
 <s:TextInput width="200"

 displayAsPassword="true" />
 </s:FormItem>
 <s:FormItem>
 <s:Button label="Login" />
 </s:FormItem>
 </s:Form>
</s:Group>

Following is the content of the modified mxml file
src/com.tutorialspoint/client/CustomButton.as.

package com.tutorialspoint.client
{
 import spark.components.Button;

 public class CustomButton extends Button
 {
 public function CustomButton()
 {
 super();
 this.setStyle("color","green");
 this.label = "Submit";
 }
 }
}

Following is the content of the modified mxml file
src/com.tutorialspoint/client/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 xmlns:client="com.tutorialspoint.client.*"
 initialize="application_initializeHandler(event)"
 >
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 protected function application_initializeHandler(event:FlexEvent):void
 {
 //create a new custom button
 var customButton: CustomButton = new CustomButton();
 asPanel.addElement(customButton);
 }

]]>
 </fx:Script>
 <s:BorderContainer width="630" height="480"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="10"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label
 fontSize="40" color="0x777777" styleName="heading"/>

 <s:Panel title="Using MXML Component" width="400" height="200">
 <client:CustomLogin>
 </client:CustomLogin>
 </s:Panel>
 <s:Panel title="Using AS Component" width="400" height="100">
 <s:VGroup
 horizontalAlign="center" verticalAlign="middle">
 </s:VGroup>
 </s:Panel>
 </s:VGroup>
 </s:BorderContainer>

</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

FLEX - RPC SERVICESFLEX - RPC SERVICES
Flex provides RPC services to provide server side data to client side. Flex provides a fair amount of
control on to server side data.

Using Flex RPC services, we can define user actions to be executed on server side.

Flex RPC Sservices can be integrated with any server side technologies.

One of Flex RPC Service provide inbuilt support for compressed binary data to be transferred
over the wire and is pretty fast.

Flex provides following three types of RPC Services

RPC Service Description

HttpService <mx:HTTPService> tag is used to represent an HTTPService object in an MXML
file. When you make a call to HTTPService object's send method, it makes an
HTTP request to the specified URL, and an HTTP response is returned.You can
also use the HTTP HEAD, OPTIONS, TRACE, and DELETE methods.

WebService The <mx:WebService> tag is used to get access to the operations of SOAP-
compliant web services.

RemoteObject The <mx:RemoteObject> tag is used to represent an HTTPService object in an
MXML file. This tag gives you access to the methods of Java objects using Action
Message Format AMF encoding.

/flex/flex_create_application.htm
/flex/samples/CustomControlApplication.html

We're going to discuss HTTP Service in detail. We'll use an XML source file placed at server and
access it at client side via HTTP Service

Items.xml

<items>
 <item name="Book" description="History of France"></item>
 <item name="Pen" description="Parker Pen"></item>
 <item name="Pencil" description="Stationary"></item>
<items>

HTTPService Declaration
Now declare a HTTPService and pass it url of the above file

<fx:Declarations>
 <mx:HTTPService
 url="http://www.tutorialspoint.com/flex/Items.xml" />
</fx:Declarations>

RPC Call
Make a call to itemRequest.send method and bind values from lastResult object of itemRequest
webservice to Flex UI component.

...
itemRequest.send();
...
<mx:DataGrid
 dataProvider="{itemRequest.lastResult.items.item}">
 <mx:columns>
 <mx:DataGridColumn headerText="Name" dataField="name"/>
 <mx:DataGridColumn headerText="Description" dataField="description"/>
 </mx:columns>
</mx:DataGrid>

RPC Service Call Example
Now Let us follow the following steps to test RPC services in a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 minWidth="500" minHeight="500" creationComplete="init(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;
 import mx.rpc.events.FaultEvent;

 import mx.rpc.events.ResultEvent;

 protected function init(event:FlexEvent):void
 {
 itemRequest.send();
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <mx:HTTPService
 url="http://www.tutorialspoint.com/flex/Items.xml" />
 </fx:Declarations>
 <s:BorderContainer width="630" height="480"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="10"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label
 fontSize="40" color="0x777777" styleName="heading"/>
 <s:Panel
 width="500" height="200" >
 <s:layout>
 <s:VerticalLayout gap="10"
 verticalAlign="middle" horizontalAlign="center"/>
 </s:layout>
 <mx:DataGrid
 dataProvider="{itemRequest.lastResult.items.item}">
 <mx:columns>
 <mx:DataGridColumn headerText="Name"
 dataField="name"/>
 <mx:DataGridColumn headerText="Description"
 dataField="description"/>
 </mx:columns>
 </mx:DataGrid>
 </s:Panel>
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/RPCApplication.html

FLEX - FLEXUNIT INTEGRATIONFLEX - FLEXUNIT INTEGRATION
Flash Builder 4 excellent inbuilt support for FlexUnit integration in Flex development Cycle.

Create a Test Case Class
You can create a Test Case Class using Flash Builder Create Test Class wizard. Running test cases
is a breeze with Flash Builder as you will see in this article.

To create a test case class using Flash Builder, Click on File > New > Test Case Class. Enter the
details as shown below.

Flash Builder will create the following TestClass1.as file.

package com.tutorialspoint.client
{
 public class TestClass1
 {
 [Before]
 public function setUp():void {}

 [After]
 public function tearDown():void {}

 [BeforeClass]
 public static function setUpBeforeClass():void {}

 [AfterClass]

 public static function tearDownAfterClass():void {}
 }
}

FlexUnit Integration Example
Now Let us follow the following steps to test FlexUnit Integration in a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Create TestClass1.as test case as described above and Modify TestClass1.as as
explained below.

4 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified as file src/com.tutorialspoint/client/TestClass1.as.

package com.tutorialspoint.client
{
 import org.flexunit.asserts.assertEquals;

 public class TestClass1
 {
 private var counter: int = 1;

 [Before]
 public function setUp():void
 {
 //this code will run before every test case execution
 }

 [After]
 public function tearDown():void
 {
 //this code will run after every test case execution
 }

 [BeforeClass]
 public static function setUpBeforeClass():void
 {
 //this code will run once when test cases start execution
 }

 [AfterClass]
 public static function tearDownAfterClass():void
 {
 //this code will run once when test cases ends execution
 }

 [Test]
 public function testCounter():void {
 assertEquals(counter, 1);
 }
 }
}

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 minWidth="500" minHeight="500">
</s:Application>

Once you are ready with all the changes done, let us compile in normal mode as we did in Flex -
Create Application chapter.

Running Test cases
Now Right Click on TestClass1 in package explorer and select Run As > FlexUnit Tests. You'll
see the following output in Flash Builder test window.

Flash Builder also show test result in the browser.

/flex/flex_create_application.htm

FLEX - DEBUG APPLICATIONFLEX - DEBUG APPLICATION
Flex provides excellent capability of debugging flex code and Flash Builder 4 has an excellent
built-in debugger and debugging perspective support.

During debug mode, Flex Application runs on Flash Player Debugger version built in Flash
Builder 4 which supports debugging capability.

So developers get an easy and inbuilt debugging configuration in Flash Builder

In this article we'll demonstrate usage of debugging Flex Client code using Flash Builder. We'll do
the following tasks

Set break points in the code and see them in BreakPoint Explorer.

Step through the code line by line during debugging.

View the values of variable.

Inspect the values of all the variables.

Inspect the value of an expression.

Display the stack frame for suspended threads.

Debugging Example

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500"
 initialize="application_initializeHandler(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 protected function btnClickMe_clickHandler(event:MouseEvent):void
 {
 Alert.show("Hello World!");
 }

 protected function application_initializeHandler(event:FlexEvent):void
 {
 lblHeader.text = "My Hello World Application";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50" horizontalAlign="center"

 verticalAlign="middle">
 <s:Label
 styleName="heading"/>
 <s:Button label="Click Me!"
 click="btnClickMe_clickHandler(event)" styleName="button" />
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile in normal mode as we did in Flex -
Create Application chapter.

Step 1 - Place BreakPoints
Place a breakpoint on the first line of application_initializeHandler of HelloWorld.mxml

Step 2 - Debug Application
Now click on
Debug application menu and select HelloWorld application to debug the application.

/flex/flex_create_application.htm

If everything is fine, application will launch in the browser and you will see following debug logs in
Flash Builder console

[SWF] \HelloWorld\bin-debug\HelloWorld.swf
- 181,509 bytes after decompression
[SWF] \HelloWorld\bin-debug\HelloWorld.swf\[[DYNAMIC]]\1
- 763,122 bytes after decompression
[SWF] \HelloWorld\bin-debug\HelloWorld.swf\[[DYNAMIC]]\2
- 1,221,837 bytes after decompression
[SWF] \HelloWorld\bin-debug\HelloWorld.swf\[[DYNAMIC]]\3
- 1,136,788 bytes after decompression
[SWF] \HelloWorld\bin-debug\HelloWorld.swf\[[DYNAMIC]]\4
- 2,019,570 bytes after decompression
[SWF] \HelloWorld\bin-debug\HelloWorld.swf\[[DYNAMIC]]\5
- 318,334 bytes after decompression

As soon as Application launches,you will see the focus on Flash Builder breakpoint as we've placed
the breakpoint on first line of application_initializeHandler method.

You can see the stacktrace for suspended threads.

You can see the values for expressions.

You can see the list of breakpoints placed.

Now keep pressing F6 until you reach the last line of application_initializeHandler method. As
reference for function keys, F6 inspects code line by line, F5 steps inside further and F8 will resume
the application. Now you can see the list of values of all variables of application_initializeHandler
method.

Now you can see the flex code can be debugged in the same way as a Java Application can be
debugged. Place breakpoints to any line and play with debugging capabilities of flex.

FLEX - INTERNATIONALIZATIONFLEX - INTERNATIONALIZATION
Flex provides two ways to internationalize a Flex application, We'll demonstrate use of Compile
time Internationalization being most commonly used among projects.

Technique Description

Compile Time
Internationalization

This technique is most prevalent and requires very little overhead at
runtime; is a very efficient technique for translating both constant and
parameterized strings;simplest to implement. Compile Time
internationalization uses standard properties files to store translated
strings and parameterized messages, and these properties files are
compiled directly in the application.

Run Time
Internationalization

This technique is very flexible but slower than static string
internationalization. You need to compile the localization properties
files separately, leave them external to application, and load them at
run time.

Workflow of internationalizing a Flex Application
Step 1: Create folder structure
Create a locale folder under src folder of Flex project.This will be the parent directory for all of the
properties files for the locales that the application will support. Inside the locale folder, create
subfolders, one for each of the application's locales to be supported. The convention for naming a
locale is

{language}_{country code}

For example, en_US represents English of the United States. The locale de_DE represents German.
The sample application will support two common languages: English, and German

Step 2: Create properties files

Create properties file containing the messages to be used in the application. We've created a
HelloWorldMessages.properties file under src > locale > en_US folder in our example.

enterName=Enter your name
clickMe=Click Me
applicationTitle=Application Internationalization Demonstration
greeting=Hello {0}

Create properties files containing translated values specific to locale. We've created a
HelloWorldMessages.properties file under src > locale > de_DE folder in our example. This
file contains translations in german language. _de specifies the german locale and we're going to
support german language in our application.

If you are creating properties file using Flash Builder then change the encoding of the file to UTF-
8.Select the file and then right-click in it to open its properties window.Select Text file encoding as
Other UTF-8. Apply and Save the change.

enterName=Geben Sie Ihren Namen
clickMe=Klick mich
applicationTitle=Anwendung Internationalisierung Demonstration
greeting=Hallo {0}

Step 3: Specify Compiler options
Right-click your project and select Properties.

Select Flex Compiler, and add the following to the Additional Compiler Arguments settings:

-locale en_US de_DE

Right-click your project and select Properties.

Select Flex Build Path, and add the following to the Source Path settings:

src\locale\{locale}

Internalization Example
Now Let us follow the following steps to test Internalization technique in a Flex application:

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
 <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 minWidth="500" minHeight="500">
 <fx:Metadata>
 [ResourceBundle("HelloWorldMessages")]
 </fx:Metadata>
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>

 <![CDATA[
 import mx.controls.Alert;
 [Bindable]
 private var locales:Array = [{label:"English", locale:"en_US"},
 {label:"German", locale:"de_DE"}];

 private function comboChangeHandler():void
 {
 resourceManager.localeChain = [localeComboBox.selectedItem.locale];
 }

 protected function clickMe_clickHandler(event:MouseEvent):void
 {
 var name:String = txtName.text;
 var inputArray:Array = new Array();
 inputArray.push(name);
 Alert.show(resourceManager.getString('HelloWorldMessages'
 ,'greeting',inputArray));
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50"
 horizontalAlign="center" verticalAlign="middle">
 <s:Label
 color="0x777777"
 text ="{resourceManager.getString('HelloWorldMessages'
 ,'applicationTitle')}"
 styleName="heading" width="90%" height="150"/>
 <s:Panel width="300" height="150">
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10" />
 </s:layout>
 <s:HGroup >
 <s:Label
 text="{resourceManager.getString('HelloWorldMessages'
 ,'enterName')}"
 paddingTop="2"/>
 <s:TextInput />
 </s:HGroup>
 <s:Button
 label="{resourceManager.getString('HelloWorldMessages','clickMe')}"
 click="clickMe_clickHandler(event)" right="10" />
 </s:Panel>
 <mx:ComboBox
 dataProvider="{locales}" change="comboChangeHandler()"/>
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/I18NApplication.html

Change the language using language drop down and see the result.

FLEX - PRINTING SUPPORTFLEX - PRINTING SUPPORT
Flex provides a special class FlexPrintJob to print flex objects.

FlexPrintJob can be used to print one or more Flex objects, such as a Form or VBox container.

FlexPrintJob prints the object and all objects that it contains.

The objects can be all or part of the displayed interface.

The objects can be components that format data specifically for printing.

The FlexPrintJob class lets you scale the output to fit the page.

The FlexPrintJob class automatically uses multiple pages to print an object that does not fit on
a single page.

The FlexPrintJob class causes the operating system to display a Print dialog box. You cannot
print without some user action.

Prepare and send a print job
You print output by preparing and sending a print job. Let's create an instance of the FlexPrintJob
class

var printJob:FlexPrintJob = new FlexPrintJob();

Start the print job

printJob.start();

Flex will cause the operating system to display a Print dialog box. Add one or more objects to the
print job and specify how to scale them

printJob.addObject(myObject, FlexPrintJobScaleType.MATCH_WIDTH);

Each object starts on a new page. Send the print job to the printer

printJob.send();

Printing Example

Step Description

1 Create a project with a name HelloWorld under a package com.tutorialspoint.client as
explained in the Flex - Create Application chapter.

2 Modify HelloWorld.mxml as explained below. Keep rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the
requirements.

Following is the content of the modified mxml file src/com.tutorialspoint/HelloWorld.mxml.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 minWidth="500" minHeight="500"

 initialize="application_initializeHandler(event)">
 <fx:Style source="/com/tutorialspoint/client/Style.css"/>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 import mx.printing.FlexPrintJob;
 import mx.printing.FlexPrintJobScaleType;
 protected function btnClickMe_clickHandler(event:MouseEvent):void
 {
 // Create an instance of the FlexPrintJob class.
 var printJob:FlexPrintJob = new FlexPrintJob();

 // Start the print job.
 if (printJob.start() != true) return;

 // Add the object to print. Do not scale it.
 printJob.addObject(myDataGrid, FlexPrintJobScaleType.NONE);

 // Send the job to the printer.
 printJob.send();
 }

 protected function application_initializeHandler(event:FlexEvent):void
 {
 lblHeader.text = "My Hello World Application";
 }
]]>
 </fx:Script>
 <s:BorderContainer width="500" height="500"
 styleName="container">
 <s:VGroup width="100%" height="100%" gap="50"
 horizontalAlign="center"
 verticalAlign="middle">
 <s:Label
 styleName="heading"/>
 <mx:DataGrid >
 <mx:dataProvider>
 <fx:Object Product="Flex" Code="1000"/>
 <fx:Object Product="GWT" Code="2000"/>
 <fx:Object Product="JAVA" Code="3000"/>
 <fx:Object Product="JUnit" Code="4000"/>
 </mx:dataProvider>
 </mx:DataGrid>
 <s:Button label="Print Me!"
 click="btnClickMe_clickHandler(event)"
 styleName="button" />
 </s:VGroup>
 </s:BorderContainer>
</s:Application>

Once you are ready with all the changes done, let us compile and run the application in normal
mode as we did in Flex - Create Application chapter. If everything is fine with your application, this
will produce following result: [Try it online]

/flex/flex_create_application.htm
/flex/samples/PrintApplication.html

Click on print me button and you can see the printout of the data grid shown below.

Processing math: 100%

